The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

Jose Manuel Alarcón

Works done in collaboration with C. Weiss arXiv: 1707.07682

• Nucleon form factors are fundamental quantities that encode information about the internal structure of the nucleon.

• They parametrize the transition matrix elements of local operators between nucleon states.

- They parametrize the transition matrix elements of local operators between nucleon states.
- Some of these matrix elements play an essential role in searches of physics beyond the standard model.

• Nucleon form factors are fundamental quantities that encode information about the internal structure of the nucleon.

- They parametrize the transition matrix elements of local operators between nucleon states.
- Some of these matrix elements play an essential role in searches of physics beyond the standard model.
 - EFT of Dark Matter detection (Scalar Form Factor) [Hoferichter, Klos,

Menéndez, Schwenk PRD 94 (2016)][Bishara, Brod, Grinstein and Zupan, JCAP 1702, no. 02, 009 (2017)]

- They parametrize the transition matrix elements of local operators between nucleon states.
- Some of these matrix elements play an essential role in searches of physics beyond the standard model.
 - EFT of Dark Matter detection (Scalar Form Factor) [Hoferichter, Klos, Menéndez, Schwenk PRD 94 (2016)][Bishara, Brod, Grinstein and Zupan, JCAP 1702, no. 02, 009 (2017)]
 Extraction of the Proton Radius (Electromagnetic Form Factor) [Higinbotham, Kabir, Lin, Meekins, Norum and Sawatzky, PRC 93, no. 5, 055207 (2016)][Horbatsch, Hessels and Pineda, PRC 95, no. 3, 035203 (2017)]

- They parametrize the transition matrix elements of local operators between nucleon states.
- Some of these matrix elements play an essential role in searches of physics beyond the standard model.
 - EFT of Dark Matter detection (Scalar Form Factor) [Hoferichter, Klos, Menéndez, Schwenk PRD 94 (2016)][Bishara, Brod, Grinstein and Zupan, JCAP 1702, no. 02, 009 (2017)]
 Extraction of the Proton Radius (Electromagnetic Form Factor) [Higinbotham, Kabir, Lin, Meekins, Norum and Sawatzky, PRC 93, no. 5, 055207 (2016)][Horbatsch, Hessels and Pineda, PRC 95, no. 3, 035203 (2017)]
- Experimental information is available in some limited cases.

- They parametrize the transition matrix elements of local operators between nucleon states.
- Some of these matrix elements play an essential role in searches of physics beyond the standard model.
 - EFT of Dark Matter detection (Scalar Form Factor) [Hoferichter, Klos, Menéndez, Schwenk PRD 94 (2016)][Bishara, Brod, Grinstein and Zupan, JCAP 1702, no. 02, 009 (2017)]
 Extraction of the Proton Radius (Electromagnetic Form Factor) [Higinbotham, Kabir, Lin, Meekins, Norum and Sawatzky, PRC 93, no. 5, 055207 (2016)][Horbatsch, Hessels and Pineda, PRC 95, no. 3, 035203 (2017)]
- Experimental information is available in some limited cases.
- Extend this knowledge to wider kinematic regions.

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

• Effective approach to hadronic interactions at low energies.

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

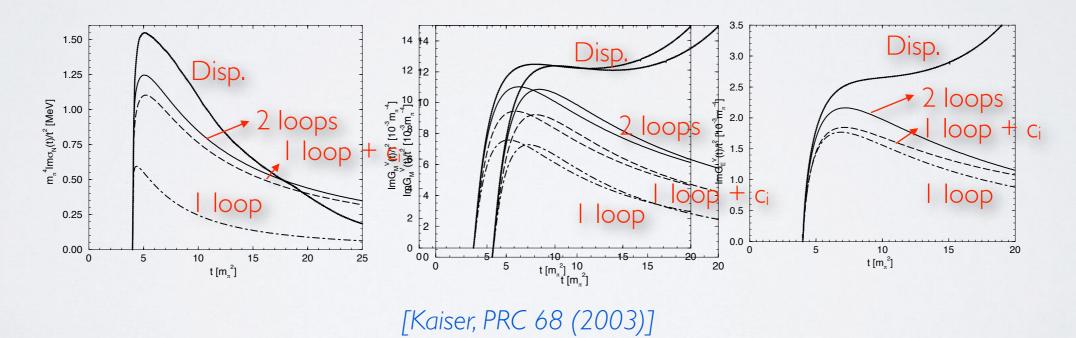
- Effective approach to hadronic interactions at low energies.
- Rooted on the low energy theorems of QCD.

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

- Effective approach to hadronic interactions at low energies.
- Rooted on the low energy theorems of QCD.
- Systematic improvable with controlled accuracy.

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

- Effective approach to hadronic interactions at low energies.
- Rooted on the low energy theorems of QCD.
- Systematic improvable with controlled accuracy.
- Strong re-scattering effects limits the efficiency of the approach.



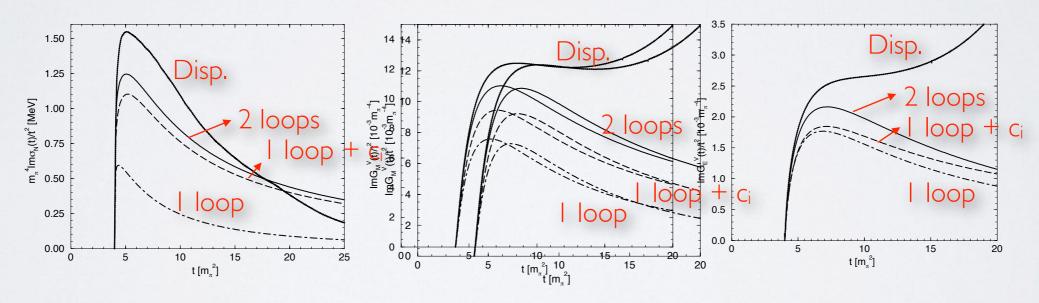
HADRON 2017

14

2

• Chiral EFT can provide this information from the low-energy symmetries of QCD.

- Effective approach to hadronic interactions at low energies.
- Rooted on the low energy theorems of QCD.
- Systematic improvable with controlled accuracy.
- Strong re-scattering effects limits the efficiency of the approach.



[Kaiser, PRC 68 (2003)]

• Higher order calculations are needed (unpractical).

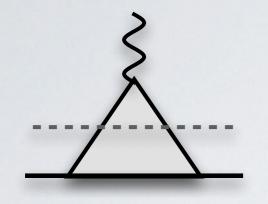
J. M. Alarcón (JLab)

HADRON 2017

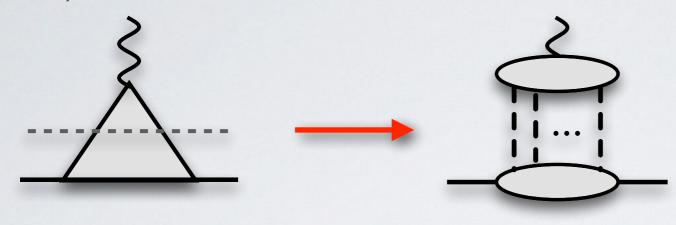
14

Dispersively Improved χEFT (DI χEFT)

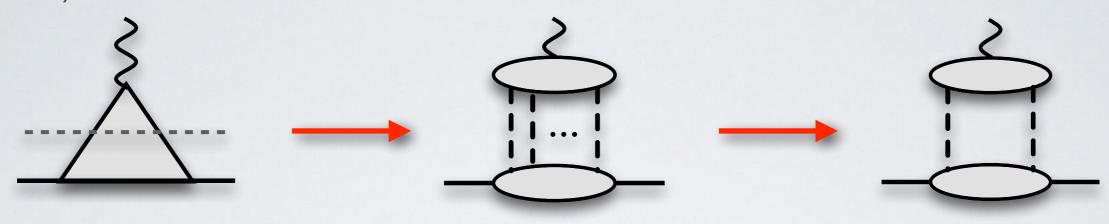
• Analytic structure of the FFs.



