Fitting and selecting scattering data

E. Ruiz Arriola

Universidad de Granada Atomic, Molecular and Nuclear Physics Department

XVII International Conference on Hadron Spectroscopy and Structure September 25th-29th, 2017 Salamanca (Spain)

> Rodrigo Navarro Pérez (Athens, Ohio) José Enrique Amaro Soriano (Granada),

1 / 45

The question

• We have N DATA with UNCERTAINTIES

$$O_1 \pm \Delta O_1 \quad \dots \quad O_N \pm \Delta O_N$$

• We have a theory depending on *M*-PARAMETERS

 $O_1(p_1,\ldots,p_M) \quad \ldots \quad O_N(p_1,\ldots,p_M)$

- Does theory EXPLAIN data ? YES (Validate) NO (Falsify)
- Statistical Answer: If uncertainties are a gaussian distribution

$$O_i^{\exp} = O_i^{\th} + \xi_i \Delta O_i$$

Define the LEAST SQUARES SUM

$$\chi^2_{\min} \equiv \min_{p_1,\dots,p_M} \sum_{i=1}^N \left[\frac{O_i(p_1,\dots,p_M) - O_i^{\exp}}{\Delta O_i} \right]^2$$

The probability p that the theory explains the DATA is >68% if

$$\frac{\chi^2_{\min}}{\nu} = 1 \pm \sqrt{\frac{2}{\nu}} \qquad \nu = N - M \quad \text{d.o.f (degrees of freedom)}$$

25 September 2017

< 4 ∰ > <

Theory versus experiment

- A good theory can tell us what experiments are wrong
- A good experiment can tell us what theories are wrong
 - Assume theory AND experiment to be correct
 - If we find no contradiction we validate theory and experiment
 - 3 Experiment , finite number of data, finite precision
 - Theory , approximations
- Important questions
 - Does QCD describe hadronic interactions ?
 - 2 Does ChPT describe low energy hadronic interactions ?

• Confidence level (statistics) Example: AB scattering is described by scheme S with 68 percent confidence

SCATTERING

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

-

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Scattering experiment

- Scattering experiments measure FORCES
- Counting rates

$$\frac{R^2 N_{\rm out}(\theta,\phi)}{N_{\rm in}} \to \sigma(\theta,E) \equiv \frac{d\sigma}{d\Omega} = |f(\theta,\phi)|^2$$

Local Normalization

$$\sigma(\theta, E) \underbrace{\rightarrow}_{\theta \ll 1} \sigma_{\mathrm{Ruth}}(\theta, E)$$

Total Normalization (mean free path, no Coulomb)

$$l = \frac{1}{n\sigma_T}$$
 , $\sigma_T = \int d\Omega \frac{d\sigma}{d\Omega}$

Counting statistics

• Binomial distribution (*p* scattering probability)

$$P_{N,k} = p^k (1-p)^{N-k} \begin{pmatrix} N \\ k \end{pmatrix} , \quad \langle k \rangle = Np , \quad (\Delta k)^2 = \langle k^2 \rangle - \langle k \rangle^2 = Np(1-p)$$

• $\sigma(\theta, E)$ is Gauss distributed

$$\sigma(\theta, E) = \bar{\sigma}(\theta, E) \pm \Delta(\theta, E)$$

6 / 45

Partial wave expansion (No spin)

Scattering amplitude

$$f(\theta,\phi) = \sum_{l=0}^{\infty} (2l+1) \frac{e^{2i\delta_l}-1}{2ip} P_l(\cos\theta) \quad , \qquad E = \frac{p^2}{2\mu}$$

Schrödinger Equation

$$\left[-\frac{\nabla^2}{2\mu} + V(\vec{x})\right]\Psi(\vec{x}) = E\Psi(\vec{x})$$

• Spherical symmetry V(r)

$$\Psi(\vec{x}) = \frac{u_l(r)}{r} Y_{lm}(\hat{x})$$

Reduced radial equation

$$-u_l''(r) + \left[\frac{l(l+1)}{r^2} + 2\mu V(r)\right]u_l(r) = p^2 u_l(r)$$

Asymptotic conditions

$$u_l(r) \underset{r \to 0}{\longrightarrow} r^{l+1}$$
, $u_l(r) \underset{r \to \infty}{\longrightarrow} \sin\left(pr - \frac{l\pi}{2} + \delta_l\right)$

