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QCD expansion parameters: mq (q = u, d, s); 1/Nc

mq and low energy/momenta → ChPT

1/Nc → Nc scalings of hadron masses and couplings

1/Nc expansion
Pheno: OZI; VMD

LQCD @ varying Nc: string tension ;Fπ; baryon masses

Need for combining ChPT and 1/Nc expansion
[Herrera-Siklody, Latorre, Pascual & Taron; Kaiser & Leutwyler]

Effective theories need to agree with
chiral dynamics and 1/Nc power counting

Why we need to combine ChPT and 1/Nc



Baryons

MB = O(Nc); gπB = O(
√
Nc)

GBs couple strongly to baryons at large Nc

consistency of BChPT and 1/Nc expansion is crucial

Spin-flavor dynamical symmetry

+

O(N)O(N)

should be O(N0)= i
kikj

k0
g2AN

2

F 2
π

[Xia, Xjb]

[Xia, Xjb] = O(1/N) key requirement at large Nc

generate contracted               dynamical symmetrySU(2Nf ){T a, Si, Xia}

classify baryons in multiplets of SU(2Nf ) with generators {T a, Si, Gia}

Gia = NXia
c



Large Nc baryons and chiral symmetry

1/Nc × heavy baryon expansion is a natural combination [Jenkins]

LO chiral Lagrangian

L(1)
B = B†

�
iD0 + g̊AuiaGia − CHF

Nc

�̂S2 − c1
2Λ χ̂+

�
B

states in SU(2)× SU(3) : [S,R] = [S, (2S,
1

2
(N − 2S))]Nf = 3

B is the baryon spin-flavor multiplet field

means that each term will, through the unitary parametrization of the Goldstone Boson

fields, show different orders in 1/Nc through the powers of 1/Fπ. In addition, the low

energy constants (LECs) will themselves admit an expansion in powers of 1/Nc. For the

HBChPT expansion the large mass of the expansion is taken to be the spin-flavor singlet

component of the baryon masses, M0 = Nc m0 (m0 can be considered here to be a LEC

defined in the chiral limit and which will have itself an expansion in 1/Nc). In the following

the effective HB chiral Lagrangian is implemented. It is constructed in terms of tensors

involving the Goldstone Boson operators and the external sources, and spin-flavor tensors

built with products of the SU(6) generators. Requiring the Lagrangian to satisfy the QCD

symmetries, and implementing the dynamical symmetry constraints as discussed before, one

can systematically build the Lagrangian order by order in the chiral and 1/Nc expansions.

Bases of spin-flavor tensor operators can be built using various identities as shown in

Appendix A.

In the following a scale Λ is introduced, which for convenience can be chosen to be the

QCD scale, in order to render most of the LECs dimensionless. In the calculations Λ = mρ

will be chosen.

In order to ensure the validity of the OZI rule for the quark mass dependency of baryon

masses, namely, that the non-strange baryon mass dependence onms is O(N0
c
), the following

combination of the source χ+ (see Appendix D ) is defined:

χ̂+ ≡ χ̃+ +Nc χ
0
+, (10)

which is O(Nc).

The lowest order Lagrangian is O(ξ) and reads [27]:

L
(1)
B = B†

�
iD0 + g̊Au

iaGia − CHF

Nc

�̂S2 − c1
2Λ

Nc χ
0
+

�
B, (11)

L
(1)
B = B†

�
iD0 + g̊Au

iaGia − CHF

Nc

�̂S2 − c1
2Λ

χ̂+

�
B, (12)

where g̊A is the axial coupling in the chiral and largeNc limits (it has to be rescaled by a factor

5/6 to coincide with the usual axial coupling as defined for the nucleon, i.e., gA = 5
6 g̊A). Here

one notes an important point which will be present in other instances as well: the baryon

mass dependence on the current quark mass behaves at O(Nc mq) (c1 is of zeroth order in

Nc), and this indicates that in a strict large Nc limit the expansion in the quark masses of

certain quantities such as the baryon masses cannot be defined due to divergent coefficients

