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Aim: Address striking features of hadron data within QCD:

• qq̅ and qqq quantum numbers, even for relativistic states (π, ρ, N,…)

• Freezing of gluon degrees of freedom at low scales (hybrids, glueballs)

• OZI rule: φ(1020) → KK̅ ≫ φ(1020) → π π π

• Quark ↔ hadron duality (DIS, e+e–, hh, …)

At face value: These phenomena indicate a weak coupling dynamics.

How is this consistent with relativistic binding and confinement?

How to proceed?
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Similarity of atomic and hadronic spectra
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PQED: PQCD?

Adapted from presentation by J. Ritman (2005)
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Positronium Charmonium

“The J/ψ is the Hydrogen atom of QCD”
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QED works for atoms

M. Baker et al, 1402.0876

7

where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +G
T

S)�1G
T

= G
T

�G
T

S G
T

+ ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and G

T

. As a consequence of unitarity the residues of the bound state poles of G
T

factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T

(with external propagators truncated) must satisfy

�P

T

(q) ⌘
Z

d4x�P

T

(x)eiq·x =

Z

d4k

(2⇡)4
�P

T

(k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of m

e

. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ m

e

) in positronium is only of O
�

↵5
�

⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]
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Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is
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Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.

Sincere gratitude is expressed to Dr. T. Suehara (Kyushu U.),

Mr. Y. Sasaki, Mr. G. Akimoto (U. Tokyo), Prof. A. P. Mills, Jr.

(UC Riverside), Dr. H. A. Torii and Dr. T. Tanabe (U. Tokyo)

for useful discussions. This work was supported by JSPS KAK-

ENHI Grant Number 23340059.
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FIG. 4: Data on positronium hyperfine splitting
compared to theory. Two previous results (a [9],
b [10]) compared to a new measurement [11] and
QED [8] (black band). Figure from [11].

The appearance of ln↵ in (2.24) demonstrates that bound state
perturbation theory indeed di↵ers from the usual expansions of
scattering amplitudes. Such factors arise from apparent infrared
divergences which are regulated by the neutrality of positronium
at the scale of the Bohr radius (↵m

e

)�1.

The combined result of the two most precise measurements
of the hyperfine splitting in positronium [9, 10] is �⌫

EXP

=
203.38865(67) GHz, which is more than 3� from the QED value
(2.24). Very recently a new measurement [11] gave �⌫

EXP

=
203.3941 ± .0016 ± .0011 GHz, which is closer to the theoretical
value. The present situation is illustrated in Fig. 4.

Bound state poles in the photon propagator a↵ect also standard
perturbative calculations. The positronium contribution to the
anomalous magnetic moment of the electron was recently evalu-
ated [12]. It was found to be of the same order as state-of-the-art
five-loop calculations – and several times bigger than the weak
corrections.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD (see [13] and references therein).

4 In (2.19) a factor P

0 � E

q+ � E

q� was extracted from the wave function  (q).

Example: Hyperfine splitting in Positronium

ΔνEXP = 203.3941± .003 GHzA. Ishida et al, 1310.6923 :

• Binding energy is perturbative in α and log(α)

• Wave function ψ(r) ∝ exp(– mαr) is of O(α∞)

How should one organize an expansion that starts with O(α∞) ?
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QM I: The Schrödinger equation

The Schrödinger equation with a classical potential is postulated:

Classical potential:

h
� r2

2µ
� ↵

|x|

i
'(x) = Eb '(x)

the obvious choice!

QFT:  Adds O(ℏn) fluctuations 

          around the classical field

Schrödinger atom is O(ℏ0) : Classical photon field, no loop contributions

Bound states should be expanded around the classical field
Perturbation theory expands around the zero field

eA0(r) = �↵

r
Z
[dAµ

] exp

�
iS[Aµ

]/~
�
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5Master formula for perturbative S-matrix

Sfi = out

hf |
⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|ii

in

The free in- and out-states at t = ±∞ must overlap the physical i, f states.

Generates Feynman diagrams to arbitrary order for any scattering process

No finite order Feynman diagram for e+e– → e+e– has a positronium pole.