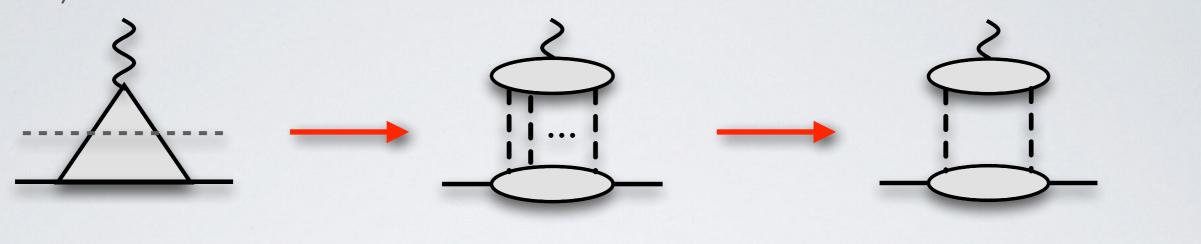
• Analytic structure of the FFs.



• Analytic structure of the FFs.



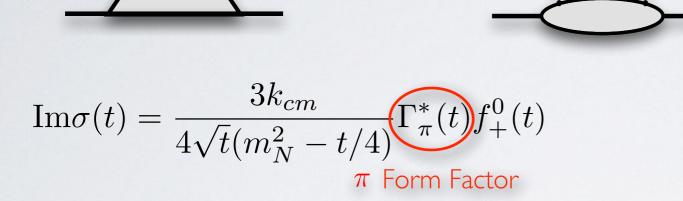
• Analytic structure of the FFs.



 $\mathrm{Im}\sigma(t) = \frac{3k_{cm}}{4\sqrt{t}(m_N^2 - t/4)} \Gamma_{\pi}^*(t) f_{+}^0(t)$

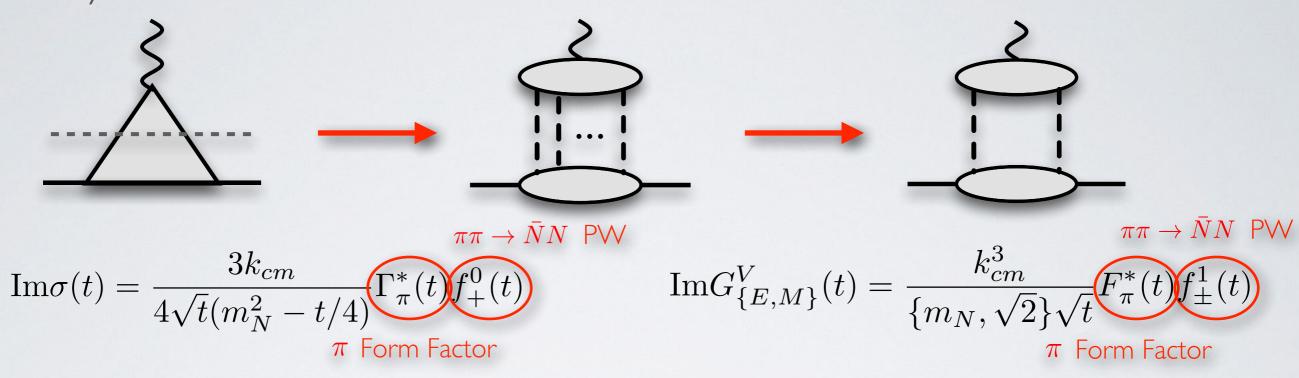
 $\mathrm{Im}G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}}F^{*}_{\pi}(t)f^{1}_{\pm}(t)$

• Analytic structure of the FFs.

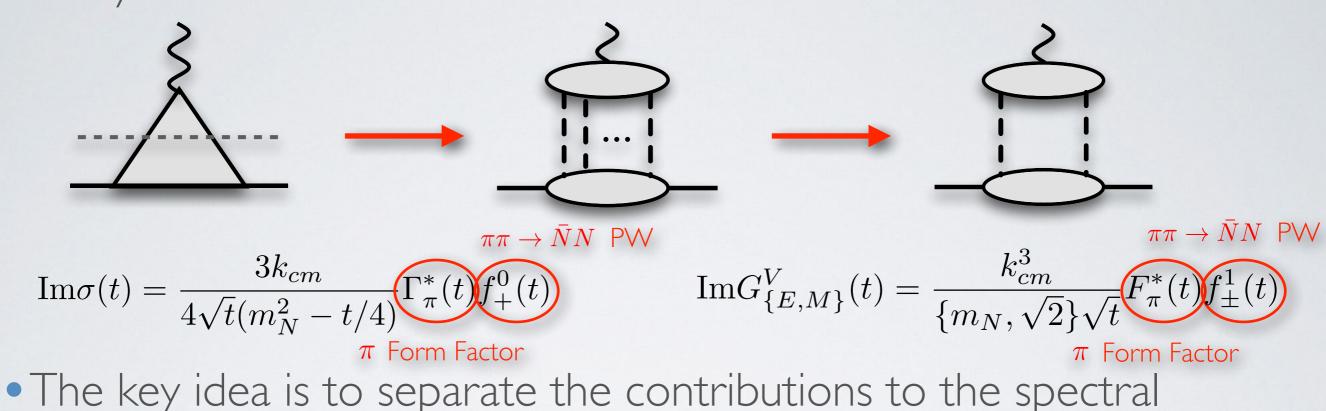


 $\mathrm{Im}G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}} \mathcal{F}_{\pi}^{*}(t) f_{\pm}^{1}(t)$ π Form Factor

• Analytic structure of the FFs.

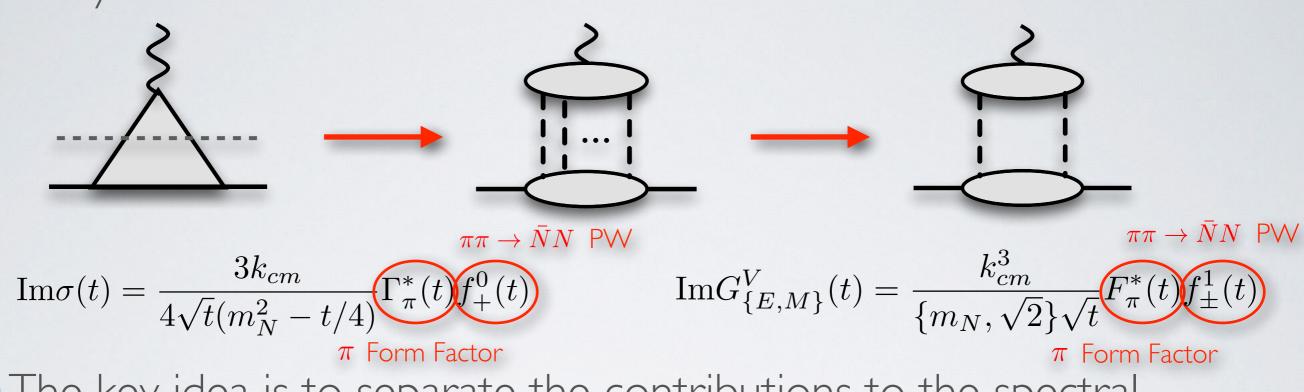


• Analytic structure of the FFs.



function into two parts (based on the Frazer and Fulco method [Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]):

• Analytic structure of the FFs.