• GOAL : Determine
$$V(r) \pm \Delta V(r)$$

Finite range forces

• Meson exchange picture \rightarrow Longest range \equiv Lightest particle

$$r_c \sim \frac{\hbar}{m_\pi c} \sim 1.4 {\rm fm}$$

Impact parameter

$$|\vec{L}| = |\vec{x} \wedge \vec{p}| \rightarrow bp$$
 $L^2 = l(l+1)^2 \sim (l+1/2)^2 \rightarrow l + \frac{1}{2} = bp$

Truncation in the partial wave expansion

$$f(\theta,\phi) = \sum_{l=0}^{l_{\max}} (2l+1) \frac{e^{2i\delta_l} - 1}{2ip} P_l(\cos\theta) = \frac{e^{2i\delta_0} - 1}{2ip} + 3\frac{e^{2i\delta_1} - 1}{2ip} \cos\theta + \dots$$

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

FITTING

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

<u>25 Sep</u>tember 2017 9 / 45

* ロ > * 個 > * 注 > * 注 >

2

Single energy fits

• Complete data in a GIVEN energy E

$$\sigma(\theta, E) \rightarrow \sigma(\theta_1, E), \dots, \sigma(\theta_N, E)$$

• Fitting function \rightarrow Fitting parameters $\delta_1(E), \ldots, \delta_l(E)$

$$\chi^2(\delta_1(E),\ldots,\delta_l(E),\nu) = \sum_{i=1}^N \left[\frac{\sigma^{\exp}(\theta_i,E) - \nu\sigma^{\operatorname{th}}(\theta_i,\delta_1(E),\ldots,\delta_l(E))}{\Delta\sigma(\theta_i,E)}\right]^2 + \left(\frac{1-\nu}{\Delta\nu}\right)^2$$

Normalization is COMMON for ONE energy

Phase-shifts are "experimental" and MODEL INDEPENDENT

 $\delta_l^{\exp}(E) \pm \Delta \delta_l^{\exp}(E) \quad , \qquad l = 0, \dots, l_{\max}$

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

25 September 2017 10 / 45

Multienergy analysis

Incomplete Data in several energies and angles

$$\sigma(\theta, E) \rightarrow \sigma(\theta_1, E_1), \dots, \sigma(\theta_N, E_N)$$

• The need for interpolation (Smoothness in (θ, E))

• Fitting function to Fitting MODEL DEPENDENT parameters $\mathbf{p} = (p_1, \dots, p_M)$

$$\chi^{2}(\mathbf{p},\nu) = \sum_{i=1}^{N} \left[\frac{\sigma(\theta_{i},E_{i})^{\exp} - \nu \sigma^{\mathrm{th}}(\theta_{i},E_{i},\mathbf{p})}{\Delta \sigma(\theta_{i},E_{i})} \right]^{2} + \left(\frac{1-\nu}{\Delta\nu}\right)^{2}$$

The statement

$$\sigma(\theta_i, E_i)^{\exp} = \nu_0 \sigma^{\mathrm{th}}(\theta_i, E_i, \mathbf{p}_0) \pm \Delta \sigma(\theta_i, E_i)$$

• Too large χ^2/ν

- Bad model \rightarrow SELECT MODEL
- Bad data \rightarrow SELECT DATA
- Bad model and data

The χ^2 -test

• If $\xi_n \in N(0,1)$

$$P_{\nu}(\chi^2) = \prod_{n=1}^{N} \left(\int_{-\infty}^{\infty} d\xi_i \frac{e^{-\xi_i^2/2}}{\sqrt{2\pi}} \right) \delta(\chi^2 - \sum_{n=1}^{N} \xi_n^2) = \frac{e^{-\chi^2} \chi^{\nu-2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)}$$

Mean and Variance

$$\langle \chi^2 \rangle = \nu$$
, $\langle (\chi^2 - \langle \chi^2 \rangle)^2 \rangle = 2\nu^2$, $\rightarrow \chi^2 = \nu \pm \sqrt{2\nu}$

Enrique Ruiz Arriola (UGR)

25 September 2017

э

12 / 45

To believe or not to believe

$$\chi^2_{\rm min}/\nu = 1 \pm \sqrt{2/\nu}$$

- Charge dependence in OPE
- Magnetic-Moments, Vacuum polarization, ...

