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Spin correlations for the AA and AA pairs, generated in relativistic heavy-
ion collisions, and related angular correlations at the joint registration of
space-parity nonconserving hadronic decays of two hyperons are theoreti-
cally analyzed. The correlation tensor components can be derived by the
method of “moments” — as a result of averaging the combinations of trigono-
metric functions of proton ( antiproton ) flight angles over the double angu-
lar distribution of flight directions for products of two decays. The proper-
ties of the “trace” of the correlation tensor ( a sum of three diagonal compo-
nents ), determining the angular correlations as well as the relative fractions
of the triplet states and singlet state of respective pairs, are discussed. In
this report, spin correlations for two identical particles (AA) and two non-
identical particles (AA) are generally considered from the viewpoint of the
conventional model of one-particle sources. Within this model, correlations
vanish at enough large relative momenta. However, under these conditions
( especially at ultrarelativistic energies ), in the case of two non-identical
particles (AA) the two-particle annihilation sources — quark-antiquark and
two-gluon ones — start playing a noticeable role and lead to the difference of
the correlation tensor from zero. In particular, such a situation may arise,
when the system passes through the “mixed phase” and — due to the mul-
tiple production of free quarks and gluons in the process of deconfinement
of hadronic matter — the number of two-particle sources strongly increases.
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1 Introduction

Spin correlations for the AA and AA pairs, generated in heavy ion colli-
sions, and respective angular correlations at the joint registration of hadron-
ic decays of two hyperons with space parity nonconservation give important,
information about the character and mechanism of multiple processes. The
advantage of the AA and AA systems over other ones is due to the fact that
the P-odd decays A = p+7~ and A — p+ 7" serve as effective analyzers
of spin state of the A and A particles. In connection with this, spin corre-
lations in the AA and AA systems can be rather easily distinguished and
studied experimentally by the method of “moments” over the background
of a large amount of produced secondary particles. This fact is especially
meaningful for the investigations of multiple generation at modern and fu-
ture ion colliders like RHIC, LHC, NICA, since the polarization parameters
— especially for the AA pair — are very sensitive to the scenario of process
after the act of collision of relativistic heavy ions .

2 General structure of the spin density matrix of the

pairs AA and AA

The spin density matrix of the AA and AA pairs, just as the spin density
matrix of two spin-1/2 particles in general, can be presented in the following

form [1,2,3]:

(1,2)

A2 = 210 ¢ fO 4 (6P o 12 4 [0 o (62P,)+
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in doing so, tr(l’g)ﬁ(m) = 1.
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Here I is the two-row unit matrix, & = ( ¢, 6y, 6. ) is the vector Pauli
operator (z,y,z — 1,2,3 ), Py and P, are the polarization vectors of first
and second particle ( Py = <6'(1)>, P, = <6'(2)> )y, T = <6§1) ® 61572)> are
the correlation tensor components . In the general case Tj, # Py; Pog. The
tensor with components C;, = T, — Py; Py describes the spin correlations
of two particles .

The respective one-particle density matrices are as follows:

(104 PeM), 2 =1 (i@ 4 P,e®). (2)



The “trace” of the correlation tensoris T =1T,, +T,,+1T1., =
= <6'(1) ® 6'(2)> . The eigenvalues of the operator 'V @ 6@ equal N, = 1
for three triplet states (total spin S = 1) and Ay = —3 for the singlet state
(total spin S =0) .

3 Spin correlations and angular correlations at joint
registration of decays of two A particles into the
channel A - p+ 7~

Any decay with the space parity nonconservation may serve as an ana-
lyzer of spin state of the unstable particle [3].