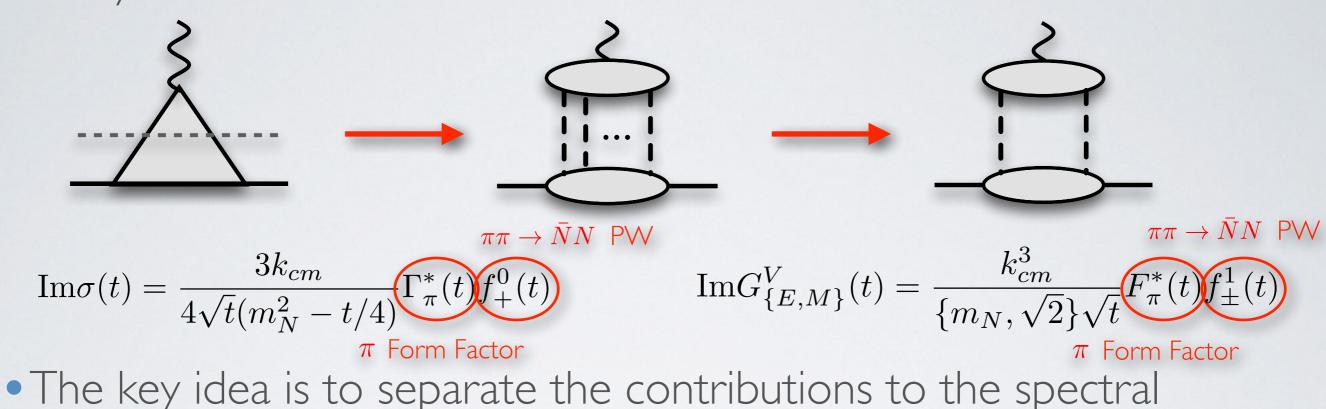


• The key idea is to separate the contributions to the spectral function into two parts (based on the Frazer and Fulco method [Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]):

$$\operatorname{Im}\sigma(t) = \frac{3k_{cm}}{4\sqrt{t}(m_N^2 - t/4)} |\Gamma_{\pi}(t)|^2 \frac{f_{\pm}^0(t)}{\Gamma_{\pi}(t)} \qquad \operatorname{Im}G_{\{E,M\}}^V(t) = \frac{k_{cm}^3}{\{m_N,\sqrt{2}\}\sqrt{t}} |F_{\pi}(t)|^2 \frac{f_{\pm}^1(t)}{F_{\pi}(t)}$$

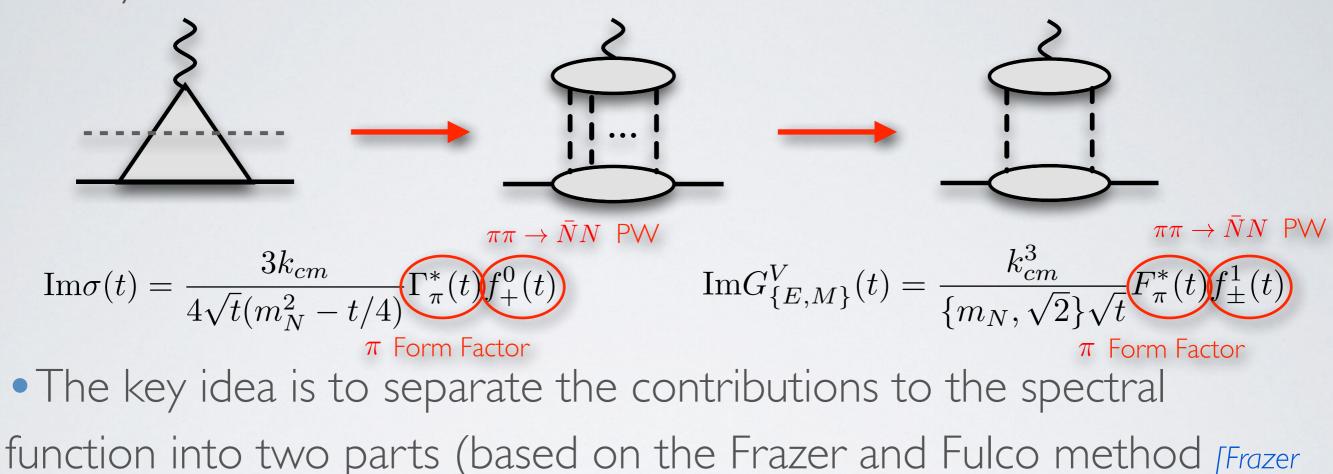
J. M. Alarcón (JLab)

• Analytic structure of the FFs.

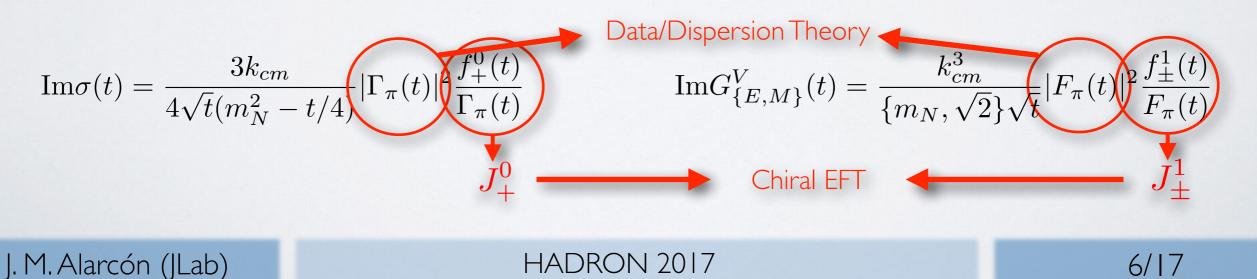


function into two parts (based on the Frazer and Fulco method [Frazer and Fulco, Phys. Rev. 117, 1609 (1960)]):

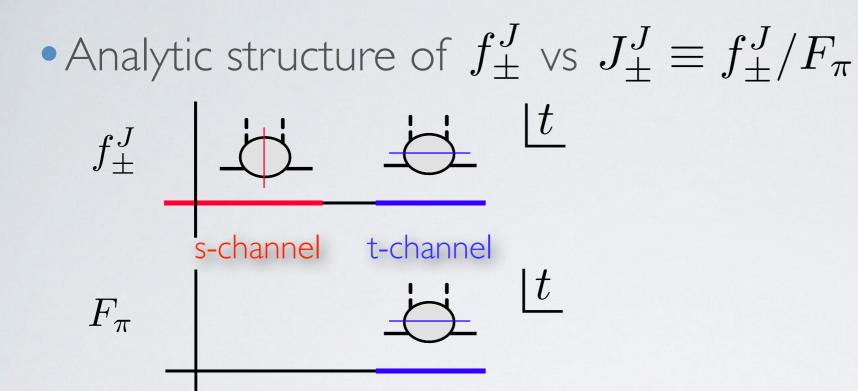
• Analytic structure of the FFs.