8

LO all GB-baryon couplings given in terms of gA
from ∆ width: g∆N

A = 1.235± 0.011 vs gNN
A = 1.267± 0.004

Small scales: p, MGB , m∆ −mN = O(1/Nc)

Chiral and 1/Nc expansions do not commute!:
need to link power countings

ξ or small scale expansion:
O(p) = O(1/Nc) = O(ξ)



NLO Lagrangians

L(2)
B = B†

�
( z1
Nc

+ z2
Nc

Ŝ2 + z3
Λ2 Nc χ0

+) iD̃0

+(− 1
2Ncm0

+ w1
Λ ) �D2 + ( 1

2Ncm0
− w2

Λ )D̃2 + c2
Λ χ0

+

+CA
1

Nc
uiaSiT a + CA

2
Nc

�ijkuia{Sj , Gka}
+κ0 �ijkF 0

+ijS
k + κ1 �ijkF a

+ijG
ka + ρ0F 0

−0iS
i + ρ1F a

−0iG
ia

+ τ1
Nc

ua
0G

iaDi +
τ2
N2

c
ua
0S

iT aDi +
τ3
Nc

∇iua
0S

iT a + τ4∇iua
0G

ia + · · ·
�
B

L(3)
B = B†

�
z4
Λ2 χ̃+ iD̃0 +

z5
Λ2 [iD̃0, χ̃+] +

c3
Nc Λ3 χ̂2

+

+ h1
N3

c
Ŝ4 + h2

N2
cΛ

χ̂+Ŝ2 + h3
NcΛ

χ0
+Ŝ

2 + h4
Nc Λ χa

+{Si, Gia}
+CA

3
N2

c
uia{Ŝ2, Gia}+ CA

4
N2

c
uiaSiSjGja

+DA
1

Λ2 χ0
+u

iaGia + DA
2

Λ2 χa
+u

iaSi + DA
3 (d)
Λ2 dabcχa

+u
ibGic + DA

3 (f)
Λ2 fabcχa

+u
ibGic

+gE [Di, F+i0] + α1
i

Nc
�ijkF a

+0iG
iaDk + β1

i
Nc

F a
−ijG

iaDj + · · ·
�
B



Baryon Masses in SU(3) to one loop

WF renormalization factor is O(Nc) !
plays key role in Nc power counting consistency in loops

mass corrections are O(Nc) (terms proportional to M3
GB)
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[Alexandrou et al (2014), ETMC LQCD Coll.]

Mπ dependency from LQCD (MK ∼ 500 MeV):
poor convergence above Mπ ∼ 250 MeV



Mass relations

GMO
∆GMO = Th: 44± 5 MeV vs Exp: 30± 10 MeV

∆GMO = −
�

g̊A

4πFπ

�2�
2π
3 (M3

K
− 1

4M
3
π − 2√

3
(M2

K
− 1

4M
2
π)

3
2 )

+ 2CHF

Nc

�
−M2

K
logM2

K
+ 1

4M
2
π logM2

π + (M2
K
− 1

4M
2
π) log(

4
3M

2
K
− 1

3M
2
π)
��

+O(1/N3
c )

in large Nc, ∆GMO is O(1/Nc)

= 37 MeV +O(1/N3
c )

ES

∆ES = mΞ∗ − 2mΣ∗ +m∆ = Th: − 6.5MeV vs Exp: − 4± 7MeV
= O(1/Nc)

∆GR = mΞ∗ −mΣ∗ − (mΞ −mΣ) = 0, Exp: 21± 7 MeV,

GR

∆GR =
h2
Λ

12
Nc

(M2
K −M2

π) + O(1/Nc) UV finite no-analytic terms� �� �
∼68 MeV

)



σ̂ =
m̂

ms − m̂
(
Nc + 3

6
mΞ +

2Nc − 3

3
mΣ − 5Nc − 3

6
mN )