The normalized angular distribution at the decay A — p + 7~ takes the
form:

dw(n) 1
dQ, 47

Here P, is the polarization vector of the A particle, n is the unit vector

(1—|—OJAPAI1). (3)

along the direction of proton momentum in the rest frame of the A particle,
ay is the coefficient of P-odd angular asymmetry ( ay = 0.642 ). The
decay A — p + 7~ selects the projections of spin of the A particle onto the
direction of proton momentum; the analyzing power equals &€ = axn .
Now let us consider the double angular distribution of flight directions
for protons formed in the decays of two A particles into the channel A —
p + 7, normalized by unity ( the analyzing powers are &, = ayny,
£, = apny ). It is described by the following formula [2,3]:

3 3
5 1+ apPiny+ayPong + Oéi Z Z Tigniinag |

=1 k=1
(4)
where Py and P are polarization vectors of the first and second A particle,

dQlU(Ill,IlQ) . 1
dQp, dQy, 167

T, are the correlation tensor components, n; and ny are unit vectors in
the respective rest frames of the first and second A particle, defined in the
common ( unified ) coordinate axes of the c.m. frame of the pair

(i, k=4{1,2,3} ={z,y,2} ) .

By using the method of moments, the components of polarization vectors
and correlation tensor may be determined as a result of averaging combi-
nations of trigonometric functions of angles of proton flight over the double
angular distribution [2,3]:



3 3 9
Py =—(ny), Pyp=— , T = —(ninag). 5
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Here

()= /(....) (%) A, d O, (6)

niy =sinbjcos@y; nyy =sinbsingy;  ny, = cosby;
no, = sinfy cos ¢g; Ny, =sinfysings;  ng, = cos by, (7)

where ¢, and ¢, 05 and ¢4 are the polar and azimuthal angles of emission
of protons in the rest frames of the first and second A particle, respectively
— with respect to the unified system of coordinate axes ;

dy, = sinthdbideg, and d€y,, = sinthdfydg, are the elements of solid
angles of proton emission .

The double angular distribution may be integrated over all angles except
the angle # between the vectors n; and ny :

cos # = nyny = cos f) cos B, + sin b} sin by cos(d; — @s). (8)

At this integration, the solid angle element d {2, can be defined, without
losing generality, in the coordinate frame with the axis z being parallel to
the vector ni, and the solid angle element d€2,,, is defined in the coordinate
frame where the polarization parameters are specified:

dQy, = sinf df do, ddy, = sinby dby doy;

here ¢ is the azimuthal angle of rotation of the vector ny around the vector
n; .

So, the angular correlation between the proton momenta at the decays
of two A particles is expressed as follows:

d2
dw(cos ) = ( / ﬁdw Qm) sin A6 (9)

The angular correlation, being described by the formula [2,3,4.5]

1 1
dw(cosf) == (14 =aiT cos ) sinfd b, 10
2 3t

is determined only by the “trace” of the correlation tensor T' = W; — 3W,
and it does not depend on the polarization vectors ( single-particle states
may be unpolarized ).



So, finally we have:

1
dw(cos ) 25[1—05?\ (WS—%) cos ] sin fd 6, (11)

W, and W, are relative fractions of the singlet state and triplet states,
respectively .

4 Correlations at the joint registration of the decays
A=sp+rn-and AN—=p+nT

Due to C'P invariance, the coefficients of P-odd angular asymmetry for
the decays A — p+ 7~ and A = p + 7 have equal absolute values and
opposite signs: ay = —ay = —0.642 . The double angular distribution for
this case is as follows [2,3]:

3 3

2
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dQlU(Ill,IlQ) . 1
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(12)

(here —ay = +aj and —a% = +azay ) .
Thus, the angular correlation between the proton and antiproton momen-
ta in the rest frames of the A and A particles is described by the expression:

1 W,
dw(cost) = (1—§Q%Tcos€)sin€d€: [1+a?\(W5—?t)cos€]sin€d€,

(13)
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where # is the angle between the proton and antiproton momenta .

5 Spin correlations at the generation of AA pairs in
multiple processes

Now let us consider the production of A A pairs in multiple process-
es from the viewpoint of the model of one-particle sources (“consitituents”)
[6], which is widely applied now for describing the momentum—energy corre-
lations and related spin correlations of both the identical and non-identical
particles .