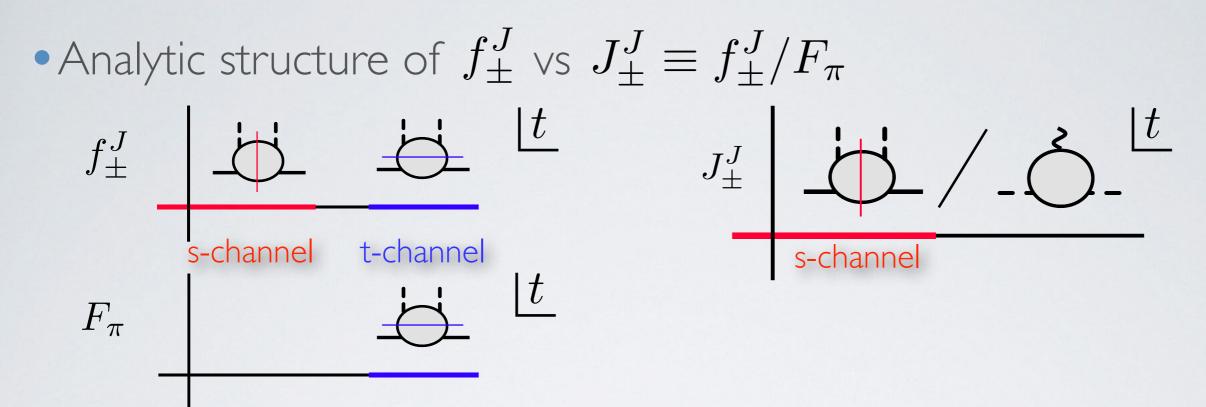


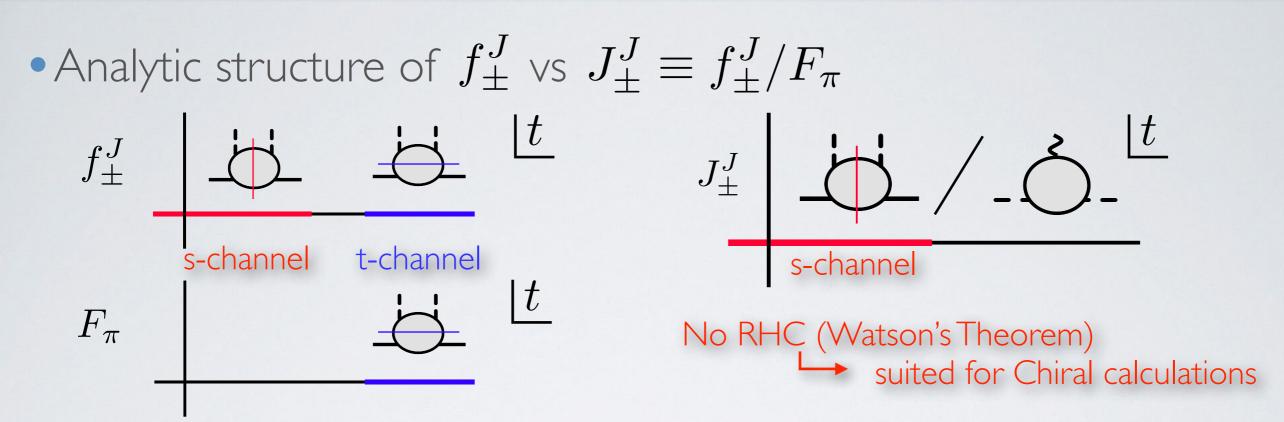
and Fulco, Phys. Rev. 117, 1609 (1960)]):

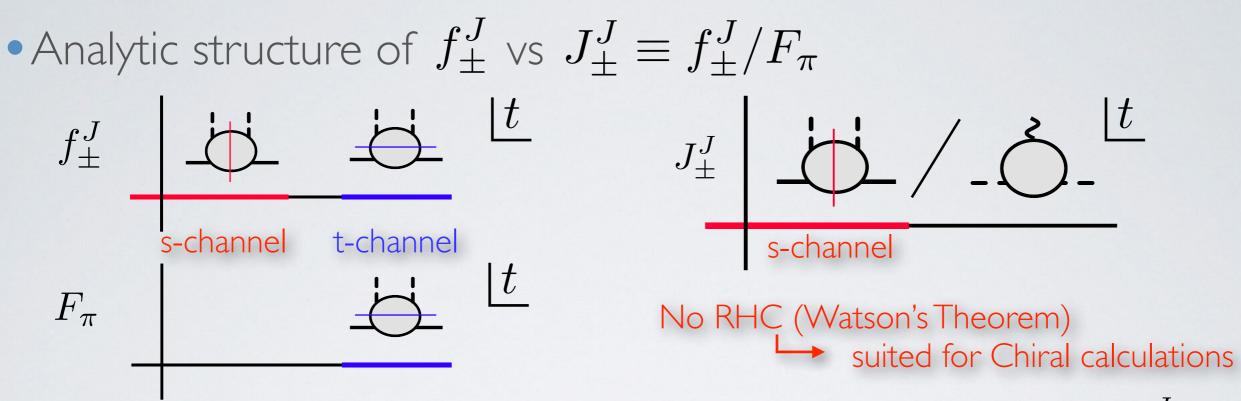


• Analytic structure of f^J_{\pm} vs $J^J_{\pm} \equiv f^J_{\pm}/F_{\pi}$

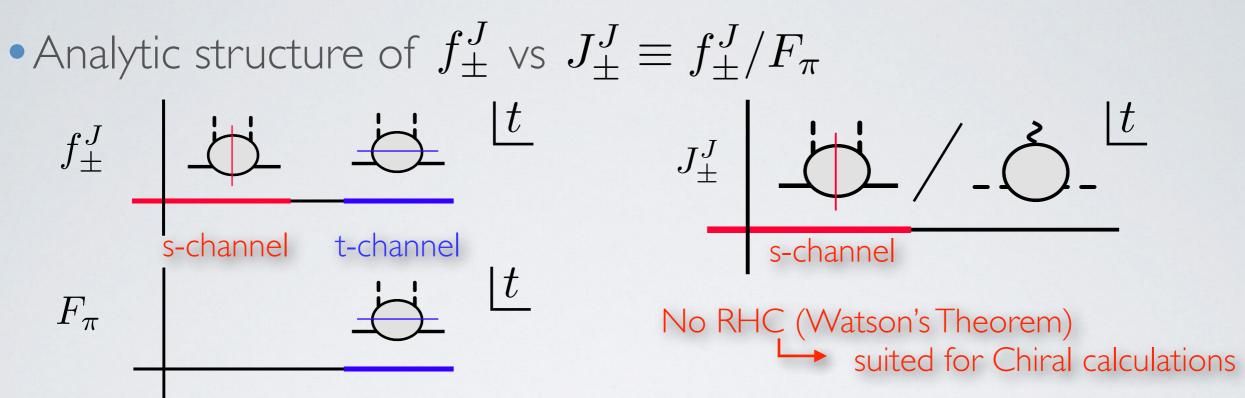




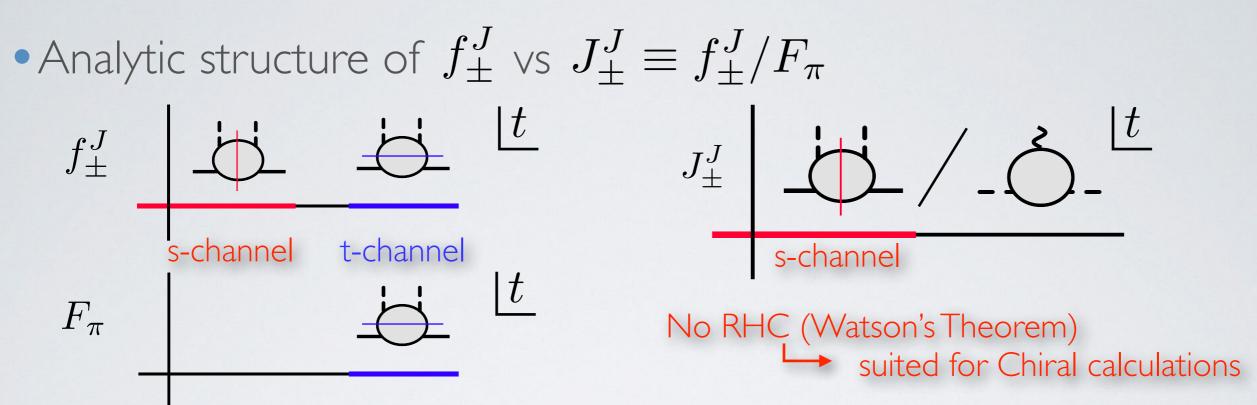




• We use relativistic ChEFT with explicit Deltas to calculate J^J_{\pm} .



