Phenomenology of excited vector mesons and predictions for a yet undiscovered s \bar{s} state ϕ (1930) Milena Piotrowska¹, Christian Reisinger², Francesco Giacosa ¹ $^{\rm 1}$ Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland $^{\rm 2}$ Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main, Germany #### INTRODUCTION We study the decays of two nonets of excited vector mesons which predominantly correspond to $n^{2S+1}L_J=2^3S_1$ (radially excited vector mesons) and $n^{2S+1}L_J = 1$ 3D_1 (orbitally excited vector mesons) [1]. By using a quantum field theoretical approach we evoluate the decay widths of these mesons into two pseudoscalar mesons and into pseudoscalar and ground-state vector mesons. Moreover by introducing vector meson dominance we study radiative decays of excited vector mesons into a photon and a pseudoscalar meson [2]. We compare our results with the experimental data from PDG [3]. We also make predictions for an unkown ss state in 1 3D_1 nonet, that we call ϕ (1930). This state was not yet discovered but can be found in the upcoming GlueX and CLAS12 experiments at Jefferson Lab. #### **SCHEME OF DECAYS** #### Associated states: $$P = \{\pi, K, \eta, \eta'\} \qquad V = \{\rho(770), K^*(892), \omega(782), \phi(1020)\}$$ $$V_E = \{ \rho(1450), K^*(1410), \omega(1420), \phi(1680) \}$$ $$V_D = \{ \rho(1700), K^*(1680), \omega(1650), \phi(1930) \}$$ ## THE LAGRANGIAN The Lagrangian of the model is $$\mathcal{L} = \mathcal{L}_{EPP} + \mathcal{L}_{DPP} + \mathcal{L}_{EVP} + \mathcal{L}_{DVP}$$ $$\mathcal{L}_{EPP} = ig_{EPP}Tr\left([\partial^{\mu}P, V_{E,\mu}]P\right) , \quad \mathcal{L}_{DPP} = ig_{DPP}Tr\left([\partial^{\mu}P, V_{D,\mu}]P\right) ,$$ $$\mathcal{L}_{EVP} = g_{EVP}Tr\left(\tilde{V}_{E}^{\mu\nu}\{V_{\mu\nu}, P\}\right) , \quad \mathcal{L}_{DVP} = g_{DVP}Tr\left(\tilde{V}_{D}^{\mu\nu}\{V_{\mu\nu}, P\}\right) .$$ $g_{EPP},g_{DPP},g_{EVP},g_{DVP}$ - coupling constants of the different decay types. We can also examine the coupling to photons in the form of V $\rightarrow \gamma P$, which is obtained by replacing the vector field strength tensor as [2]: $$V_{\mu u} ightarrow V_{\mu u}+ rac{e_0}{g_o}QF_{\mu u}$$, $F_{\mu\nu}$ - field strength tensor for photons, $$e_0 = \sqrt{4\pi\alpha}$$, $\alpha \approx 1/137$, $Q = diag(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$, $g_\rho \approx 5.5 \pm 0.5$. #### **DECAY WIDTHS** #### Type of decay • $$R \to PP$$ $$\Gamma_{R \to PP} = s_{RPP} \frac{|\vec{k}|^3}{6\pi m_R^2} \left(\frac{g_{RPP}}{2} \lambda_{RPP}\right)^2$$ • $R \to VP$ • $$R \to VP$$, $$\Gamma_{R \to VP} = s_{RVP} \frac{|\vec{k}|^3}{12\pi} \left(\frac{g_{RVP}}{2} \lambda_{RVP} \right)^2$$ • $$R \to \gamma P$$ $$\Gamma_{R \to \gamma P} = \frac{|\vec{k}|^3}{12\pi} \left(\frac{g_{RVP}}{2} \frac{e_0}{g_\rho} \lambda_{R\gamma P} \right)^2$$ #### Examples $$\begin{array}{c} \bullet \;\; \rho(1450) \to \rho(770) \eta \\ \Gamma_{\rho(1450) \to \rho(770) \eta} = \frac{|\vec{k}|^3}{12\pi} [\frac{g_{EVP}}{2} \cos \theta_p]^2 \end{array}$$ $$\begin{array}{l} \bullet \ \, \phi(1680) \! \to \! \phi(1020) \eta \\ \Gamma_{\Phi(1680) \to \Phi(1020) \eta} = \frac{|\vec{k}|^3}{12\pi} [\frac{g_{EVP}}{2} \frac{\sin \theta_p}{\sqrt{2}}]^2 \end{array}$$ $$|\vec{k}| = \frac{\sqrt{m_R^4 + (m_A^2 - m_B^2)^2 - 2(m_A^2 + m_B^2)m_R^2}}{2m_R};$$ m_R - mass of the decaying resonance; m_A, m_B - masses of decay products; s_{RPP}, s_{RVP} - symmetry factors; λ - amplitude factor; g_{RPP}, g_{RVP} - coupling constants (R = E, D); θ_p - pseudoscalar mixing angle; $\theta_p = -42^{\circ}$. #### RESULTS | Decay process $V_E \to PP$ | Theory [MeV] | Experiment [MeV] | |-------------------------------------|----------------|------------------------------------| | $\rho(1450) \rightarrow \bar{K}K$ | 6.6 ± 1.4 | $< 6.7 \pm 1.0$ by DONANCHIE 91 | | $\rho(1450) \rightarrow \pi\pi$ | 30.8 ± 6.7 | $\sim 27 \pm 4$, seen by CLEGG 94 | | $K^*(1410) \rightarrow K\pi$ | 15.3 ± 3.3 | $15.3 \pm 3.3 \text{ by PDG}$ | | $K^*(1410) \rightarrow K\eta$ | 6.9 ± 1.5 | not listed in PDG | | $K^*(1410) \rightarrow K\eta'$ | ≈ 0 | not listed in PDG | | $\omega(1420) \rightarrow \bar{K}K$ | 5.9 ± 1.3 | not listed in PDG | | $\phi(1680) \rightarrow \bar{K}K$ | 19.8 ± 4.3 | seen by BUON 82 | | Decay process $V_E \to VP$ | Theory [MeV] | Experiment [MeV] | |---|-----------------|---| | $\rho(1450) \rightarrow \omega \pi$ | 74.7 ± 31.0 | $\sim 84 \pm 13$ seen by CLEGG 94 | | $\rho(1450) \rightarrow K^{*}(892)K$ | 6.7 ± 2.8 | possibly seen by COAN 04 | | $\rho(1450) \rightarrow \rho(770)\eta$ | 9.3 ± 3.9 | $< 16.0 \pm 2.4$ by Donnachie 91 | | $\rho(1450) \rightarrow \rho(770)\eta'$ | ≈ 0 | not listed in PDG | | $K^*(1410) \rightarrow K\rho$ | 12.0 ± 5.0 | $< 16.2 \pm 1.5 \text{ by PDG}$ | | $K^*(1410) \rightarrow K\phi$ | ≈ 0 | not listed in PDG | | $K^*(1410) \rightarrow K\omega$ | 3.7 ± 1.5 | not listed in PDG | | $K^*(1410) \rightarrow K^*(892)\pi$ | 28.8 ± 12.0 | $> 93 \pm 8$ by PDG | | $K^*(1410) \rightarrow K^*(892)\eta$ | ≈ 0 | not listed in PDG | | $K^*(1410) \rightarrow K^*(892)\eta'$ | ≈ 0 | not listed in PDG | | $\omega(1420) \rightarrow \rho\pi$ | 196 ± 81 | dominant, $\Gamma_{tot} = (180 - 250)$ by PDG | | $\omega(1420) \to K^*(892)K$ | 2.3 ± 1.0 | not listed in PDG | | $\omega(1420) \rightarrow \omega(782)\eta$ | 4.9 ± 2.0 | not listed in PDG | | $\omega(1420) \rightarrow \omega(782)\eta'$ | ≈ 0 | not listed in PDG | | $\phi(1680) \rightarrow K\bar{K}^*$ | 110 ± 46 | dominant, $\Gamma_{tot} = 150 \pm 50$ by PDG | | $\phi(1680) \rightarrow \phi(1020)\eta$ | 12.2 ± 5.1 | seen by ACHASOV 14 | | A(1690) \ A(1090)m/ | ~ 0 | not listed in DDC | | Decay process $V_E \rightarrow \gamma P$ | Theory [MeV] | Experiment [MeV] | |--|---------------------|--| | $\rho(1450) \rightarrow \gamma \pi$ | 0.072 ± 0.042 | not listed | | $\rho(1450) \rightarrow \gamma \eta$ | 0.23 ± 0.14 | $\sim 0.2 - 1.5$ | | $\rho(1450) \rightarrow \gamma \eta'$ | 0.056 ± 0.033 | not listed | | $K^*(1410) \rightarrow \gamma K$ | 0.18 ± 0.11 | seen, < 0.0529 MeV PDG+ Alavi-Harati 02E | | $\omega(1420) \rightarrow \gamma \pi$ | 0.60 ± 0.36 | 1.90 ± 0.75 | | $\omega(1420) \rightarrow \gamma \eta$ | 0.023 ± 0.014 | not listed | | $\omega(1420) \rightarrow \gamma \eta'$ | 0.0050 ± 0.0030 | not listed | | $\phi(1680) \rightarrow \gamma \eta$ | 0.14 ± 0.09 | seen | | $\phi(1680) \rightarrow \gamma \eta'$ | 0.076 ± 0.045 | not listed | | Decay process $V_D \to PP$ | Theory [MeV] | Experiment [MeV] | |-----------------------------------|-----------------|--| | $\rho(1700) \rightarrow \bar{K}K$ | 40 ± 11 | 8.3 ⁺¹⁰ _{-8.3} MeV | | $\rho(1700) \rightarrow \pi\pi$ | 140 ± 37 | 75 ± 30 by BECKER 79 | | $K^*(1680) \rightarrow K\pi$ | 82 ± 22 | 125 ± 43 by PDG | | $K^*(1680) \rightarrow K\eta$ | 52 ± 14 | not listed in PDG | | $K^*(1680) \rightarrow K\eta'$ | 0.72 ± 0.02 | not listed in PDG | | (10F0) . V.V. | 27 ± 10 | not listed in DDC | $\phi(1930) \rightarrow \bar{K}K$ 104 ± 28 resonance not yet known | Decay process $V_D \to VP$ | Theory [MeV] | Experiment [MeV] | |---|---------------|--| | $\rho(1700) \rightarrow \omega \pi$ | 140 ± 59 | seen | | $\rho(1700) \rightarrow K^{*}(892)K$ | 56 ± 23 | $83 \pm 66 \; \mathrm{MeV}$ | | $\rho(1700) \rightarrow \rho \eta$ | 41 ± 17 | $68 \pm 42 \; \mathrm{MeV}$ | | $\rho(1700) \rightarrow \rho \eta'$ | ≈ 0 | not listed in PDG | | $K^*(1680) \rightarrow K\rho$ | 64 ± 27 | 101 ± 35 by PDG | | $K^*(1680) \rightarrow K\phi$ | 13 ± 6 | not listed in PDG | | $K^*(1680) \rightarrow K\omega$ | 21 ± 9 | not listed in PDG | | $K^*(1680) \rightarrow K^*(892)\pi$ | 81 ± 34 | 96 ± 33 by PDG | | $K^*(1680) \rightarrow K^*(892)\eta$ | 0.5 ± 0.2 | not listed in PDG | | $K^*(1680) \rightarrow K^*(892)\eta'$ | ≈ 0 | not listed in PDG | | $\omega(1650) \rightarrow \rho\pi$ | 370 ± 156 | $\sim 205, 154\pm 44, \sim 273, 120\pm 18$ | | $\omega(1650) \to K^*(892)K$ | 42 ± 18 | not listed in PDG | | $\omega(1650) \rightarrow \omega(782)\eta$ | 32 ± 13 | $\sim 100, 56 \pm 30$ | | $\omega(1650) \rightarrow \omega(782)\eta'$ | ≈ 0 | not listed in PDG | | $\phi(1930) \rightarrow K\bar{K}^*$ | 260 ± 109 | resonance not yet known | | $\phi(1930) \rightarrow \phi(1020)\eta$ | 67 ± 28 | resonance not yet known | | $\phi(1930) \rightarrow \phi(1020)\eta'$ | ≈ 0 | resonance not vet known | | Decay process $V_D \rightarrow \gamma P$ | Theory [MeV] | Experiment [MeV] | |--|-------------------|-------------------------| | $\rho(1700) \rightarrow \gamma \pi$ | 0.095 ± 0.058 | not listed | | $\rho(1700) \rightarrow \gamma \eta$ | 0.35 ± 0.21 | not listed | | $\rho(1700) \rightarrow \gamma \eta'$ | 0.13 ± 0.08 | not listed | | $K^*(1680) \rightarrow \gamma K$ | 0.30 ± 0.18 | not listed | | $\omega(1650) \rightarrow \gamma \pi$ | 0.78 ± 0.47 | not listed | | $\omega(1650) \rightarrow \gamma \eta$ | 0.035 ± 0.021 | not listed | | $\omega(1650) \rightarrow \gamma \eta'$ | 0.012 ± 0.007 | not listed | | $\phi(1930) \rightarrow \gamma \eta$ | 0.19 ± 0.12 | resonance not yet known | | $\phi(1930) \rightarrow \gamma \eta'$ | 0.13 ± 0.08 | resonance not yet known | # PREDICTIONS FOR $\phi(1930)$ | MESOI | $N \phi(1930)$ | |---------------------------|----------------------------------| | Quark composition | $\approx s\bar{s}$ | | Old spectroscopy notation | (predom.) $n^{2S+1}L_J = 1^3D_1$ | | n | (predom.) 1 | | S | (predom.) 1 ↑↑ | | L | (predom.) 2 | | J^{PC} | 1 | | M | 1020 40 M-W | | DECA | AYS | |--|----------------------| | Decay channel | Decay width
[MeV] | | $\phi(1930) \rightarrow \bar{K}K$ | 104 ± 28 | | $\phi(1930) \rightarrow K\bar{K}^*$ | 260 ± 109 | | $\phi(1930) \rightarrow \Phi(1020)\eta$ | 67 ± 28 | | $\phi(1930) \rightarrow \Phi(1020)\eta'$ | ≈ 0 | | $\phi(1930) \rightarrow \gamma \eta$ | 0.19 ± 0.12 | | $\phi(1930) \rightarrow \gamma \eta'$ | 0.13 ± 0.08 | #### **CONCLUSIONS** - The parameters $g_{EPP}, g_{DPP}, g_{EVP}, g_{DVP}$ were fixed by using some of the experimental data [4]. - Overall agreement of theory with data; theoretically large decays are clearly seen in experiments, theoretically small decays were generally not seen. - There are some open issues: some theoretical and experimental errors are too large; $K^*(1410)$ is well established [1,5], but $K^*(1410) \rightarrow K^*(892)\pi$ is too small when compared to data. Concerning $\rho(1450)$, alternative scenarios exist [6]. - The results for the not-yet discovered resonance $\phi(1930)$ are predictions; this resonance, even if broad, is measurable. - Radiative decays were determined via VMD without new parameters. The radiative decays of V_E are still experimentally poorly determined, but the theoretically predicted sizable decays were seen in experiments. In two cases, numerical values can be extracted. For the d-wave vector mesons the results are only predictions. - New experimental results for excited vector states are expected at the GlueX and CLAS12 experiments at Jefferson Lab [7]. ### **ACKNOWLEDGEMENTS** M.P. and F.G. acknowledge support from the Polish National Science Centre (NCN) through the OPUS project no. 2015/17/B/ST2/01625. #### REFERENCES - [5] S. Prelovsek, L. Leskovec, C. B. Lang and D. Mohler, K π scattering and the K* decay width from lattice QCD, Phys. Rev. D 88 (2013) no.5, 054508. - . Al Ghoul et al. [GlueX Collaboration], "First Results from The GlueX Exeriment," AIP Conf. Proc. 1735 (2016) 020001.