It should be noted that the method of correlation femtoscopy, based
on the source model, has been used successfully enough for studying the



correlations in processes of collision of elementary particles . But, by its
essence, this approach is the most adequate one namely for investigating
the processes of multiple generation of hadrons, leptons and photons in
collisions of relativistic heavy ions .

a) The Fermi-statistics effect leads not only to the momentum-energy
A A-correlations at small relative momenta ( correlation femtoscopy ), but
to the spin correlations as well .

The following relation holds, in consequence of the symmetrization or
antisymmetrization of the total wave function of any identical particles with
nonzero spin ( bosons as well as fermions ) [8]:

(_1)S+L —1.

Here S is the total spin and L is the orbital momentum in the c.m. fra-
me of the pair. At the momentum difference ¢ = p; — ps — 0 the states
with nonzero orbital momenta “die out”, and only states with L = 0 and
even total spin S survive .

Since the A-particle spin is equal to 1/2, at ¢ — 0 the A A pair is gener-
ated only in the singlet state with S =0 .

Meantime, at the 4-momentum difference ¢ # 0 there are also triplet
states generated together with the singlet state .

Within the conventional model of one-particle sources emitting unpo-
larized particles, the triplet states with spin projections +1, 0 and —1 are
produced with equal probabilities . If correlations are neglected, the singlet,
state is generated with the same probability, — the relative “weights” are
W, =3/4 . Wy=1/4.

When taking into account the Fermi statistics and s-wave final-state
interaction, which is essential at close momenta ( at orbital momenta L # 0
the contribution of final-state interaction is suppressed ), the fractions of
triplet states and the singlet state become proportional to the quantities

[7.9]:

(1—{cosgr)).  Wilg) = 3(1+ (cosga) +2 Biwla)): (14

here ¢ = p; — poy is the difference of 4-momenta, ©+ = x1 — a9 is the difference

Wilq) =

= o

of 4-coordinates of two sources .
In the above formula ,



(cos qr) = /W(x) cos g dtx

is the Fermi-statistics contribution; here W (x) is the distribution of differ-
ence of 4-coordinates of two sources; By, (q) is the contribution of s-wave
final-state interaction of two A particles. In doing so,

R(g) = Wila) + Wala) = 1= & {cosgr) + 5 Buula) (1)
is the correlation function describing the momentum-energy correlations of
two A particles with close momenta .

The correlation function R(q) represents the ratio of the two-particle
spectrum to the non-correlated background, which is constructed usually as
a product of one-particle spectra from different events at the same values
of momenta. In terms of inclusive cross sections we have [9]:

B :3M@<Mn—ﬂ>(f0)(d%), (16)

EpidPpy oo (n)? d*p1) \d’py
where n is the multiplicity and o 1s the total interaction cross-section

( for the Poisson distribution of multiplicity we have

(n(n—=1))/(n)* =1).

b) The spin density matrix of two A particles with close momenta at the
emission of unpolarized A particles has the following structure:

15(1’2) _ Ws(Q) ps + Wt(Q) 1z _
Wi(q) + Wilq)
3

1 1 . .
= % [(Z (14 {cosqx) +2 Bint(q)) ps + B (1 = {cosqx))pi|. (17)

Here

m:igm®ﬂm_gm®ym

is the density matrix of the singlet state, and

@:igm®jm+%gn®gm

is the density matrix of the unpolarized triplet state, averaged over the spin
projections A = +1,0,—1 :



A . . . . - -
Ptzg(ﬂtﬂ-l—ﬂto-l—ﬂt—l); ps+3p =10 I®),

It is easy to see that Eq. (17) for p1? can be rewritten in the form:

ﬁ(l’Q)

— l(j(l) @ @ _ {cos gx) + Bini(q)
1 2 R(q)

The correlation tensor components [2]

eV e a). (18)

B {cos qz) + Bini(q)
2 — (cos qx) + Bini(q)
depend upon the momentum difference as well as upon the space—time

parameters of the generation region; the “trace” of the correlation tensor
amounts to

Ty = Cy = S (19)

I'= ZTii — _3 {cos qz) + Bini(q) | (20)
Z, 2 — {cos qx) + Bin(q)

Thus, on account of the effects of quantum statistics and final-state in-
teraction, at small relative momenta two identical particles, initially unpo-
larized (P = P, = 0 ) and non-correlated by spins, remain unpolarized as
well but their spins become correlated .

