Contribution ID : 121

Pionic transitions of excited charmed mesons in the covariant oscillator quark model

Tomohito Maeda¹, Kenji Yamada¹, and Masuho Oda²

¹ Department of Science and Manufacturing Technology, Junior College Funabashi Campus, Nihon University, Funabashi 274-8501, Japan

² Research Institute of Science and Technology, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

1 Introduction

Charmed meson spectroscopy since 2010

Spectroscopy of charmed mesons has been made a remarkable progress by recent development of high energy collider experiment [1]. Since 2010, candidates for the highly excited states have been successively observed by the BABAR and LHCb collaborations.

Table 1: Charmed mesons observed in recent experiments.							
Resonance	J^P	Channel	Mass (MeV)	Width (MeV)	Experiment		
$D_J(2550)^0$		$D^{*+}\pi-$	$2539.4 \pm 4.5 \pm 6.8$	$130\pm12\pm13$	BABAR[2]		
$D_J(2580)^0$		$D^{*+}\pi-$	$2579.5 \pm 3.4 \pm 3.5$	$177.5 \pm 17.8 \pm 46.0$	LHCb[3]		
$D_{J}^{*}(2600)^{0}$		$D^+\pi^-$	$2608.7 \pm 2.4 \pm 2.5$	$93\pm 6\pm 13$	BABAR[2]		
$D_{J}^{*}(2650)^{0}$		$D^{*+}\pi^-$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	LHCb[3]		
$D_1^*(2680)^0$	1^{-}	$D^+\pi^-$	$2681.1 \pm 5.6 \pm 4.9 \pm 13.1$	$186.7 \pm 8.5 \pm 8.6 \pm 8.2$	LHCb[6]		
$D(2750)^{0}$		$D^{*+}\pi^-$	$2752.4 \pm 1.7 \pm 2.7$	$71\pm 6\pm 11$	BABAR[2]		
$D_J(2740)^0$		$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	LHCb[3]		
- ()							
$D_{I}^{*}(2760)^{0}$		$D^{*+}\pi^{-}$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	LHCb[3]		
J ()		$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	LHCb[3]		
		$D^+\pi^-$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	BABAR[2]		
$D_{I}^{*}(2760)^{+}$		$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	LHCb[3]		
$D_1^*(2760)^0$	1^{-}	$D^+\pi^-$	$2781 \pm 18 \pm 11 \pm 6$	$177 \pm 32 \pm 20 \pm 7$	LHCb[4]		
					L J		
$D_{2}^{*}(2760)^{-}$	3^{-}	$ar{D}^0\pi^-$	$2798 \pm 7 \pm 1 \pm 7$	$105 \pm 18 \pm 6 \pm 23$	LHCb[5]		
5(/			$2802 \pm 11 \pm 10 \pm 3$	$154 \pm 27 \pm 13 \pm 9$	LHCb[5]		
$D_2^*(2760)^0$	3^{-}	$D^+\pi^-$	$2775.5 \pm 4.5 \pm 4.5 \pm 4.7$	$95.3 \pm 9.6 \pm 7.9 \pm 33.1$	LHCb[6]		
3					L J		
$D_{I}(3000)^{0}$		$D^{*+}\pi^{-}$	2971.8 ± 8.7	188.1 ± 44.8	LHCb[3]		
					L J		
$D^*_{\tau}(3000)^0$		$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	LHCb[3]		
$J \setminus J$	2^{+}	$D^+\pi^-$	$3214 \pm 29 \pm 33 \pm 36$	$186\pm38\pm34\pm63$	LHCb[6]		

3 Results and Discussions

Parameters

In this work, we take the following values of parameters:

 $f_{\pi} = 0.130 \text{ GeV}, f_K = f_{\eta} = 0.156 \text{ GeV} g_A = 0.75,$ $\beta = 0.43 \text{ GeV}, m_1 = \frac{m_{\rho}}{2} = 0.387 \text{ GeV}, m_2 = \frac{m_{J/\psi}}{2} = 1.55 \text{ GeV}$

Numerical results in comparison with other quark-model predictions are shown in Tab. 2 and 3.

Table 2: Calculated widths for $L = 0$ and $L = 1$ states. (in MeV)								
State	$^{2S+1}L_J$	Channel Exp.[1]		This work	ZZ:2008[13]	GM:2016[17]	CS:2005[15]	
$D^*(2010)^+$	${}^{3}S_{1}$	$D \pi$	$(83.4 \pm 1.8) \cdot 10^{-3}$	$117 \cdot 10^{-3}$	$112 \cdot 10^{-3}$	$125 \cdot 10^{-3}$	$52 \cdot 10^{-3}$	
$D_{1}^{'}(2420)^{+}$	$j_q = \frac{3}{2} P_1$	$D^* \pi$	25 ± 6	21	22	9.92	22	
$D_0^*(2400)^+$	${}^{3}P_{0}$	$D \pi$	$230{\pm}17$	264	248	154	283	
$D_1(2430)^0$	$j_q = \frac{1}{2} P_1$	$D^* \pi$	384^{+130}_{-110}	234	220	161	272	
$D_2^*(2460)$	${}^{3}P_{2}$	$D \pi$	-	30	39	15.3	35	
		$D^* \pi$	-	19	19	6.98	20	
		total	46.7 ± 1.2	49	59	23	55	

