


Phenomenology of excited vector mesons and predictions for a yet undiscovered s \bar{s} state ϕ (1930)

Milena Piotrowska¹, Christian Reisinger², Francesco Giacosa ¹ $^{\rm 1}$ Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland $^{\rm 2}$ Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main, Germany

INTRODUCTION

We study the decays of two nonets of excited vector mesons which predominantly correspond to $n^{2S+1}L_J=2^3S_1$ (radially excited vector mesons) and $n^{2S+1}L_J = 1$ 3D_1 (orbitally excited vector mesons) [1]. By using a quantum field theoretical approach we evoluate the decay widths of these mesons into two pseudoscalar mesons and into pseudoscalar and ground-state vector mesons. Moreover by introducing vector meson dominance we study radiative decays of excited vector mesons into a photon and a pseudoscalar meson [2]. We compare our results with the experimental data from PDG [3]. We also make predictions for an unkown ss state in 1 3D_1 nonet, that we call ϕ (1930). This state was not yet discovered but can be found in the upcoming GlueX and CLAS12 experiments at Jefferson Lab.

SCHEME OF DECAYS

Associated states:

$$P = \{\pi, K, \eta, \eta'\} \qquad V = \{\rho(770), K^*(892), \omega(782), \phi(1020)\}$$

$$V_E = \{ \rho(1450), K^*(1410), \omega(1420), \phi(1680) \}$$

$$V_D = \{ \rho(1700), K^*(1680), \omega(1650), \phi(1930) \}$$

THE LAGRANGIAN

The Lagrangian of the model is

$$\mathcal{L} = \mathcal{L}_{EPP} + \mathcal{L}_{DPP} + \mathcal{L}_{EVP} + \mathcal{L}_{DVP}$$

$$\mathcal{L}_{EPP} = ig_{EPP}Tr\left([\partial^{\mu}P, V_{E,\mu}]P\right) , \quad \mathcal{L}_{DPP} = ig_{DPP}Tr\left([\partial^{\mu}P, V_{D,\mu}]P\right) ,$$

$$\mathcal{L}_{EVP} = g_{EVP}Tr\left(\tilde{V}_{E}^{\mu\nu}\{V_{\mu\nu}, P\}\right) , \quad \mathcal{L}_{DVP} = g_{DVP}Tr\left(\tilde{V}_{D}^{\mu\nu}\{V_{\mu\nu}, P\}\right) .$$

 $g_{EPP},g_{DPP},g_{EVP},g_{DVP}$ - coupling constants of the different decay types.

We can also examine the coupling to photons in the form of V $\rightarrow \gamma P$, which is obtained by replacing the vector field strength tensor as [2]:

$$V_{\mu
u}
ightarrow V_{\mu
u}+rac{e_0}{g_o}QF_{\mu
u}$$
 ,

 $F_{\mu\nu}$ - field strength tensor for photons,

$$e_0 = \sqrt{4\pi\alpha}$$
, $\alpha \approx 1/137$, $Q = diag(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$, $g_\rho \approx 5.5 \pm 0.5$.

DECAY WIDTHS

Type of decay

•
$$R \to PP$$

$$\Gamma_{R \to PP} = s_{RPP} \frac{|\vec{k}|^3}{6\pi m_R^2} \left(\frac{g_{RPP}}{2} \lambda_{RPP}\right)^2$$
• $R \to VP$

•
$$R \to VP$$
,
$$\Gamma_{R \to VP} = s_{RVP} \frac{|\vec{k}|^3}{12\pi} \left(\frac{g_{RVP}}{2} \lambda_{RVP} \right)^2$$

•
$$R \to \gamma P$$

$$\Gamma_{R \to \gamma P} = \frac{|\vec{k}|^3}{12\pi} \left(\frac{g_{RVP}}{2} \frac{e_0}{g_\rho} \lambda_{R\gamma P} \right)^2$$

Examples

$$\begin{array}{c} \bullet \;\; \rho(1450) \to \rho(770) \eta \\ \Gamma_{\rho(1450) \to \rho(770) \eta} = \frac{|\vec{k}|^3}{12\pi} [\frac{g_{EVP}}{2} \cos \theta_p]^2 \end{array}$$

$$\begin{array}{l} \bullet \ \, \phi(1680) \! \to \! \phi(1020) \eta \\ \Gamma_{\Phi(1680) \to \Phi(1020) \eta} = \frac{|\vec{k}|^3}{12\pi} [\frac{g_{EVP}}{2} \frac{\sin \theta_p}{\sqrt{2}}]^2 \end{array}$$

$$|\vec{k}| = \frac{\sqrt{m_R^4 + (m_A^2 - m_B^2)^2 - 2(m_A^2 + m_B^2)m_R^2}}{2m_R};$$

m_R - mass of the decaying resonance;

m_A, m_B - masses of decay products; s_{RPP}, s_{RVP} - symmetry factors;

 λ - amplitude factor;

 g_{RPP}, g_{RVP} - coupling constants (R = E, D);

 θ_p - pseudoscalar mixing angle; $\theta_p = -42^{\circ}$.