At ¢ — 0 we obtain: {cosqr) — 1, Ty — — ;1 ( singlet state ).

On the other hand, in the limit of large ¢: {cosqz) — 0, B;(q) — 0,
R(q) — 1, Tz — 0, i.e. both the momentum-energy and spin correlations
vanish .

¢) Now let us consider the emission of A particles with equal polarization
vectors P =P, =P [2].

It should be noted that, at the stage of emission by sources, correlations
are absent.

The fraction of the triplet state with the total spin projection A\ = +1
onto the direction of P and the respective constituent of the spin density
matrix are as follows :

1+ P)? 1 . .
L%TL; b= L0 460 0 (0 4P (1)

o = 4

here P = |P| and 1 is the unit vector directed along P .



Analogously, we have the following fractions and spin density matrix
constituents:
for the triplet state with total spin projection A = —1:

_ P2 R R
ngl; ﬁﬂzigm_&mn®gm_&@m (22)

for the triplet state with total spin projection A = 0:

Wt—l —

Mo I®+6Mae -2 D). (23)

Pro =

M| —

and for the singlet state:

~ 1-p? 1. ) ) )
W= —1— mzzum®ﬂﬂ_ﬁﬂ®ﬂ%. (24)

In doing so, the fractions of spin states /thl, /Wz_l /tho, /WZ obey the
normalization condition

/th1+/th—1+/MZO+/W/s: 1,

and the primary spin density matrix is described by the expression :

p=Wirpir+Wii pr 1 +Wio pro+Ws ps = -
(25)

At low relative momenta, on account of Fermi statistics and final-state
interaction, the fractions of triplet states and singlet state change and be-
come proportional to the following quantities:

W) = LEL 1 fcosgo), 2

Wi 1t0) = S22 1~ feosao, 27
Waale) = 222 (1 = foos ) 25)
AT _413 " (1 + {cos ga) + 2 B (q). (20)
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The inclusive cross-section of generation of the AA pair with close mo-
menta is proportional to the correlation function describing the momentum-—
energy correlations:

R(Q) = th(Q) + Wt_1(q) + WtO(Q) + WS(Q) =

14 P? 1— P?
_ (cos qx) + 5 Bini(q). (30)

In doing so, the “renormalized” density matrix is determined by the
relation:

=1

1

p= % (Wei(q)pe1 + Wii(@)pr—1 + Wio(q) pro + Wi(q) ps). (31)

In accordance with this, the polarization parameters of the A particles,

renormalized due to the effects of Fermi statistics and s-wave final-state
interaction, take the form:

1
P, =P, = %(1 — {cos qx)) P; (32)

1 ~~ 1-P?
Ty = —— [(1 —(cosqx)) PP, —

({cos qx) + Bint(q))0ur | - (33)

Irrespective of the primary polarization 15, at the momentum difference
q¢ — 0 only the singlet state of the AA pair is realized, and the renormalized
polarization vectors P; = Py tend to zero . The s-wave final-state interac-
tion amplifies the predominant role of the singlet state. If P = 1, then in
the limit ¢ — 0 the generation of AA pairs is forbidden — in full accordance
with the Pauli principle .

d) In the c.m. frame of the AA pair we have: ¢ = {0,2k}, where k is
the momentum of one of the particles. In doing so, the momentum k is
connected with the relative momentum q in the laboratory frame by the
Lorentz transformation [9] ( we use the unit system with h=c=1):

1 (qv)v
k = §[q+(’7_ 1) |V|2

here v = (p; + p2)/(e1 + £9) is the velocity of the AA pair in the laboratory
frame, v = (1 — v?)71/? is the Lorentz factor, q = p; — ps and ¢y = £, — &3 .