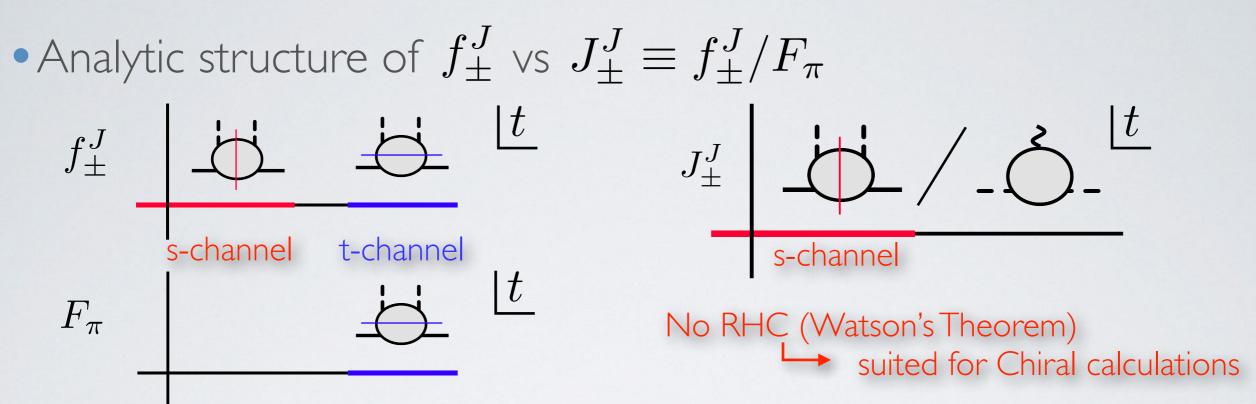
We use relativistic ChEFT with explicit Deltas to calculate J^J_±.
J^J_± comes out as a prediction of πN.



• We use relativistic ChEFT with explicit Deltas to calculate J^J_{\pm} .

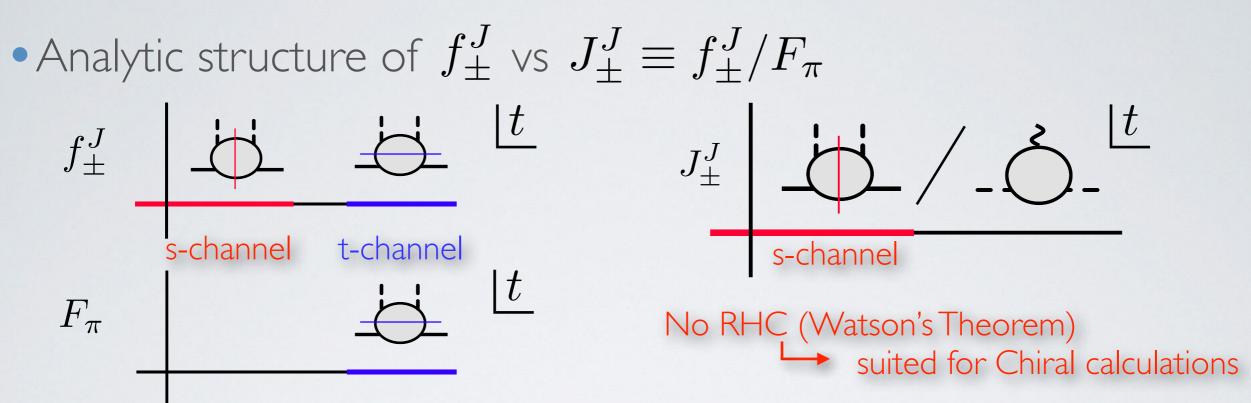
• J_{\pm}^{J} comes out as a prediction of πN .

• We calculate J^J_{\pm} at LO, NLO and estimate the N2LO corrections

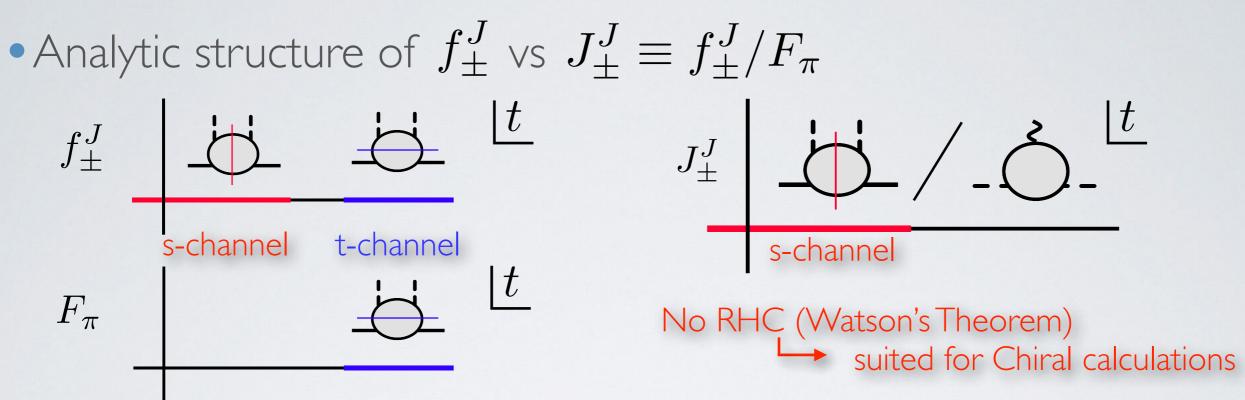


• We use relativistic ChEFT with explicit Deltas to calculate J^J_{\pm} .

- J_{\pm}^{J} comes out as a prediction of πN .
- We calculate J_{\pm}^{J} at LO, NLO and estimate the N2LO corrections
 - •LO \longrightarrow Born Terms + Conctact Terms (from πN)



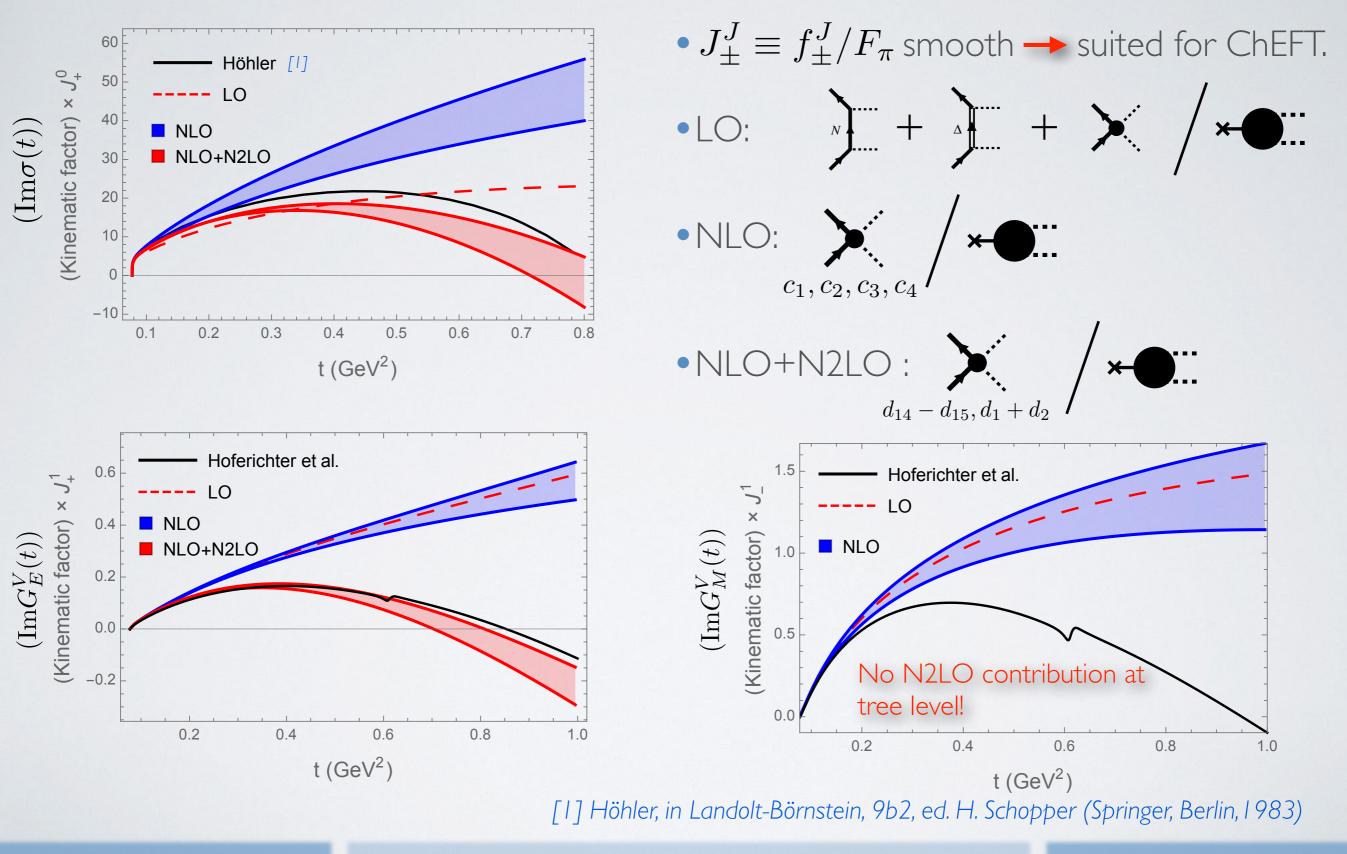
- We use relativistic ChEFT with explicit Deltas to calculate J^J_{\pm} .
- J_{\pm}^{J} comes out as a prediction of πN .
- We calculate J^J_{\pm} at LO, NLO and estimate the N2LO corrections
 - •LO \longrightarrow Born Terms + Conctact Terms (from πN)
 - NLO \longrightarrow Contact Terms (from πN , subtracting contribution
 - of t-channel resonances from the c_i [Bernard, Kaiser and Meißner, NPA 615 (1997)])