The need for selection

- Example: THE SAID DATABASE
 - PP Data No=25188 Chi2= 48225.043
 - NP Data No=12962 Chi2= 26079.973
 - πN 41926 Chi2= 166585.05
 - πN 2599 Chi2= 4586.26 (TLAB j 300)
- Which experiments are INCOMPATIBLE ?

- Contribution the χ^2 will be large (discard BOTH ?)
- If errorbar includes BOTH no contribution to the χ^2
- Incompatibility is DESTRUCTIVE
- Real physical effect ?

14 / 45

Long distances

Nucleons exchange JUST one pion

Low energies (about pion production) 8000 pp + np scattering data (polarizations etc.)
Granada coarse grained analysis (2016) (isospin breaking !!)

 $g_p^2/(4\pi) = 13.72(7) \neq g_n^2/(4\pi) = 14.91(39) \neq g_c^2/(4\pi) = 13.81(11) \qquad \chi^2/\nu = 1.02$

COARSE GRAINING NN (LOW ENERGY)

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

25 September 2017 16 / 45

Nucleon-Nucleon Scattering

Scattering amplitude

$$M = a + m(\sigma_1 \cdot \mathbf{n})(\sigma_2 \cdot \mathbf{n}) + (g - h)(\sigma_1 \cdot \mathbf{m})(\sigma_2 \cdot \mathbf{m}) + (g + h)(\sigma_1 \cdot \mathbf{l})(\sigma_2 \cdot \mathbf{l}) + c(\sigma_1 + \sigma_2) \cdot \mathbf{n} \mathbf{l} = \frac{\mathbf{k}_f + \mathbf{k}_i}{|\mathbf{k}_f + \mathbf{k}_i|} \qquad \mathbf{m} = \frac{\mathbf{k}_f - \mathbf{k}_i}{|\mathbf{k}_f - \mathbf{k}_i|} \qquad \mathbf{n} = \frac{\mathbf{k}_f \wedge \mathbf{k}_i}{|\mathbf{k}_f \wedge \mathbf{k}_i|}$$

• 5 complex amplitudes \rightarrow 24 measurable cross-sections and polarization asymmetries • Partial Wave Expansion

$$M_{m'_{s},m_{s}}^{s}(\theta) = \frac{1}{2ik} \sum_{J,l',l} \sqrt{4\pi(2l+1)} Y_{m'_{s}-m_{s}}^{l'}(\theta,0) \\ \times C_{m_{s}-m'_{s},m'_{s},m_{s}}^{l',s,J} i^{l-l'} (S_{l,l'}^{J,s} - \delta_{l',l}) C_{0,m_{s},m_{s}}^{l,s,J},$$
(1)

S-matrix

$$S^{J} = \begin{pmatrix} e^{2i\delta_{J-1}^{J,1}}\cos 2\epsilon_{J} & ie^{i(\delta_{J-1}^{J,1} + \delta_{J+1}^{J,1})}\sin 2\epsilon_{J} \\ ie^{i(\delta_{J-1}^{J,1} + \delta_{J+1}^{J,1})}\sin 2\epsilon_{J} & e^{2i\delta_{J+1}^{J,1}}\cos 2\epsilon_{J} \end{pmatrix},$$
 (2)

Analytical Structure

- $s = 4(M_N^2 + p^2) \rightarrow E_{\text{LAB}} = 2p^2/M_N$
- Partial Wave Scattering Amplitude analytical for $|p| \leq m_{\pi}/2$

$$T_{ll'}^{J}(p) \equiv S_{ll'}^{J}(p) - \delta_{l,l'} = p^{l+l'} \sum_{n} C_{n,l,l'} p^{2n}$$

• Nucleons behave as elementary (AT WHAT SCALE ?)