ALk (34)
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The Lorentz transformations of 4-coordinates are given by the expres-
sions :

Savi, =t ), (35)

wherer =x; —x9 and t =t — t5 .
The interference term connected with identity (quantum statistics) is
determined by the expression:

(cos qz) = {cos 2kr*) = /WV(I‘*) cos(2kr*)d’r*, (36)

where

Wy (") :/W(x)dt* :/W(r*,t*)dt*

is the distribution of coordinate difference between two sources in the c.m.
frame of the AA pair .

Meantime, the contribution of s-wave final-state interaction is expressed
as follows ( at the sizes of the generation region in the c.m. frame, exceeding
the effective radius of interaction of two A particles ):

Bi(q) = B (k,v) = / Wy () bk, 1) dr", (37)
where the function b(k,r*) has the structure [2,7,9]:
tkr* *
b(k,r*) = | OV (k)2 ! +2Re | fON (k) e™ coskr’y
(7“*)2 r*
=27 [FN (k)26 (). (38)

Here k = [k|, »* = |r*|, fAN(k) is the amplitude of low-energy AA
scattering. In the framework of the effective radius theory [8,10]:

FONGE) = a1+ S di™ M R =ik aMY) (39)

where, by definition, (—aOAA)) is the length of s-wave scattering and

1 d 1
gy _ 1 d R
o= paE \ Ry

is the effective radius .
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The integral (37), with expression (38) inside, approximately takes into
account the difference of the true wave function of two interacting A particles
with the momenta k and (—k) at small distances from the asymptotic wave
function of continuous spectrum [7,11] .

In the case of Gauss distribution of 4-coordinates of two independent
sources in the laboratory frame, with the mean-square radius 4/(r?) =

V(rd) = V/3r¢ and the mean-square emission time VAt = \/@ = 75, We

obtain for the function W5 (r*) [9]:

Wo(r) = 1 exp _r*2 — (r*n)? B (r*n)?
]73/2 'VT(% 7”8 + 1127'02 47“8 42 (7“8 + U27'02)
(40)
In doing so,
(cos(2kr*)) = exp [—4]{27“8 — 4% (kn)? (2 + 7'02)] : (41)

and the contribution of s-wave final-state AA interaction at the momentum
k =0 ( maximum value ) is as follows [7]:

1 1 (AA)\2 d(AA) 2
B,y = = [Ll ) 2 c | (g
v |2 o 2/ NS
where
1 1.1 N
p=n/rd+v27}, A= —arcsinu, C=-—In —i—u; u:m.
u 2 1 —w p

6 Spin correlations at the generation of A\ pairs in
multiple processes

In the framework of the model of independent one-particle sources, spin
correlations in the AA system arise only on account of the difference between
the interaction in the final triplet state (.S =1 ) and the interaction in the
final singlet state . At small relative momenta, the s-wave interaction plays
the dominant role as before, but, contrary to the case of identical particles
( AA ), in the case of non-identical particles (AA) the total spin may take
both the values S =1 and S = 0 at the orbital momentum L =0 . In doing
so, the interference effect, connected with quantum statistics, is absent .

12



If the sources emit unpolarized particles, then, in the case under consid-
eration, the correlation function describing momentum-energy correlations
has the following structure ( in the c.m. frame of the AA pair ):

_ 1 _
MKﬂzﬂ+%Bﬂwhﬂ+Zwahﬂ. (43)

The spin density matrix of the AA pair is given by the formula :

i BN (1 vy Bém) Kk
;- (k. v) (k,v) PRI )

SN — 11 o J(2) 44
p 9 I% + TREY) we, (44
and the components of the correlation tensor are as follows:
B(A]\) k . BgA]\) k
Ti L (kv) (k. v) ik’ (45)

4438 kv) + BM (k. v)

here the contributions of final-state triplet and singlet AA interaction are
determined by the expression ( analogously to Eqs. (37,38) for the AA in-
teraction [2,7], with the replacement coskr* — ¢'¥*" in Eq.(38) owing to

the non-identity of the particles A and A [9] ) :

AA AA 1 AL pikr™ jike”
Bi(t) )(k,V) = |f5,((t) )(k)|2< > + 2 Re (fs((t) )(k) <—>) .