• We use relativistic ChEFT with explicit Deltas to calculate J^J_{\pm} .

- J_{\pm}^{J} comes out as a prediction of πN .
- We calculate J^J_{\pm} at LO, NLO and estimate the N2LO corrections
 - •LO \longrightarrow Born Terms + Conctact Terms (from πN)
 - NLO \longrightarrow Contact Terms (from πN , subtracting contribution
 - of t-channel resonances from the c_i [Bernard, Kaiser and Meißner, NPA 615 (1997)])
 - N2LO Estimation

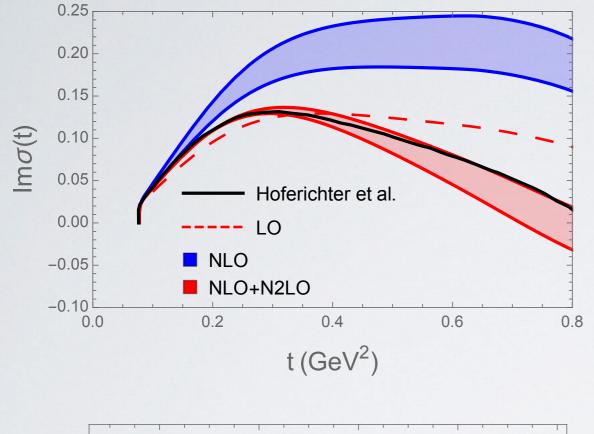
J. M. Alarcón (JLab)

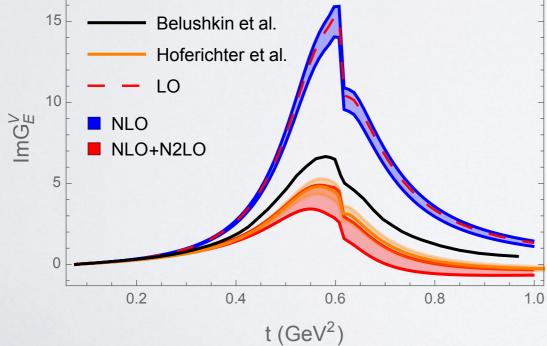


J. M. Alarcón (JLab)

HADRON 2017

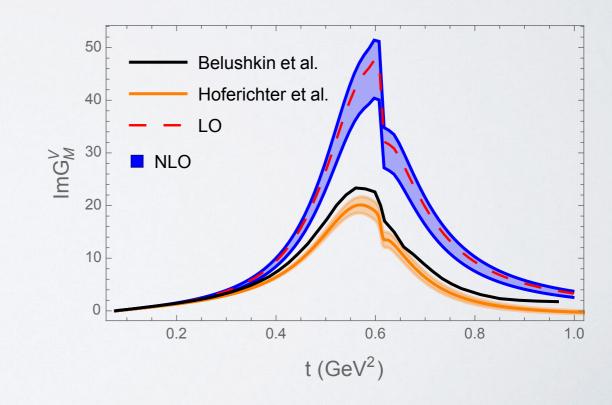
8/17





$$\operatorname{Im}\sigma(t) = \frac{3k_{cm}}{4\sqrt{t}(m_N^2 - t/4)} |\Gamma_{\pi}(t)|^2 J_{+}^0(t)$$
$$\operatorname{Im}G_{\{E,M\}}^V(t) = \frac{k_{cm}^3}{\{m_N,\sqrt{2}\}\sqrt{t}} |F_{\pi}(t)|^2 J_{\pm}^1(t)$$

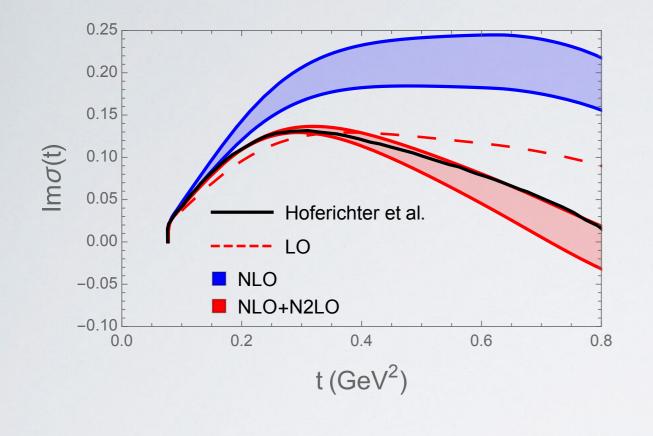
[1] Hoferichter, Ditsche, Kubis, Meißner, JHEP 063 (2012)
[2] Belushkin, Hammer and Meißner, PRC 75 (2007)
[3] Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA 52 (2016)

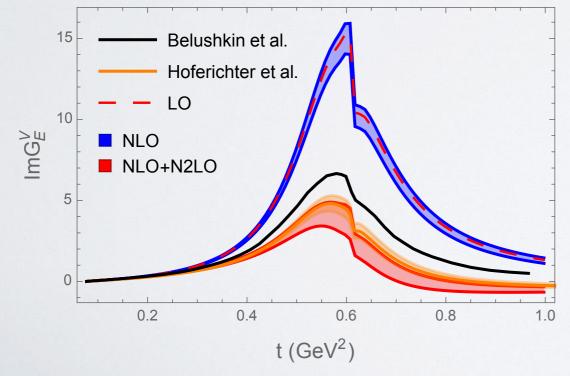


J. M. Alarcón (JLab)

HADRON 2017

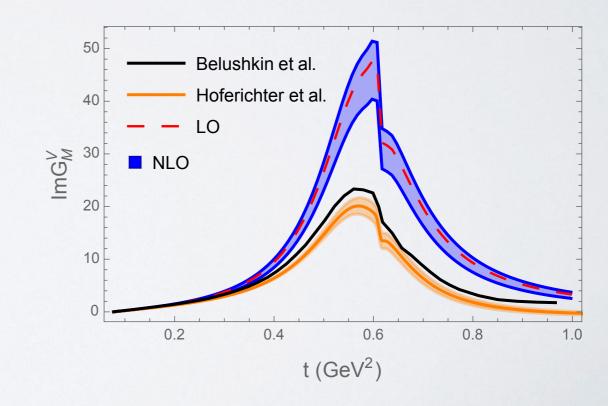
9/17





 $\mathrm{Im}\sigma(t) = \frac{3k_{cm}}{4\sqrt{t}(m_N^2 - t/4)} |\Gamma_{\pi}(t)|^2 J^0_{+}(t)$ $\mathrm{Im}G^{V}_{\{E,M\}}(t) = \frac{k_{cm}^{3}}{\{m_{N},\sqrt{2}\}\sqrt{t}}|F_{\pi}(t)|^{2}J^{1}_{\pm}(t)$