● Nucleons are heavy → Local Potentials

$$V_{n\pi}(r) \sim \frac{g^{2n}}{r} e^{-nm_{\pi}r}$$

• Crucial long range electromagnetic effects are local

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

The number of parameters (for $E_{\text{LAB}} \leq 350 \text{ MeV}$)

• At what distance look nucleons point-like ?

 $r > 2 \mathrm{fm}$

• When is OPE the ONLY contribution ?

 $r_c > 3 \mathrm{fm}$

• What is the minimal resolution where interaction is elastic ?

$$p_{\max} \sim \sqrt{M_N m_\pi} \rightarrow \Delta r = 1/p_{\max} = 0.6 \text{fm}$$

• How many partial waves must be fitted ?

$$l_{\rm max} = p_{\rm max} r_c = r_c / \Delta r = 5$$

Minimal distance where centrifugal barrier dominates

$$\frac{l(l+1)}{r_{\min}^2} \le p^2$$

• How many parameters ? (${}^{1}S_{0}, {}^{3}S_{1}$), (${}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$), (${}^{1}D_{2}, {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3}$), (${}^{1}F_{3}, {}^{3}F_{2}, {}^{3}F_{3}, {}^{3}F_{4}$)

 $2\times5+4\times4+4\times3+4\times2+4\times1=50$

POINT-LIKE NUCLEON

Delta Shell Potential

• A sum of delta functions

$$V(r) = \sum_{i} \frac{\lambda_i}{2\mu} \delta(r - r_i)$$

[Aviles, Phys.Rev. C6 (1972) 1467]

- Optimal and minimal sampling of the nuclear interaction
- Pion production threshold $\Delta k \sim 2 \text{ fm}^{-1}$
- Optimal sampling, $\Delta r \sim 0.5 \text{fm}$

Delta Shell Potential

- 3 well defined regions
- Innermost region $r \leq 0.5~{\rm fm}$
 - Short range interaction
 - No delta shell (No repulsive core)
- Intermediate region $0.5 \leq r \leq 3.0~{\rm fm}$
 - Unknown interaction
 - λ_i parameters fitted to scattering data
- Outermost region $r \geq 3.0 \text{ fm}$
 - Long range interaction
 - Described by OPE and EM effects
 - Coulomb interaction V_{C1} and relativistic correction V_{C2} (pp)
 - Vacuum polarization V_{VP} (pp)
 - Magnetic moment V_{MM} (pp and np)

22 / 45

Fitting NN observables

• Delta shell potential in every partial wave

$$V_{l,l'}^{JS}(r) = \frac{1}{2\mu_{\alpha\beta}} \sum_{n=1}^{N} (\lambda_n)_{l,l'}^{JS} \delta(r - r_n) \qquad r \le r_c = 3.0 \text{fm}$$

- Strength coefficients λ_n as fit parameters
- Fixed and equidistant concentration radii $\Delta r = 0.6$ fm
- EM interaction is crucial for pp scattering amplitude

$$V_{C1}(r) = \frac{\alpha'}{r} ,$$

$$V_{C2}(r) \approx -\frac{\alpha \alpha'}{M_p r^2} ,$$

$$V_{VP}(r) = \frac{2\alpha \alpha'}{3\pi r} \int_1^\infty dx \ e^{-2m_e rx} \left[1 + \frac{1}{2x^2} \right] \frac{(x^2 - 1)^{1/2}}{x^2} ,$$

$$V_{MM}(r) = -\frac{\alpha}{4M_p^2 r^3} \left[\mu_p^2 S_{ij} + 2(4\mu_p - 1) \mathbf{L} \cdot \mathbf{S} \right]$$

STATISTICS

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

Image: A (1) 25 September 2017 24 / 45

-

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Self-consistent fits

• We test the assumption

$$O_i^{\exp} = O_i^{\operatorname{th}} + \xi_i \Delta O_i \qquad i = 1, \dots, N_{\operatorname{Data}} \qquad \xi_i \in N[0, 1]$$