� �� �
@Nc=3:∼23MeV

+UV finite non-analytic correction

πN σ-term

S U(3) breaking corrections to the Gell-Mann-Okubo mass formula
and the ūu + d̄d − 2s̄s contribution to the nucleon mass

a
Theory Center, Jefferson Lab, Newport News, VA 23606, USA

Abstract

We studied the Gell-Mann-Okubo mass formula (∆GMO) and σ̂ = m̂�N |ūu+ d̄d−2s̄s|N�/2mN in large Nc chiral effective field theory
up to order (ms − m̂)3/2. We generalize the known O(ms − m̂) results to arbitrary number of colors and calculate the (ms − m̂)3/2

correction for both. The magnitude of the latter provides definitive answers to the current discrepancy between phenomenological
and lattice determinations of the pion-nucleon sigma term. We observe that the convergence pattern of both, ∆GMO and σ̂, are
extremely similar. For both, the (ms − m̂)3/2 corrections have the expected size. We show that in the case of the Gell-Mann-
Okubo mass formula, it is a contribution needed to agree with the experimental value. We also observe that the contribution of
the decuplet of resonances is essential for an accurate determination of the higher order corrections in both cases. We finally
find ∆GMO = 38(??) MeV and σ̂ = 57(??) MeV up to order (ms − m̂)3/2. The latter, together with the value of σs, can be used
to determine the pion-nucleon sigma term. Using the lattice determinations of σs at the physical point, we obtain a value of
σπN = 60(??) MeV. This result gives a strong support to the phenomenological determinations of σπN versus the LQCD ones, and
constitutes an important progress in the resolution of the sigma term puzzle.

Keywords: Sigma terms, nucleon mass, baryon masses, Gell-Mann-Okubo mass formula

1. Introduction

Matrix elements of scalar operators between nucleon states
are important hadronic input in current searches of physics be-
yond the standard model. A prominent example are the pion-
nucleon sigma term (σπN), and sigma strange (σs),

σπN =
m̂

2mN

�N |ūu + d̄d|N� (1)

σs =
ms

2mN

�N |s̄s|N�, (2)

where m̂ = (mu +md)/2 . These quantities are essential input
in studies of direct dark matter detection [1, 2, 3], CP-violation
[4] and lepton flavor violation [5]. While for σs one finds an
nice agreement between phenomenological determinations [6]
and LQCD calculations at the physical point [7, 8, 9, 10], the
situation for σπN is much more involved. On the one hand,
LQCD points to a small value, σπN ≈ 40 MeV [7, 8, 9, 10],
while phenomenological extractions based on modern πN-
scattering data and pionic atoms spectroscopy agree on a value
around 60 MeV [11, 12].

Matrix elements of octet operators can provide definitive in-
formation for the resolution of this puzzle. Defining,

σ̂ =
m̂

2mN

�N |ūu + d̄d − 2s̄s|N�, (3)

one finds a simple relation between σπN , σ̂ and σs,

σπN = σ̂ +
2m̂

ms

σs. (4)

Since σs ∼ 40 MeV, the contribution of σs in (4) is negligi-
ble, and therefore σπN ≈ σ̂. The value of σ̂ can be estimated at
O(ms − m̂) from the octet mass breaking [13]

σ̂ =
m̂

ms − m̂
(mΞ + mΣ − 2mN) = 24 MeV. (5)

However, O((ms − m̂)3/2) corrections may be important. In
Ref. [6] an O((ms−m̂)3/2) calculation in relativistic chiral effec-
tive field theory (Chiral EFT) with the explicit inclusion of the
decuplet found σ̂ = 58(8) MeV, which indicates the necessity of
this correction for a reliable extraction of σ̂. However, the mag-
nitude of the higher order corrections found there seem to con-
tradict the apparent success of the Gell-Mann-Okubo (GMO)
mass formula [? ], which at O(ms − m̂) apparently gives an ac-
curate value for the octet masses. This argument has been used
to challenge the large value of σ̂ obtained in [6] and ultimately
the phenomenological value of σπN , see Ref. [14]. Therefore,
the solution of the sigma term puzzle requires the understand-
ing of both, the success of the GMO relation and the expected
size of the higher order corrections to octet matrix elements.