RESULTS

Decay process $V_E \to PP$	Theory [MeV]	Experiment [MeV]
$\rho(1450) \rightarrow \bar{K}K$	6.6 ± 1.4	$< 6.7 \pm 1.0$ by DONANCHIE 91
$\rho(1450) \rightarrow \pi\pi$	30.8 ± 6.7	$\sim 27 \pm 4$, seen by CLEGG 94
$K^*(1410) \rightarrow K\pi$	15.3 ± 3.3	$15.3 \pm 3.3 \text{ by PDG}$
$K^*(1410) \rightarrow K\eta$	6.9 ± 1.5	not listed in PDG
$K^*(1410) \rightarrow K\eta'$	≈ 0	not listed in PDG
$\omega(1420) \rightarrow \bar{K}K$	5.9 ± 1.3	not listed in PDG
$\phi(1680) \rightarrow \bar{K}K$	19.8 ± 4.3	seen by BUON 82

Decay process $V_E \to VP$	Theory [MeV]	Experiment [MeV]
$\rho(1450) \rightarrow \omega \pi$	74.7 ± 31.0	$\sim 84 \pm 13$ seen by CLEGG 94
$\rho(1450) \rightarrow K^{*}(892)K$	6.7 ± 2.8	possibly seen by COAN 04
$\rho(1450) \rightarrow \rho(770)\eta$	9.3 ± 3.9	$< 16.0 \pm 2.4$ by Donnachie 91
$\rho(1450) \rightarrow \rho(770)\eta'$	≈ 0	not listed in PDG
$K^*(1410) \rightarrow K\rho$	12.0 ± 5.0	$< 16.2 \pm 1.5 \text{ by PDG}$
$K^*(1410) \rightarrow K\phi$	≈ 0	not listed in PDG
$K^*(1410) \rightarrow K\omega$	3.7 ± 1.5	not listed in PDG
$K^*(1410) \rightarrow K^*(892)\pi$	28.8 ± 12.0	$> 93 \pm 8$ by PDG
$K^*(1410) \rightarrow K^*(892)\eta$	≈ 0	not listed in PDG
$K^*(1410) \rightarrow K^*(892)\eta'$	≈ 0	not listed in PDG
$\omega(1420) \rightarrow \rho\pi$	196 ± 81	dominant, $\Gamma_{tot} = (180 - 250)$ by PDG
$\omega(1420) \to K^*(892)K$	2.3 ± 1.0	not listed in PDG
$\omega(1420) \rightarrow \omega(782)\eta$	4.9 ± 2.0	not listed in PDG
$\omega(1420) \rightarrow \omega(782)\eta'$	≈ 0	not listed in PDG
$\phi(1680) \rightarrow K\bar{K}^*$	110 ± 46	dominant, $\Gamma_{tot} = 150 \pm 50$ by PDG
$\phi(1680) \rightarrow \phi(1020)\eta$	12.2 ± 5.1	seen by ACHASOV 14
A(1690) \ A(1090)m/	~ 0	not listed in DDC

Decay process $V_E \rightarrow \gamma P$	Theory [MeV]	Experiment [MeV]
$\rho(1450) \rightarrow \gamma \pi$	0.072 ± 0.042	not listed
$\rho(1450) \rightarrow \gamma \eta$	0.23 ± 0.14	$\sim 0.2 - 1.5$
$\rho(1450) \rightarrow \gamma \eta'$	0.056 ± 0.033	not listed
$K^*(1410) \rightarrow \gamma K$	0.18 ± 0.11	seen, < 0.0529 MeV PDG+ Alavi-Harati 02E
$\omega(1420) \rightarrow \gamma \pi$	0.60 ± 0.36	1.90 ± 0.75
$\omega(1420) \rightarrow \gamma \eta$	0.023 ± 0.014	not listed
$\omega(1420) \rightarrow \gamma \eta'$	0.0050 ± 0.0030	not listed
$\phi(1680) \rightarrow \gamma \eta$	0.14 ± 0.09	seen
$\phi(1680) \rightarrow \gamma \eta'$	0.076 ± 0.045	not listed

Decay process $V_D \to PP$	Theory [MeV]	Experiment [MeV]
$\rho(1700) \rightarrow \bar{K}K$	40 ± 11	8.3 ⁺¹⁰ _{-8.3} MeV
$\rho(1700) \rightarrow \pi\pi$	140 ± 37	75 ± 30 by BECKER 79
$K^*(1680) \rightarrow K\pi$	82 ± 22	125 ± 43 by PDG
$K^*(1680) \rightarrow K\eta$	52 ± 14	not listed in PDG
$K^*(1680) \rightarrow K\eta'$	0.72 ± 0.02	not listed in PDG
(10F0) . V.V.	27 ± 10	not listed in DDC