[1] Hoferichter, Ditsche, Kubis, Meißner, JHEP 063 (2012)
[2] Belushkin, Hammer and Meißner, PRC 75 (2007)
[3] Hoferichter, Kubis, Ruiz de Elvira, Hammer, Meißner EPJA 52 (2016)

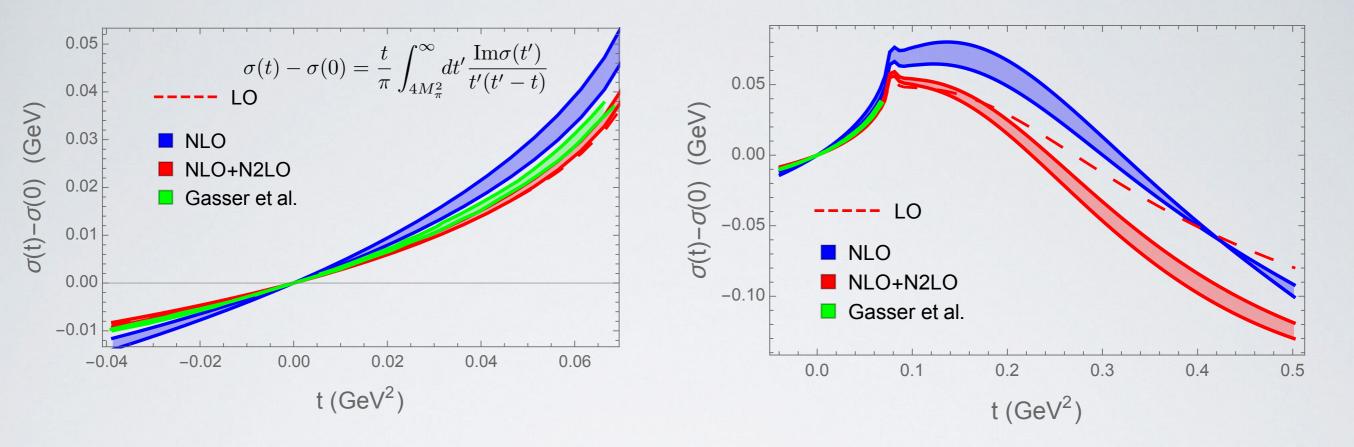


J. M. Alarcón (JLab)

HADRON 2017

9/17

Scalar Form Factor



		LO		NLO+N2LO		$\mathrm{HKMS}[2]$
$\langle r^2 \rangle_S (\mathrm{fm}^2)$	$(\sigma(0) = 59 \text{ MeV})$	1.06	1.40 - 1.67	1.03-1.13	_	1.07(4)
	$(\sigma(0) = 45 \text{ MeV})$	1.38	1.83 - 2.19	1.34 - 1.49	1.6	-

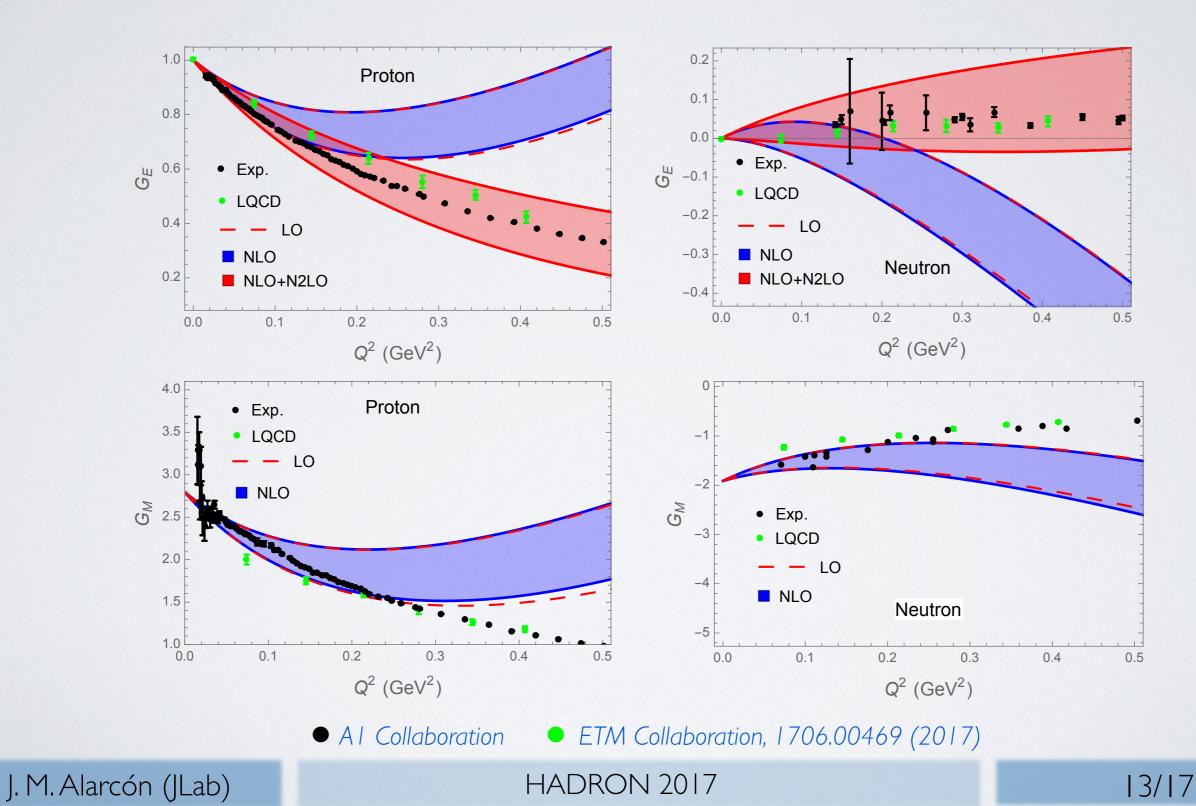
	LO	NLO	NLO+N2LO	GLS [3]	HDKM [4]	ChPT $\mathcal{O}(p^3)$	ChPT $\mathcal{O}(p^4)$
$\Delta_{\sigma} (\text{MeV})$	13.3	17.4 - 20.6	13.3 - 14.5	15.2(4)	13.9(3)	4.6	$14.0 + 4M_{\pi}^4 \bar{e}_2$

[1] Gasser, Leutwyler, Sainio, PLB 253 260-264, [2] Hoferichter, Klos, Menéndez, Schwenk PRD 94 (2016)
 [3] Gasser, Leutwyler, Sainio, PLB 253 252-259, [4] Hoferichter, Ditsche, Kubis, Meißner, JHEP 1206 (2012)

J. M. Alarcón (JLab)

Electromagnetic Form Factors

 $G_{E,M}^{p,n}(Q^2) = G_{E,M}^{p,n}(0) \mp \frac{\langle r_{E,M} \rangle^V}{6} Q^2 \pm \frac{Q^4}{\pi} \int_{4M_\pi^2}^{\infty} dt' \frac{\mathrm{Im}G_{E,M}^V(t')}{t'^2(t'+Q^2)} - \frac{Q^2}{\pi} \int_{4M_\pi^2}^{\infty} dt' \frac{\mathrm{Im}G_{E,M}^S(t')}{t'(t'+Q^2)}$



• Radii

	LO	NLO	NLO+N2LO	Exp.
$\langle r_E^2 \rangle^p (\mathrm{fm}^2)$	(1.11, 1.49)	(1.05, 1.52)	(0.46, 0.94)	(0.71, 0.77)
$\langle r_M^2 \rangle^p \; (\mathrm{fm}^2)$	(1.19, 1.46)	(1.04, 1.54)	—	(0.60 , 0.76)
$\langle r_E^2 \rangle^n \; (\mathrm{fm}^2)$	(-0.84, -0.47)	(-0.88, -0.40)	(-0.29, 0.18)	-0.12
$\langle r_M^2 \rangle^n (\mathrm{fm}^2)$	(1.29, 1.64)	(1.08, 1.81)	_	(0.77, 0.79)