In this paper we study the higher order corrections to the
Gell-Mann-Okubo mass formula and σ̂ with the large-Nc for-
mulation of Chiral EFT. We generalize the result of Eq. (5)
for an arbitrary number of colors. Then, we show that for
both, O((ms − m̂)3/2) corrections are of natural size and, in
the case of GMO, necessary to recover the experimental value.
With this corrections σ̂ comes out larger than the old results of
Ref. [15, 16] and in excellent agreement with the recent eval-
uation of Ref. [6]. These findings imply a value of the pion-
nucleon sigma term, σπN = 60(??) MeV. This result gives a
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← O(Nc)

← O(Nc)

= 2.3× 105MeV3 × g2
A

F 2
π

Chief uncertainty: values to be used for            in loop                          gA, Fπ

�

predicts σπN > 50 MeV

40 % from 8 in loop and 60 % from 10

∼ 30− 50MeV

where ∆GMO is deduced, so a similar behavior is expected. This

matrix element can be decisive for solving the sigma term puz-

zle, since the strange quark contribution to the nucleon mass is

well determined from phenomenology and LQCD at the phys-

ical point. Following the same logic as in the GMO mass for-

mula, one can derive Eq. (5), see Ref. [13]. We generalize this

result for arbitrary number of colors using large Nc chiral EFT

and find

σ̂Tree =
m̂

ms − m̂

�
Nc + 3

6
mΞ +

2Nc − 3

3
mΣ −

5Nc − 3

6
mN

�
,

(15)

that matches Eq. (5) for Nc = 3. On the other hand,

Refs. [15, 16, 6] indicate that higher order corrections may be

important. Also, our analysis of ∆GMO points to corrections

of O(ms − m̂)
3/2

of the order of the tree level value. As in

∆GMO, these are UV finite, scale-independent and parameter-

free quantities predicted by the theory. From Eq. (12) we obtain

an O(ms − m̂)
3/2

contribution of

∆σ̂NLO = 33(??) MeV (16)

where the uncertainty combines both statistical (values of

CHF and g0

A) and estimation of the higher order corrections.

Then, up to to O

�
(ms − m̂)

3/2
�
, σ̂ has the following expan-

sion,

σ̂ = 24����
Tree

+ 18����
Octet

+ 15����
Decuplet

= 57(??) MeV. (17)

We see that the convergence pattern is very similar to the one

shown for ∆GMO in Eq. (14), as expected. In this case we also

confirm the importance of the decuplet contribution for a reli-

able evaluation of σ̂, as was advocated in Refs. [6]. On the other

hand, the importance of these contributions for scalar matrix el-

ements is expected from large Nc arguments [17, 18, 19, 20],

and was shown explicitly for Nc = 3 in Ref. [21]. The value ob-

tained for σ̂ is in excellent agreement with the result of Ref. [6],

and has important consequences for the sigma term puzzle.

5. The pion-nucleon sigma term

The pion-nucleon sigma term is an essential quantity in QCD

that plays a fundamental role in searches of physics beyond the

standard model. Currently, there is a significant disagreement

between the latest phenomenological determinations [11, 12]

and LQCD evaluations at the physical point [7, 8, 9, 10].

The latter support the so-called ”canonical value” obtained in

Ref. [22], and ruled out by the updated values of the scalar-

isoscalar πN scattering lengths [23]. There is, however, good

agreement between LQCD and phenomenology regarding the

value of σs. One can exploit that, together with the fact that

σ̂ is completely determined from theory and the octet baryon
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Figure 2: Summary of the latest phenomenological determinations (blue) vs

lattice evaluations at the physical point (red).

masses, to extract a value of σπN without phenomenological

bias.

In order to calculate σπN form Eq. (4), we need to fix the

value of σs. For the latter, we take the average of lattice results

a the physical point, and get

σs = 37(6) MeV. (18)

Adding the phenomenological value of Ref. [6] doesn’t

change the numerical value of average and error. With this

value of σs and our determination of σ̂, we obtain a value for

the sigma term of

σπN = 60(??) MeV. (19)

This result gives a strong support to the phenomenological

value

σπN = 59(7) MeV, (20)

reported in Ref. [11] and confirmed by the Roy-Steiner anal-

ysis of Ref. [12]. It also points to an inconsistency between

LQCD determinations of σπN and σs at the physical point, in

the light of the determination of σ̂.