Table 3: Calculated widths for L = 2 states. (in MeV)

State	$^{2S+1}L_J$	Channel	$\operatorname{Exp.}[4, 5]$	This work	Z:2010[14]	SCLM:2015[15]	GM:2016[17]	CS:2005[15]
$D_1^*(2760)$	${}^{3}D_{1}$	$D \pi$	-	89	156.8	76.13	53.6	73
		$D \eta$	-	11	43.2	9.01	10.1	16
		$D_s K$	-	12	45.8	11.66	22.8	55
		$D^* \pi$	-	45	64.9	35.16	29.3	45
		$D^* \ \eta$	-	4.2	12.9	2.68	4.0	9
		$D^*_s K$	-	12	10.3	2.92	7.4	23
		$D_1(2430) \pi$	-		29.4	0.56	2.1	0.2
		$D_1'(2420) \ \pi$	-	Very preliminary	187.1	211.72	76.4	189
		$D_2^*(2460) \ \pi$	-		2.7	0.007	0.6	7
		D ho	-	-	0.2	26.34	19.8	74
		$D \omega$	-	-	0.05	8.87	6.3	16
		total	$177 \pm 32 \pm 20 \pm 7$	> 173	553.3	385.06	234	523
$D_2'(2750)$	$j_q = \frac{5}{2} D_2$	$D^* \pi$	_	22.5				
		total	71 ± 6	> 23.3				
$D_2(\sim 2750)$	$j_q = \frac{3}{2} D_2$	$D^* \pi$	-	131				
		total	-	> 170				
$D_3^*(2760)$	${}^{3}D_{3}$	$D \pi$	-	18.6	32.5	8.47	20.1	53
		$D \eta$	-	1.42	2.6	0.31	1.24	4
		$D_s K$	-	1.79	2.1	0.17	1.1	4
		$D^* \pi$	-	16.5	20.6	7.05	15.5	55
		$D^* \eta$	-	0.60	0.7	0.11	-	3
		$D^*_s K$	-	0.481	0.3	0.04	-	2
		$D_1'(2420) \ \pi$	- (1.7	0.21	-	2
		$D_1(2430) \ \pi$	-	Very preliminary	5.2	0.26	-	3
		$D_2^*(2460) \ \pi$	_ (1.7	0.63	0.9	6
		D ho	-	-	0.4	0.61	1.30	15
		$D \omega$	-	-	0.1	0.21	-	4
		total	$105 \pm 18 \pm 6 \pm 23$	$\gtrsim 40$	67.9	18.07	51	277
			$154\pm27\pm13\pm9$					

Purpose of this work

- The study of the hadronic decay is the most suitable way to probe the nature of hadrons since decay widths strongly depend on their internal structure.
 (→ L-S/S_{Q-jq}, role of FF, relativistic effect, ...)
- Although several theoretical studies have been done, spectroscopic assignments for these states still remain to be completely elucidated.
- In this work we employ the Covariant Oscillator Quark Model (COQM) to calculate the strong decay widths of charmed mesons.
- In order to evaluate the transitions rates, we use the effective coupling vertex [18] in the elementary emission model with suitable modification in conformity with our scheme.
- We have paid a particular attention about the relativistic effect of our model and discuss the impact to the decay widths. Obtained results are compared with the experimental data and other quark models.

2 Covariant Oscillator Quark Model

- The COQM [7-12] is one of the possible covariant extension of conventional nonrelativistic quark model.
- The remarkable features of the COQM is that hadrons are treated in a manifestly covariant way. Covariant formulation allows us to deal with retardation effects.
- Excited states are on the linear Regge trajectory in terms of squared masses.

 ${M_n}^2 = {M_0}^2 + n\Omega$ Here, $n = L + 2n_r$

It is possible to introduce a quark-pion coupling in conformity with the low energy

* We have used $v_I \approx v_F$ approximation to compute respective amplitudes.

Discussions and comments

- Concerning the 1P states, our model successfully reproduces experiments as well as other models.
- Calculated widths for 1D-states are relatively narrow than them by other models since our relativistic form-factor the strongly suppresses the rates.
- The results for D₁*(2760) is larger than present data. This indicates that state mixing between 1D-2S are required.
- While the total width for D₃*(2760) is slightly smaller than experiment, obtained results are totally not contradict with present data. We expect that forthcoming precise experiments will make these predictions to verify.

theorem.

basic KG Eq.:
$$\left(-\frac{\partial^2}{\partial X_{\mu}\partial X^{\mu}} - \mathcal{M}^2(x)\right)\Psi(X,x)_{\alpha}{}^{\beta} = 0, \quad \mathcal{M}(x)^2 = \lambda \left(\frac{1}{2\mu}\frac{\partial^2}{\partial x_{\mu}x^{\mu}} - \frac{1}{2}Kx_{\mu}x^{\mu}\right) + \text{const.}$$