Bound states have no overlap with free in- and out-states at t = ± ∞

We need to expand around in and out states with their classical gauge field

A boundary condition 
on the classical field equations may be the clue to confinement,

but cannot be imposed on free fields.
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S. Aoki, et al., Phys. Rev. Lett. 84 (2000) 238 

Quark loops: 10% effect in hadron spectrum

Neglecting quark loops gives 
the light hadron spectrum 
at 10% accuracy 

VOLUME 84, NUMBER 2 P HY S I CA L R EV I EW LE T T ER S 10 JANUARY 2000
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FIG. 4. Final spectrum results compared to experiment.

while our results are smaller by a similar magnitude. How
these differences arise is shown in Fig. 3, where the results
of Ref. [2] are plotted by open triangles. For the nucleon,
both the results from Butler et al. [2] and the MILC col-
laboration [3] are consistent with experiment; our value is
smaller by 7% !2.5s".
We also calculate PS decay constants and quark masses

using tadpole-improved one-loop values for renormaliza-
tion constants. For the PS decay constant we find fp !
120.0!5.7" MeV and fK ! 138.8!4.4" MeV with mK as
input, which are smaller than experiment by 9% !2s" and
13% !5s", respectively. Quark masses are determined by
a combined linear continuum extrapolation of mVWI

q and
mAWI

q , since the large difference of values from the two
definitions at finite lattice spacings [13,15] vanishes toward
the continuum limit [5]. We obtain mu,d ! 4.57!18" MeV
and ms ! 115.6!2.3" MeV (mK input) or 143.7(5.8) MeV
(mf input) in the modified minimal subtraction !MS "
scheme at m ! 2 GeV. A 20% disagreement between the
two values for ms originates from the small meson hyper-
fine splitting, and hence represents a quenching effect.
In conclusion, we have found that the light hadron spec-

trum in quenched QCD systematically deviates from the
experimental spectrum when examined with an accuracy
better than the 10% level. In the course of our analyses we
have observed strong support for the presence of quenched
chiral singularities for pseudoscalar mesons. Whether vec-
tor mesons and baryons also have such singularities, how-
ever, remains as a problem for future investigations.
We thank all of the members of the CP-PACS Project

with whom the CP-PACS computer has been developed.
Valuable discussions with M. Golterman and S. Sharpe

TABLE II. Spectrum results. Deviation from experiment with
its statistical significance is also given.

mK input mf input
Expt. Mass (GeV) Deviation Mass (GeV) Deviation

K 0.4977 · · · · · · 0.553(10) 11.2% 5.6s
K! 0.8961 0.858(09) 24.2% 4.3s 0.889(03) 20.8% 2.3s
f 1.0194 0.957(13) 26.1% 4.8s · · · · · ·
N 0.9396 0.878(25) 26.6% 2.5s 0.878(25) 26.6% 2.5s
L 1.1157 1.019(20) 28.6% 4.7s 1.060(13) 25.0% 4.1s
S 1.1926 1.117(19) 26.4% 4.1s 1.176(11) 21.4% 1.5s
J 1.3149 1.201(17) 28.7% 6.8s 1.288(08) 22.0% 3.5s
D 1.2320 1.257(35) 2.0% 0.7s 1.257(35) 2.0% 0.7s
S! 1.3837 1.359(29) 21.8% 0.9s 1.388(24) 0.3% 0.2s
J! 1.5318 1.459(26) 24.7% 2.8s 1.517(16) 21.0% 0.9s
V 1.6725 1.561(24) 26.7% 4.7s 1.647(10) 21.5% 2.6s
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Light hadron spectrum in quenched approximation

Lattice QCD: 
Quenched approximation
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even a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ≪ r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t ≫ r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential
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[V
(r)

-V
(r 0

)] 
r 0
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β = 6.2
β = 6.4
Cornell

Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.

42

The quenched Wilson action SU(3) potential.