6. Conclusions

We studied the S U(3) breaking corrections to the octet ma-

trix element related to the GMO mass formula for baryons and

the ūu + d̄d − 2s̄s contribution to the nucleon mass in large Nc
ChEFT up to O(ξ3) in the ξ-counting. We generalize the well

known tree level results for Nc = 3 to an arbitrary number of

colors. We calculate the O((ms − m̂)
3/2

) corrections to the tree

level formulas and find them to be of the expected size for an

NLO correction to an octet matrix element.
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PRELIMINARY

[J.M.Alarcon, I.Fernando & JLG]



Vector currents p0

q,aq,a
p0

p0
q,a

p0
q,a

p0

q,a

p0
q,a

A B

C

D E

FIG. 2: Diagrams contributing to the 1-loop corrections to the vector charges.

V. AXIAL COUPLINGS

The axial vector currents are studied to one-loop. At the tree level the axial vector currents

have two contributions, namely the contact term and the GB pole ones, and reads:

Aµa = g̊AG
ja(gµj − qµqj

q2 −M2
a

). (43)

In the non-relativistic limit, or equivalently large Nc limit, the time component of the axial

vector current is suppressed with respect to the spatial components. The couplings associ-

ated with the latter are analyzed below to O(ξ2).

At the leading order the axial couplings are all given in by the coupling g̊A. ForNc = 3 one

obtains: F = g̊A/3, D = g̊A/2, and the axial coupling in the decuplet baryons is H = g̊A/6.

The one-loop diagrams contributing at that order are shown in Fig. 3.

The matrix elements of interest for the axial currents are �B� | Aia | B� evaluated at

25

SU(3) breaking corrections to the vector currents:
O(ξ2) corrections satisfying Ademollo-Gatto theorem
only non-analytic calculable corrections to AGTh

[R.Flores-Mendieta & JLG; I.P.Fernando & JLG]

Vector charges

Charge
f1

fSU(3)
1

f1

fSU(3)
1

− 1

[Flores-Mendieta & JLG:2014] [Villadoro:2006] [Lacour et al:2007] [Geng et al:2009]

HBChPT×1/Nc HBChPT with 8 and 10 HBChPT only 8 RBChPT with 8 and 10

Λp 0.952 −0.048 −0.080 −0.097 −0.031
Σ−n 0.966 −0.034 −0.024 0.008 −0.022
Ξ−Λ 0.953 −0.047 −0.063 −0.063 −0.029
Ξ−Σ0 0.962 −0.038 −0.076 −0.094 −0.030

9

seen from those figures, f1(0) can be determined by a
very short interpolation from q2max, where we have very
accurate data |fS(q2max)| from the double ratio (18). This
is reason why the choice of the q2-interpolation form does
not much affect the interpolated value f1(0) significantly.

C. Chiral and continuum extrapolation of f1(0)

We next perform the chiral extrapolation of f1(0) in
order to estimate f1(0) at the physical point. In our
previous work [9], we adopt a global fit of the data on

f̃1(0) = f1(0)/f
SU(3)
1 (0) as multiple functions of M2

K −
M2

π and M2
K +M2

π as

f̃1(0) = C0+(C1+C2 · (M2
K +M2

π)) · (M2
K −M2

π)
2, (21)

whose form (denoted as Type 1) is motivated by the
AGT [11]. Our simulations on both 243 and 323 ensem-
bles are performed with a strange quark mass slightly
heavier than the physical mass [15, 16]. Therefore, the
third term that is proportional to M2