 $\phi(1930) \rightarrow \bar{K}K$ 104 ± 28 resonance not yet known

Decay process $V_D \to VP$	Theory [MeV]	Experiment [MeV]
$\rho(1700) \rightarrow \omega \pi$	140 ± 59	seen
$\rho(1700) \rightarrow K^{*}(892)K$	56 ± 23	$83 \pm 66 \; \mathrm{MeV}$
$\rho(1700) \rightarrow \rho \eta$	41 ± 17	$68 \pm 42 \; \mathrm{MeV}$
$\rho(1700) \rightarrow \rho \eta'$	≈ 0	not listed in PDG
$K^*(1680) \rightarrow K\rho$	64 ± 27	101 ± 35 by PDG
$K^*(1680) \rightarrow K\phi$	13 ± 6	not listed in PDG
$K^*(1680) \rightarrow K\omega$	21 ± 9	not listed in PDG
$K^*(1680) \rightarrow K^*(892)\pi$	81 ± 34	96 ± 33 by PDG
$K^*(1680) \rightarrow K^*(892)\eta$	0.5 ± 0.2	not listed in PDG
$K^*(1680) \rightarrow K^*(892)\eta'$	≈ 0	not listed in PDG
$\omega(1650) \rightarrow \rho\pi$	370 ± 156	$\sim 205, 154\pm 44, \sim 273, 120\pm 18$
$\omega(1650) \to K^*(892)K$	42 ± 18	not listed in PDG
$\omega(1650) \rightarrow \omega(782)\eta$	32 ± 13	$\sim 100, 56 \pm 30$
$\omega(1650) \rightarrow \omega(782)\eta'$	≈ 0	not listed in PDG
$\phi(1930) \rightarrow K\bar{K}^*$	260 ± 109	resonance not yet known
$\phi(1930) \rightarrow \phi(1020)\eta$	67 ± 28	resonance not yet known
$\phi(1930) \rightarrow \phi(1020)\eta'$	≈ 0	resonance not vet known

Decay process $V_D \rightarrow \gamma P$	Theory [MeV]	Experiment [MeV]
$\rho(1700) \rightarrow \gamma \pi$	0.095 ± 0.058	not listed
$\rho(1700) \rightarrow \gamma \eta$	0.35 ± 0.21	not listed
$\rho(1700) \rightarrow \gamma \eta'$	0.13 ± 0.08	not listed
$K^*(1680) \rightarrow \gamma K$	0.30 ± 0.18	not listed
$\omega(1650) \rightarrow \gamma \pi$	0.78 ± 0.47	not listed
$\omega(1650) \rightarrow \gamma \eta$	0.035 ± 0.021	not listed
$\omega(1650) \rightarrow \gamma \eta'$	0.012 ± 0.007	not listed
$\phi(1930) \rightarrow \gamma \eta$	0.19 ± 0.12	resonance not yet known
$\phi(1930) \rightarrow \gamma \eta'$	0.13 ± 0.08	resonance not yet known

PREDICTIONS FOR $\phi(1930)$

MESOI	$N \phi(1930)$
Quark composition	$\approx s\bar{s}$
Old spectroscopy notation	(predom.) $n^{2S+1}L_J = 1^3D_1$
n	(predom.) 1
S	(predom.) 1 ↑↑
L	(predom.) 2
J^{PC}	1
M	1020 40 M-W

DECA	AYS
Decay channel	Decay width [MeV]
$\phi(1930) \rightarrow \bar{K}K$	104 ± 28
$\phi(1930) \rightarrow K\bar{K}^*$	260 ± 109
$\phi(1930) \rightarrow \Phi(1020)\eta$	67 ± 28
$\phi(1930) \rightarrow \Phi(1020)\eta'$	≈ 0
$\phi(1930) \rightarrow \gamma \eta$	0.19 ± 0.12
$\phi(1930) \rightarrow \gamma \eta'$	0.13 ± 0.08

CONCLUSIONS

- The parameters $g_{EPP}, g_{DPP}, g_{EVP}, g_{DVP}$ were fixed by using some of the experimental data [4].
- Overall agreement of theory with data; theoretically large decays are clearly seen in experiments, theoretically small decays were generally not seen.
- There are some open issues: some theoretical and experimental errors are too large; $K^*(1410)$ is well established [1,5], but $K^*(1410) \rightarrow K^*(892)\pi$ is too small when compared to data. Concerning $\rho(1450)$, alternative scenarios exist [6].
- The results for the not-yet discovered resonance $\phi(1930)$ are predictions; this resonance, even if broad, is measurable.
- Radiative decays were determined via VMD without new parameters. The radiative decays of V_E are still experimentally poorly determined, but the theoretically predicted sizable decays were seen in experiments. In two cases, numerical values can be extracted. For the d-wave vector mesons the results are only predictions.
- New experimental results for excited vector states are expected at the GlueX and CLAS12 experiments at Jefferson Lab [7].

ACKNOWLEDGEMENTS

M.P. and F.G. acknowledge support from the Polish National Science Centre (NCN) through the OPUS project no. 2015/17/B/ST2/01625.

REFERENCES

- [5] S. Prelovsek, L. Leskovec, C. B. Lang and D. Mohler, K π scattering and the K* decay width from lattice QCD, Phys. Rev. D 88 (2013) no.5, 054508.
- . Al Ghoul et al. [GlueX Collaboration], "First Results from The GlueX Exeriment," AIP Conf. Proc. 1735 (2016) 020001.