Gunnar S. Bali, Phys.Rept. 343 (2001) 1

Heavy quark potential is classical

The static (heavy quark) potential 
of Lattice QCD agrees with the

Cornell potential

⇒ 

Consistent with dominance of
a classical gluon field

The Born approximation of QCD maintains
confinement and chiral symmetry breaking.
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Two consequences of ℏ → 0 in QCD
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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αscrit ≈ 0.43
✭

Gribov hep-ph/99022791.  The suppression of loops,
stops the running of αs 

Gribov’s prediction agrees
with phenomenology:

αs(0)/π ≈ 0.14

⇒  PQCD corrections to O(ℏ0) 

2. In the absence of loops, the
    QCD scale ΛQCD cannot arise
    from renormalization.

ΛQCD  must arise from a boundary condition on the classical field equations.

Excluded in an expansion around free fields!

are relevant, as in QED.

⇒
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9Positronium: Classical photon field

Non-relativistic dynamics: Aj/A0 = O(α):

�SQED

�Â0(t,x)
= 0 ) �r2Â0(t,x) = e †(t,x) (t,x)

eA0(x;x1,x2) =
�

|x� x1|
� �

|x� x2|

x2

x1

Note: A0 is determined instantaneously for all x
It depends on x1, x2

The eigenvalue of the Â0 field operator for                               
��e�(x1) e

+(x2)
↵

is the classical field:

⇒

Transverse photons suppressed

eA0(x1) = �eA0(x2) = � ↵

|x1 � x2|
classical potential

But: An external observer at x sees a dipole field
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  QCD Mesons

r2A0
a(t,x) = 0

O �
↵0
s

�

�AB(x1 � x2) =
1p
NC

�AB�(x1 � x2)

|Mi =
Z

dx1 dx2  ̄
A
↵ (t,x1)�

AB
↵� (x1 � x2) 

B
� (t,x2) |0i

Color singlet
qq̅ state at rest

A0
aEach component qA(x1)q̅A(x2) has an        classical gluon field,

which is a homogeneous solution of Gauss law:

A0
a(x;x1,x2, A) =

⇥
x� 1

2 (x1 + x2)
⇤
· x1 � x2

|x1 � x2|
TAA
a 6⇤2

X

a

⇥
r

x

A0
a

(x;x1,x2, A)
⇤2

= 12⇤4 Constant field energy
density determines scale

X

A

A0
a(x;x1,x2, A) / TrTAA = 0 External observer sees no field at 

any x (meson is a color singlet)

O (g)Aj
a is of Perturbative compared to A0

a
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  Meson spectra

Bound state condition implies

ir ·
�
�0

�,�(x)
 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)

HQCD |qq̄i = M |qq̄i

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
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j
mq = 0

Spectrum similar to
dual models

Three trajectories with different jPC quantum numbers.
For j = 0:      0–+ ,  0––  and  0++ 

V (x1 � x2) =
X
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1
2gT
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a

⇥
A0

a(x1)�A0
a(x2)

⇤
= g⇤2|x1 � x2|
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Promising prospects

The approach is guided by: •  Phenomenological observations
•  QED/QCD framework: ℏ expansion

Issues under study:

• Boost properties (IMF, spin)
• Phenomenology, e.g., DIS
• Chiral symmetry breaking

39

(ii) It has been known since 1932 [28] that the normalization integral
R

d3x| (x)|2 of the Dirac wave function diverges
for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  † is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵

s

, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
N

C

Z

h

Y

k=A,B,C

dxk

1dx
k

2

i

ei(x
A
1 +x

A
2 )·PA/2�i(xB

1 +x

B
2 )·PB/2�i(xC

1 +x

C
2 )·PC/2

⇥ h0|
⇥

 †(xB

2 )�
†
B

�0 (xB

1 )
⇤⇥

 †(xC

2 )�
†
C

�0 (xC

1 )
⇤⇥

 †(xA

1 )�
0(xA

1 )�A

 (xA

2 )
⇤

|0i

= � (2⇡)3p
N

C

�3(P
A

� P

B

� P

C

)

Z

d�1d�2 e
i�1·PC/2�i�2·PB/2Tr

⇥

�0�†
B

(�1)�A

(�1 + �2)�
†
C

(�2)
⇤

(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P

2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�

g0
�

homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

•  String breaking (determined by qq̅ states)

•  Hadron loops, unitarity at ℏ0

•  Quark-hadron duality

•  Hadron scattering amplitudes