K +M2
π can manage

to compensate for a small difference in the simulated and
physical strange-quark masses in a posteriori way.
We first test the global fit on the results from the 243

and 323 ensembles separately. In Fig. 7, we plot the ex-
trapolated values of f̃1(0) at the physical point (open
symbols) as a function of (a/r0)2 where r0 denotes the
Sommer scale [32]. Different symbols, which are consis-
tent with each other within their errors, represent results
from three different interpolations: monopole, quadratic
and z-Exp fits. It is found that there is no significant
scaling violation due to the lattice discretization in the
vector couplings for both Σ → N and Ξ → Σ beta decays.
We then perform a combined global-fit of both 243 and

323 lattice data on f̃1(0) determined from the z-Exp fits
by using the Type 1 formula (Eq. (21)) ignoring possible
discretization errors. Fit results (Type 1 fit) are tabu-
lated in Table VII. We then get the vector coupling f1(0)
at the physical point as

fΣ→N
1 (0) = −0.9662(43), fΞ→Σ

1 (0) = +0.9742(28),
(22)

where the quoted errors are only statistical. The inclu-
sion of the new ensembles in our combined global-fit leads
to a reduction of the statistical error at the physical point
compared to our earlier work [9], which is performed only
on the 243 ensembles with less number of measurements.
Here, we recall that the value of C0 is supposed to be

unity since the vector current conservation atMK = Mπ,
while C0 obtained from the global fitting form (21) is
slightly off the unity beyond the statistical uncertainty
as listed in Table VII. The lattice discretization error
could be an origin of its slight deviation from the unity.
To take into account the lattice discretization correc-

tions into the fitting form ansätz, let us introduce the
second type of the global fit (denoted as Type 2), which

is given by

f̃1(0) =
(

C0 + C3a
2
)

+
(

C1 + C2 · (M2
K +M2

π)
)

· (M2
K −M2

π)
2, (23)

where C3 coefficient takes into account the lattice dis-
cretization error on each data of f1(0) calculated at two
different lattice spacings as the leading-order term. In
fact, an inclusion of the a2 correction term in the global
fit formula certainly cures the unity condition on C0 al-
beit with larger statistical uncertainties on each coeffi-
cient as shown in Table VII. Although the size of C3 is
very small compared to other coefficients, its inclusion
in the fitting ansätz is statistically relevant especially for
Σ → N decay data.
Finally, we set C0 = 1 as a theoretical constraint asso-

ciated to the SU(3) symmetric value in continuum and
then propose the third fitting formula (denoted as Type
3)

f̃1(0) =
(

1 + C3a
2
)

+
(

C1 + C2 · (M2
K +M2

π)
)

· (M2
K −M2

π)
2, (24)

which gives the better statistical uncertainties on all co-
efficients, whose values are consistent with the fit results
by the Type 2 formula (Eq. (23)) as summarized in Ta-
ble VII. We therefore choose the Type 3 formula for eval-
uating the final result of f̃1(0) at the physical point.
In Fig. 8, we plot the results of f̃1(0) for the Σ → N

(left panel) and Ξ → Σ (right panel) beta decays as a
function of M2

π together with the continuum value of
f̃1(0) at the physical point (diamond symbol), that is
determined through the combined global-fit of both 243

(circle symbols) and 323 lattice data (squared symbols)
with the Type 3 formula (Eq. (24)). In each panel, fitting
curves indicated by dashed curves represent the simulta-
neous fitting results on each data set calculated at all
simulated quark masses. The solid curve corresponds to
the continuum results given at the physical strange quark
mass.
We then get the continuum values of the vector cou-

pling f1(0) at the physical point as

fΣ→N
1 (0) = −0.9571(60), fΞ→Σ

1 (0) = +0.9755(39),
(25)

where the systematic uncertainties due to the lattice dis-
cretization error are also included in the quoted errors
as well as the statistical one. These values are shown
as filled diamond symbols in Fig. 7. The filled circle and
squared symbols are the extrapolated results from data of
f1(0) given by the different q2 interpolations. Although
the extrapolated value at the physical point in the con-
tinuum does not significantly depend on which type of
q2 interpolation as shown in Table VIII, we simply quote
the systematic uncertainties due to q2 interpolation as
the maximum difference among three types of q2 inter-
polations. As for the systematic uncertainty of the chiral
extrapolation, we read off a difference in the extrapolated
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Axial-vector currents
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which calculated the couplings corresponding to the currents Ai3 and Ai8 within the octet