• Least squares minimization $\mathbf{p} = (p_1, \dots, p_M)$

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{N} \left(\frac{O_{i}^{\exp} - F_{i}(\mathbf{p})}{\Delta O_{i}^{\exp}} \right)^{2} \to \min_{\mathbf{p}} \chi^{2}(\mathbf{p}) \equiv \chi^{2}(\mathbf{p}_{0})$$
(3)

• Are residuals Gaussian ?

$$R_i = \frac{O_i^{\exp} - O_i^{\text{th}}}{\Delta O_i} \qquad O_i^{\text{th}} = F_i(\mathbf{p}_0) \qquad i = 1, \dots, N$$
(4)

- If $R_i \in N[0,1]$ self-consistent fit.
- Normality test for a finite sample with N elements \rightarrow Probability (Confidence level) p-value

$$\chi^{2}_{\min} = 1 \pm \sigma \sqrt{\frac{2}{\nu}}$$
 $\nu = N_{\text{Dat}} - N_{\text{Par}}$ $p = 1 - \int_{\sigma}^{\sigma} dt \frac{e^{-t^{2}}}{\sqrt{2\pi}}$

Histograms, Moments, Kolmogorov-Smirnov, Tail Sentitive QQ-plots

< 🗗 🕨

Normality tests

• Does the sequence

$$x_1^{\exp} \le x_2^{\exp} \le \dots \le x_N^{\exp} \in N[0,1]$$

• We compute the theoretical points

$$\frac{n}{N+1} = \int_{-\infty}^{x_n^{\rm th}} dt \frac{e^{-t^2/2}}{\sqrt{2\pi}}$$

• The Q-Q plot is
$$x_n^{\mathrm{th}}$$
 vs x_n^{exp}

• For large N

$$x_n^{\text{th}} - x_n^{\text{exp}} = \mathcal{O}(1/\sqrt{N})$$

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

Granada-2013 np+pp database

Selection criterium

- Mutually incompatible data. Which experiment is correct? Is any of the two correct?
- Maximization of experimental consensus
- Exclude data sets inconsistent with the rest of the database
 - Fit to all data $(\chi^2/\nu > 1)$
 - ② Remove data sets with improbably high or low χ^2 (3 σ criterion)
 - 8 Refit parameters
 - ${f 0}$ Re-apply 3σ criterion to all data
 - Sepeat until no more data is excluded or recovered

Selection of data

Usual Nijmegen 3σ criterion (1677 rejected data)

300 recovered data with Granada procedure (consistent database)

Enrique Ruiz Arriola (UGR)

Scattering Observables

- Comparing with Potentials and Experimental data
- np data

< 17 ▶

Scattering Observables

- Comparing with Potentials and Experimental data
- pp data

• χ^2 /d.o.f. = 1.06 with $N = 2747|_{pp} + 3691|_{np}$ [RNP, Amaro & Ruiz-Arriola. Phys.Rev.C88 (2013) 024002]

< 4 → <

STATISTICAL CONSEQUENCES

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

25 September 2017 31 / 45

э

Coupling constants

Fits to the Granada-2013 database. f^2 f_{0}^{2} f_c^2 χ^2/ν CD-waves χ^2_{np} NDat NPar χ^2_{pp} 0.075 idem idem ${}^{1}S_{0}$ 305139516713 46 1.051 ${}^{1}S_{0}$ 1.051 0.0761(3)idem idem 305139516713 46 + 1 ${}^{1}S_{0}, P$ 29993951.40 6713 46 + 31.043 ${}^{1}S_{0}, P$ 0.0759(4)0.079(1)0.0763(6)3045 3870 6713 46+3+9 1.039

< 67 ▶

32 / 45

Neutron-Neutron vs Proton-Proton (Polarized)

nn interaction is more intense than pp interaction

Arqueological Flashback

• Can we witness isospin breaking in the couplings ?

$$\frac{dg}{g}\Big|_{\rm QCD} = \mathcal{O}(\alpha, \frac{m_u - m_d}{\Lambda_{\rm QCD}}) = \mathcal{O}(\alpha, \frac{M_n - M_p}{\Lambda_{\rm QCD}}) \sim 0.01 - 0.02$$