• Radii

	LO	NLO	NLO+N2LO	Exp.
$\langle r_E^2 \rangle^p \; (\mathrm{fm}^2)$	(1.11, 1.49)	(1.05, 1.52)	(0.46, 0.94)	(0.71, 0.77)
$\langle r_M^2 \rangle^p \; (\mathrm{fm}^2)$	(1.19, 1.46)	(1.04, 1.54)	—	(0.60 , 0.76)
$\langle r_E^2 \rangle^n \; (\mathrm{fm}^2)$	(-0.84, -0.47)	(-0.88, -0.40)	(-0.29, 0.18)	-0.12
$\langle r_M^2 \rangle^n \; (\mathrm{fm}^2)$	(1.29, 1.64)	(1.08, 1.81)	-	(0.77, 0.79)

• Higher moments

$$G_E(Q^2) = 1 - \frac{\langle r_E^2 \rangle}{3!} Q^2 + \frac{\langle r_E^4 \rangle}{5!} Q^4 - \frac{\langle r_E^6 \rangle}{7!} Q^6 + \frac{\langle r_E^8 \rangle}{9!} Q^8 + \dots$$
$$\frac{G_M(Q^2)}{\mu_N} = 1 - \frac{\langle r_M^2 \rangle}{3!} Q^2 + \frac{\langle r_M^4 \rangle}{5!} Q^4 - \frac{\langle r_M^6 \rangle}{7!} Q^6 + \frac{\langle r_M^8 \rangle}{9!} Q^8 + \dots$$

J. M. Alarcón (JLab)

• Radii

	LO	NLO	NLO+N2LO	Exp.
$\langle r_E^2 \rangle^p \; (\mathrm{fm}^2)$	(1.11, 1.49)	(1.05, 1.52)	(0.46, 0.94)	(0.71, 0.77)
$\langle r_M^2 \rangle^p \; (\mathrm{fm}^2)$	(1.19, 1.46)	(1.04, 1.54)	-	(0.60 , 0.76)
$\langle r_E^2 \rangle^n \; (\mathrm{fm}^2)$	(-0.84, -0.47)	(-0.88, -0.40)	(-0.29, 0.18)	-0.12
$\langle r_M^2 \rangle^n \; (\mathrm{fm}^2)$	(1.29, 1.64)	(1.08, 1.81)	_	(0.77, 0.79)

• Higher moments

$$G_E(Q^2) = 1 - \frac{\langle r_E^2 \rangle}{3!} Q^2 + \frac{\langle r_E^4 \rangle}{5!} Q^4 - \frac{\langle r_E^6 \rangle}{7!} Q^6 + \frac{\langle r_E^8 \rangle}{9!} Q^8 + \dots$$
$$\frac{G_M(Q^2)}{\mu_N} = 1 - \frac{\langle r_M^2 \rangle}{3!} Q^2 + \frac{\langle r_M^4 \rangle}{5!} Q^4 - \frac{\langle r_M^6 \rangle}{7!} Q^6 + \frac{\langle r_M^8 \rangle}{9!} Q^8 + \dots$$

G_E^p			
	LO	NLO	NLO+N2LO
$\langle r^4 \rangle (\ {\rm fm}^4)$	(2.09, 2.48)	(2.00, 2.53)	(1.16, 1.70)
$\langle r^6 \rangle (\ {\rm fm}^6)$	(10.77, 11.70)	(10.46, 11.86)	(7.59, 9.00)
$\langle r^8 \rangle (\ {\rm fm}^8)$	(144.35, 148.22)	(142.04, 149.46)	(121.32, 128.74)

G_E^n			
	LO	NLO	NLO+N2LO
$\langle r^4 \rangle (\ {\rm fm}^4)$	(-1.53, -1.13)	(-1.58, -1.04)	(-0.74, -0.20)
$\langle r^6 \rangle (~{ m fm}^6)$	(-8.94, -8.02)	(-9.11, -7.71)	(-6.24, -4.84)
$\langle r^8 \rangle (\ {\rm fm}^8)$	(-135.09, -131.21)	(-136.32, -128.91)	(-115.60, -108.18)

G^p_M			G_M^n	
	LO	NLO		
$\langle r^4 \rangle (~{ m fm}^4)$	(2.38, 2.68)	(2.14, 2.81)	$\langle r^4 angle ($ fm	4)
$\langle r^6 \rangle (~{ m fm}^6)$	(13.91, 14.61)	(12.86, 15.17)	$\langle r^6 angle (~{ m fm}$	⁶) (1
$\langle r^8 \rangle (\ {\rm fm}^8)$	(204.60, 207.57)	(193.78, 213.38)	$\langle r^8 \rangle$ (fm	(29)

G_M^n			
	LO	NLO	
$\langle r^4 \rangle (\ {\rm fm}^4)$	(3.30, 2.87)	(3.49, 2.51)	
$\langle r^6 \rangle (\ {\rm fm}^6)$	(19.62, 18.60)	(20.44, 17.07)	
$\langle r^8 \rangle (\ {\rm fm}^8)$	(295.06, 290.72)	(303.54, 274.93)	

J. M. Alarcón (JLab)

Summary and Conclusions

Summary and Conclusions

• Chiral EFT can be combined with dispersion theory improve calculation of Form Factors.

• Studying the analytic structure of the matrix element allows us to separate the perturbative vs the non-perturbative part:

- •t-channel \rightarrow non-perturbative $\rightarrow |F_{\pi}|^2$ (data, lattice, dispersion theory)
- s-channel \rightarrow perturbative \rightarrow ChEFT \rightarrow Prediction from πN scattering.
- DI χ EFT achieves good **predictions** for the spectral functions up to t~0.3 GeV² and potentially up to 1 GeV².
- Direct application to G = +1 operators \rightarrow Scalar and EM FFs
 - EFT of DM detection (scalar FF).
 - Proton Radius Puzzle (higher order derivatives).
- Promising new approach to unveil the structure of the nucleon from first principles.

J. M. Alarcón (JLab)

FIN

• We estimate the size of the N2LO corrections by considering only the tree level contributions.

• Born Terms are accounted for though $g_A \rightarrow g_A - 2d_{18}M_\pi^2$

• Contact terms depend on d_i

• Scalar

$$A^{+} = -\frac{4\nu^2 m_N}{f_{\pi}^2} (d_{14} - d_{15}) \qquad B^{+} = \frac{4\nu m_N}{f_{\pi}^2} (d_{14} - d_{15})$$

• Vector

$$A^{-} = \frac{2\nu}{f_{\pi}^{2}} \left[2(d_{1} + d_{2} + 2d_{5})M_{\pi}^{2} - (d_{1} + d_{2})t + 2d_{3}\nu^{2} \right] \qquad B^{-} = 0$$

• Estimate the value of $d_1 + d_2$ and $d_{14} - d_{15}$ by imposing the charge

sum rules I GeV²

$$\sigma(0) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\Lambda} dt' \frac{\text{Im}\sigma(t')}{t'} \qquad G_{E,M}(0) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\Lambda} dt' \frac{\text{Im}G_{E,M}(t')}{t'}$$

J. M. Alarcón (JLab)

• To reconstruct the EM form factors, we need the isoscalar component as well.

- One cannot apply the same approach as in the isovector case.
- In the isospin limit, only odd number of pions contribute (G = -1)
- The isocalar component is dominated by the ω and φ exchanges.
 We model the isoscalar spectral functions through the exchange of these VM in the narrow width approximation.

$$\mathrm{Im}F_i^S = \pi \sum_{V=\omega,\phi} a_i^V \delta(t - M_V^2) \qquad (i = 1, 2)$$

a_1^{ω}	a_1^{ϕ}	a_2^ω	a_2^{ϕ}
(0.58, 0.85)	(-0.49, 0.26)	(-0.13, 0.38)	(-0.23, 0.28)

• We use SU(3) symmetry, some assumptions about the F/D ratio and empirical $g_{\omega NN}$ couplings from [Machleidt PRC 63 (2001)] [Belushkin et al., PRC 75 (2007)]

J. M. Alarcón (JLab)