baryons and the decuplet baryons. give some brief description of the simulation. The LECs

that can be fitted with these results are: gA, C1
A · · · . In order to make a clear identification

of the different couplings, it is convenient to define the couplings in a convenient way, which

reflects the fact that the values of the axial couplings are approximately related by spin-

flavor symmetry. It is then convenient to write the zero momentum transfer matrix elements

of the axial currents as follows:

�B�
| Aia

| B� = 6

5
gaBB�

A �B�
| Gia

| B�. (50)

The results shown above for the UV divergencies of the one loop contributions imply that:

δgaBB�
A (UV div)/gaBB�

A = O(Chf/Nc) + O(mq/Nc). At LO, ggaBB�
A = gNA = 1.267. The

relations between the couplings gaBB�
A and the ones displayed in [59] are as follows:

�B8 | A
i=0 3

| B8� =
1

2
gB8
A

�B10 | A
i=0 3

| B10� =
1

6
gB10
A

�B8 | A
i=0 8

| B8� =
1

2
√
3
gB8
8

�B10 | A
i=0 8

| B10� =
1

6
√
3
gB10
8 (51)

where B8,10 is an octet (decuplet) baryon with spin projection +1/2, and the couplings on

the RHS are those used in [59] and displayed in Tables IV and V of that reference. The

LQCD results are given for several π and K masses. The values of Mπ for the different cases

are given in Table I of [59], and the corresponding MK is determined using the physical

masses by the LO relation: M2
K = MK

2
phys +

1
2(M

2
π −Mπ

2
phys), which corresponds to keeping

ms fixed.

The results of the fits are shown in Table ??

The results of [59] projected to the physical limit miss the physical gNA by a deficit of

about a 5 to 10 %, which has been a well known problem since the LQCD evaluations of

axial couplings started many years ago. Recent calculations of gNA have been able to give

consistent results [60], but those calculations are still missing for hyperons and the baryon

decuplet.

As illustration of the importance of including the decuplet in the effective theory, Fig.

?? shows the effect of removing it on the one-loop contributions. There is a dramatic

30

Definition of axial couplings

countings of corrections to gA’s:
Diagram A: O(p2/Nc)
Diagrams E+F: O(1/Nc)

[Flores-Mendieta, Hernandez & Hofmann; Fernando & JLG]

O(1/Nc)
�

O(N0
c )
�

δgNA from Diags E+F: µ = 770MeV
8 and ∆ in loop
only 8 in loop δgNA from Diag A: µ = 770MeV

[SU(2): A. Calle-Cordon & JLG]

O(1/Nc)
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LQCD gA’s

Key observed feature:@ fixed MK, gA’s have little dependence on Mπ

SU(3) calculation by Cyprus Group [Alexandrou et al, (2016)]
g3BB
A and g8BB

A

Fit χ2
dof g̊A δg̊A CA

1 CA
2 CA

3 CA
4 DA

1 DA
2 DA

3 DA
4

LO 4 1.35 - - - - - - - - -

NLO Tree 0.6 1.31 - -0.18 - - - 0.088 0.018 0.041 -

NLO Full 1 3.6 1.35 -.36 -2.7 - - 6 -0.98 -0.08 -0.13 -

NLO Full 2 1.1 0.94 0 -1.03 - - 2.1 -0.25 -0.02 -0.05 -
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[LQCD from Alexandrou et al, (2016)]



Summary and comments

• Consistency of BChPT with 1/Nc expansion improves convergence,                   
especially important in SU(3) BChPT

• Axial couplings are a good testing ground thanks to inputs from LQCD

• Important predictions: calculable corrections to mass relations and to 
calculable corrections to SU(3) vector charges 

• Significant correction to         from LO to NNLO: -30% : need to be 
understood

• 1/Nc requirements impact broadly on BChPT 

σ̂

gA�s