• Statistically yes ! Granada NN N = 6713

$$\frac{dg}{g}\Big|_{\text{stat}} = \mathcal{O}(\frac{\Delta N_{\text{Dat}}}{N_{\text{Dat}}}) = \mathcal{O}(\frac{1}{\sqrt{N_{\text{Dat}}}}) \rightarrow N \sim 7000 - 10000$$

Chronological recreation of pion-nucleon coupling constants

Enrique Ruiz Arriola (UGR)

Chiral Two Pion Exchange from Granada-2013 np+pp database

35 / 45

$f_{\pi N\Delta}$ from Granada-2013 np+pp database

NN potential in the Born-Oppenheimer approximation

$$\bar{V}_{NN,NN}^{1\pi+2\pi+\dots}(\mathbf{r}) = V_{NN,NN}^{1\pi}(\mathbf{r}) + 2 \frac{|V_{NN,N\Delta}^{1\pi}(\mathbf{r})|^2}{M_N - M_\Delta} + \frac{1}{2} \frac{|V_{NN,\Delta\Delta}^{1\pi}(\mathbf{r})|^2}{M_N - M_\Delta} + \mathcal{O}(V^3) \,,$$

- Bulk of TWO-Pion Exchange Chiral forces reproduced
- Fit with $r_e = 1.8 \text{fm}$ to N = 6713pp + np scattering data

$$f_{\pi N\Delta}/f_{\pi NN} = 2.178(14)$$
 $\chi^2/\nu = 1.12 \rightarrow h_A = 1.397(9)$

Tjon-Lines: numerical accuracy of A = 2, 3, 4 Nuclei

• 4-Body forces are masked by numerical noise in the 3 and 4 body calculation if

 $\Delta_t^{\text{num}} > 1 \text{KeV} \qquad \Delta_t^{\text{num}} > 20 \text{KeV}$

(with A. Nogga)

To count or not to count: The Falsification of Chiral Forces

- We can fit CHIRAL forces to ANY energy and look if counterterms are compatible with zero within errors
- We find that if $E_{\text{LAB}} \leq 125 \text{MeV}$ Weinberg counting is INCOMPATIBLE with data.
- You have to promote D-wave counterterms. N2LO-Chiral TPE + N3LO-Counterterms → Residuals are normal Piarulli,Girlanda,Schiavilla,Navarro Pérez,Amaro,RA, PRC
- We find that if $E_{LAB} \leq 40 MeV$ TPE is INVISIBLE
- We find that peripheral waves predicted by 6th-order chiral perturbation theory ARE NOT consistent with data within uncertainties

$$|\delta^{\rm Ch,N5LO} - \delta^{\rm PWA}| > \Delta \delta^{\rm PWA,stat}$$

5 σ incompatible

CONCLUSIONS

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

э 25 September 2017 39 / 45

< 一型

æ

Conclusions

- Fitting and selecting scattering databases allows to pose and ANSWER important questions
- Coarse graining is a simple method to analyze and select data using a statistical framework
- Self-consistent databases allow to determine coupling constants
- Validate power countings in NN (Weinberg is not)
- It could be a possible way to do Nuclear Physics AND Hadronic physics

ACKNOWLEDGEMENTS

Enrique Ruiz Arriola (UGR)

Fitting and selecting scattering data

25 September 2017 41 / 45

э

The Botijo Collaboration

• Quique Amaro (Granada) Rodrigo Navarro Pérez (Livermore), E.R.A. (Granada)

• I thank Eduardo Garrido, Andreas Nogga, James Vary, Pieter Maris, Ignacio Ruiz Simó, Pedro Fernández-Soler, Jacobo Ruiz de Elvira for collaborations.