T*)Q

o

2T (AA d 1
— 1 () | Re —m— | W (0). (46)
Ty (F)

where fs((/;;\)(k) is the amplitude of the s-wave low-energy singlet ( triplet)

AA scattering .
Let us remark that some information on the low-energy AA interaction
may be obtained, e.g., by investigating the annihilation process pp — AA .

At sufficiently large values of k, one should expect that [7]:
BMk,v)=0,  BM(kv)=0.

In this case the angular correlations in the decays A — p+7—, A = p+nt,
connected with the final-state interaction, are absent :

Tp=0, T=0.

13



7 Angular correlations in the decays A — p+ 7~ and
A = p+ 7 and the “mixed phase”

Thus, at sufficiently large relative momenta ( for & > m, ) one should
expect that the angular correlations in the decays A — p+ 7~ and A —
p 4+ 7T , connected with the interaction of the A and A hyperons in the
final state ( i.e. with one-particle sources ) are absent . However, if at the
considered energy the dynamical trajectory of the system passes through
the so-called “mixed phase”, then the two-particle sources, consisting of the
free quark and antiquark , start playing a noticeable role . For example,
the process s 5 — AA may be discussed .

In this process, the charge parity of the pairs s5 and AA is equal to
C = (=1)!*% where L is the orbital momentum and S is the total spin
of the fermion and antifermion . Meantime, the C'P parity of the fermion—
antifermion pair is CP = (—1)°*1 .

In the case of one-gluon exchange, CP = 1, and then S = 1, i.e. the
AA pair is generated in the triplet state; in doing so, the “trace” of the
correlation tensor T' =1 .

Even if the frames of one-gluon exchange are overstepped, the quarks
s and 5, being ultrarelativistic, interact in the triplet state ( S =1 ) .
In so doing, the primary C'P parity is C'P = 1, and, due to the C'P parity
conservation, the AA pair is also produced in the triplet state. Let us denote
the contribution of two-quark sources by x . Then at large relative momenta

T=x>0.

Apart from the two-quark sources, there are also two-gluon sources being
able to play a comparable role. Analogously with the two-photon process
vy = ete™ [12], in this case the “trace” of the correlation tensor is described
by the formula ( here the process gg — AA is implied ) :

4(1-77)

T=1- 47
142032 sin?# — B4 — 34 sin* 6’ (47)

where 3 is the velocity of A ( and A ) in the c.m. frame of the AA pair, 0
is the angle between the momenta of one of the gluons and A in the c.m.
frame ( see [12] ). At small 3 ( 3 < 1) the AA pair is produced in the
singlet state ( total spin S =0, T = —3 ), whereas at § = 1 - in the triplet
state (S =1,T =1 ). Let us remark that at ultrarelativistic velocities (3

14



(i.e. at extremely large relative momenta of A and A ) both the two-quark
and two-gluon mechanisms lead to the triplet state of the AA pair (T = 1).

8 Summary

So, it is surely advisable to investigate the spin correlations of AA and AA
pairs produced in relativistic heavy ion collisions ( see also our respective
papers, e.g. [13-19] ) .

The spin correlations, as well as the momentum-—energy ones, make it
possible to determine the space—time characteristics of the multiple par-
ticle generation region . In doing so, the best way of studying the spin
correlations is the method of angular correlations — method of moments.

Finally, it should be emphasized that, in the general case, the appearance
of angular correlations in the decays A — p+7~ and A — p+ 7+ with the
nonzero values of the “trace” of the correlation tensor 7" at large relative
momenta of the A and A particles may testify to the passage of the system
through the “mixed phase” [13-19] .
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