 $\left\{\lambda = 2(m_1 + m_2), \quad \mu = \frac{m_1m_2}{m_1 + m_2}\right\}$
bi-local WF : $\Psi(x_1^{\mu}, x_2^{\mu})_{\alpha}{}^{\beta} = \Psi(X^{\mu}, x^{\mu})_{\alpha}{}^{\beta} = \sqrt{\frac{2M}{2P_0V}}e^{\mp iP_{\mu}X^{\mu}}\Phi(v, x)_{\alpha}{}^{\beta(\pm)}$
boosted LS coupling scheme : $\Phi(v, x)_{\alpha}^{(\pm)\beta} = f(v, x)^{\mu\nu\cdots} \otimes \left(W_{\alpha}^{(\pm)\beta}(v)\right)_{\mu\nu\cdots}$
 $-$ Spin part W: Bargmann-Wigner spinor
 $-$ Space-time part f: Definite-type 4 dimensional SHO
satisfying definite metric-type subsidiary condition $\left(P^{\mu}a_{\mu}^{\dagger}f(v,x)^{(nL)} = 0, a_{\mu}^{\dagger} = \frac{1}{\sqrt{2\beta^2}}(\beta^2x_{\mu} - \partial_{x\mu})\right)$ [11]
 $f_{G}(v,x) = \frac{\beta^2}{\pi}\exp\left(-\frac{\beta^2}{2}(-g_{\mu\nu} + 2v_{\mu}v_{\mu})x^{\mu}x^{\nu}\right)\right) \stackrel{v=0}{\to} \left(\frac{\beta^2}{\pi}\right)\exp\left(-\frac{\beta^2}{2}(t^2 + x^2)\right)$ with the HO parameter $\beta^2 = \sqrt{\mu K}$
 \rightarrow FF $\sim \int d^4x f_G(v_F,x)f_G(v_I,x)e^{i\frac{mn}{m_1+m_2}q_{\mu}x^{\mu}} = \frac{1}{\omega}\exp\left(\frac{1}{4\beta^2}\left(\frac{m_2}{m_1+m_2}\right)^2\left(q^2 - \frac{2(v_Iq)(v_Fq)}{\omega}\right)\right)$
 $P_{\Xi}=0 \quad M_F \\ (P_F)_0 \exp\left(-\frac{1}{4\beta^2}\left(\frac{m_2}{m_1+m_2}\right)^2\left(q^2 + q_0^2 + 2\frac{q_0}{(P_F)_0}q^2\right)\right).$
pseudo-scalar coupling [12] :
 $\partial_1^{\mu}\Psi \rightarrow \partial_1^{\mu}\Psi - i\frac{q_A}{p_B}\gamma_5\partial_1^{\mu}\phi_{PS} \rightarrow S_{f_I} = \langle f|\int d^4x_1 \int d^4x_2\langle \bar{\Psi}(x_1,x_2)\frac{-i}{2m_1}\frac{g_A}{f_{DS}}\gamma_5\sigma_{\mu\nu}\langle \partial_1^{\lambda} - \partial_1^{\nu}\rangle\Psi(x_1,x_2)\rangle\partial_1^{\mu}\phi_{PS}|i\rangle$

References

- [1] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.
- [2] P. del Amo Sanchez *et al.* (BaBar Collaboration), Phys. Rev. D 82, 111101 (2010).
- [3] R. Aaij et al. (LHCb Collaboration), JHEP **1309**, 145 (2013).
- [4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D91, 092002 (2015).
- [5] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D92, 032002 (2015).
- [6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D94, 072001 (2016).
- S. Ishida and M. Oda, in *Proceedings of Extended Objects and Bound Systems*, ed. O. Hara, S. Ishida and S. Naka (World Scientific, 1992), p. 181. See also, S. Ishida and M. Oda, Prog. Theor. Phys. Suppl. No. 67 (1979), 209.
- [8] S. Ishida and K. Yamada, Phys. Rev. D **35** (1987), 265.
- [9] S. Ishida, K. Yamada and M. Oda, Phys. Rev. D 40, 1497 (1989).
- [10] S. Ishida and M. Oda, Prog. Theor. Phys. 89, 1033 (1993).
- [11] T. Takabayasi, Prog. Theor. Phys. Suppl. 67, 1 (1979).
- [12] R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3, 2706 (1971).

[13] X.H. Zhong and Q. Zhao, Phys. Rev. **D** 78, 014029 (2008).

- [14] X. H. Zhong, Phys. Rev. **D** 82, 114014 (2010).
- [15] F. E. Close and E. S. Swanson, Phys. Rev. **D** 72, 094004 (2005).

[16] Q. T. Song, D. Y. Chen, X. Liu, and T. Matsuki, Phys. Rev. **D** 92, 074011 (2015).

[17] S. Godfrey and K. Moats, Phys. Rev. **D** 93, 034035 (2016).