References

- [1] Coarse graining Nuclear Interactions Prog. Part. Nucl. Phys. 67 (2012) 359
- [2] Error estimates on Nuclear Binding Energies from Nucleon-Nucleon uncertainties arXiv:1202.6624 [nucl-th].
- [3] Phenomenological High Precision Neutron-Proton Delta-Shell Potential Phys.Lett. B724 (2013) 138-143.
- [4] Nuclear Binding Energies and NN uncertainties PoS QNP **2012** (2012) 145
- [5] Effective interactions in the delta-shells potential Few Body Syst. 54 (2013) 1487.
- [6] Nucleon-Nucleon Chiral Two Pion Exchange potential vs Coarse grained interactions PoS CD12 (2013) 104.
- [7] Partial Wave Analysis of Nucleon-Nucleon Scattering below pion production Phys.Rev. C88 (2013) 024002, Phys.Rev. C88 (2013) 6, 069902.
- [8] Coarse-grained potential analysis of neutron-proton and proton-proton scattering below the pion production threshold Phys.Rev. C88 (2013) 6, 064002, Phys.Rev. C91 (2015) 2, 029901.
- [9] Coarse grained NN potential with Chiral Two Pion Exchange Phys.Rev. C89 (2014) 2, 024004.
- [10] Error Analysis of Nuclear Matrix Elements Few Body Syst. 55 (2014) 977-981.
- [11] Partial Wave Analysis of Chiral NN Interactions Few Body Syst. 55 (2014) 983-987.

< 🗇 🕨

- [12] Statistical error analysis for phenomenological nucleon-nucleon potentials Phys.Rev. C89 (2014) 6, 064006.
- [13] Error analysis of nuclear forces and effective interactionsJ.P.G42(2015)3,034013.
- [14] Bootstrapping the statistical uncertainties of NN scattering data Phys.Lett. B738 (2014) 155-159.
- [15] Triton binding energy with realistic statistical uncertainties (with E. Garrido) Phys.Rev. C90 (2014) 4, 047001.
- [16] The Low energy structure of the Nucleon-Nucleon interaction: Statistical vs Systematic Uncertainties J. Phys. G 43, no. 11, 114001 (2016)
- [17] Low energy chiral two pion exchange potential with statistical uncertainties Phys.Rev. C91 (2015) 5, 054002.
- [18] Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances (with M. Piarulli, L. Girlanda, R. Schiavilla). Phys.Rev. C91 (2015) 2, 024003.
- [19] The Falsification of Nuclear Forces EPJ Web Conf. 113 (2016) 04021
- [20] Statistical error propagation in ab initio no-core full configuration calculations of light nuclei (with P. Maris, J.P. Vary) Phys.Rev. C92 (2015) no.6, 064003
- [21] Uncertainty quantification of effective nuclear interactions Int.J.Mod.Phys. E25 (2016) no.05, 1641009
- [22] Binding in light nuclei: Statistical NN uncertainties vs Computational accuracy (with A. Nogga) J. Phys. Conf. Ser. **742**, no. 1, 012001 (2016)
- [23] Precise Determination of Charge Dependent Pion-Nucleon-Nucleon Coupling Constants arXiv:1606.00592 (PRC in press)
- [24] Three pion nucleon coupling constants Mod.Phys.Lett.A,Vol.31,No.28(2016)1630027

- [25] Self-consistent statistical error analysis of $\pi\pi$ scattering R. Navarro Pérez, E. Ruiz Arriola and J. Ruiz de Elvira. Phys. Rev. D **91**, 074014 (2015)
- [26] The falsification of Chiral Nuclear Forces EPJ Web Conf. 137, 09006 (2017)
- [27] Coarse grained short-range correlations I. Ruiz Simo, R. Navarro Perez, J. E. Amaro and E. Ruiz Arriola. Phys. Rev. C 95, no. 5, 054003 (2017)
- [28] Low energy peripheral scaling in Nucleon-Nucleon Scattering I. Ruiz Simo, J. E. Amaro, E. Ruiz Arriola and R. Navarro Perez. arXiv:1705.06522 [nucl-th]
- [29] Coarse graining of NN inelastic interactions up to 3 GeV:Repulsive vs Structural core P. Fernandez-Soler and E. Ruiz Arriola. arXiv:1705.06093 [nucl-th]
- [30] Coarse graining $\pi\pi$ scattering J. Ruiz de Elvira, and E. Ruiz Arriola. (2016, unpublished)
- [31] Statistical limits to the precision of nuclear physics ab initio calculations for triton and helium (with A. Nogga), (2015,unpublished)

3

イロト 不得下 イヨト イヨト