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more, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical isoscalar scalar spec-
tral function m#

4 Im$N(t)/t2 of Ref. %23&. It has been deter-
mined on the basis of the ##→N̄N s-wave amplitude f!

0 (t)
%18& and ##-scattering data tied together with Roy equa-
tions, etc. %see Eq. !3" in Ref. %23&&. One observes a substan-

tial improvement when including the next-to-leading order
c1,2,3 term and the two-loop contributions. The major effect
comes evidently from the large isoscalar ##NN-contact
couplings, in particular from c3. The height of the peak at
t!5m#

2 is, however, still underestimated by about 20% in
the two-loop approximation. Higher order ##-rescattering
effects, etc., are necessary in order to close this remaining
gap. Given the pattern in Fig. 3, one can expect significant
effects !in the right direction" already from the two-loop dia-
grams with one vertex proportional to the !numerically large"
second-order low-energy constants c1,2,3,4 . Note that com-
plete calculations of elastic #N scattering to chiral order
four, which include the pertinent one-loop diagrams with one
c1,2,3,4 vertex, have recently been performed in Ref. %33& us-
ing the heavy baryon framework and in Ref. %34& employing
the so-called infrared regularization scheme of fully relativ-
istic baryon chiral perturbation theory. For comparison, simi-
lar deficiencies of the two-loop approximation of chiral per-
turbation theory have been observed in Ref. %35& for the
imaginary parts of the pion scalar and charge form factors.
Next, we show in Fig. 4 the spectral function ImGE

V(t) of
the isovector electric form factor of the nucleon weighted
with 1/t2. The dashed-dotted line gives the one-loop result,
Eq. !7". The dashed line includes in addition the c4 /M term
in Eq. !10" and the full line includes, furthermore, the two-
loop contributions, Eqs. !12" and !15". The upper dotted line
corresponds to the empirical isovector electric spectral func-
tion ImGE

V(t)/t2 of Ref. %18&. Modulo a kinematical factor
Q3/8M!t , it is determined by the product of the ##→N̄N
p-wave amplitude f!

1 (t) %18& and the !timelike" pion charge
form factor measured in the reaction e!e"→#!#" %see Eq.
!7" in Ref. %22&&. In the case of the isovector electric spectral
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FIG. 3. The spectral function Im $N(t) of the isoscalar scalar
form factor of the nucleon multiplied with m#

4 /t2. The dashed-
dotted line gives the one-loop result, Eq. !5". The dashed line in-
cludes in addition the c1,2,3 term in Eq. !9" and the full line includes,
furthermore, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical spectral function m#
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gives the one-loop result, Eq. !7". The dashed line includes in ad-
dition the c4 /M term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !12" and !15". The upper
dotted line shows the empirical spectral function ImGE
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Ref. %18&.
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addition the c4 term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !13" and !16". The upper
dotted line shows the empirical spectral function ImGE

V(t)/t2 of
Ref. %18&.
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more, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical isoscalar scalar spec-
tral function m#
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!7" in Ref. %22&&. In the case of the isovector electric spectral

0 5 10 15 20 25
t [mπ

2]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

m
π4 Im

σ
N
(t)

/t2  [M
eV

]

FIG. 3. The spectral function Im $N(t) of the isoscalar scalar
form factor of the nucleon multiplied with m#

4 /t2. The dashed-
dotted line gives the one-loop result, Eq. !5". The dashed line in-
cludes in addition the c1,2,3 term in Eq. !9" and the full line includes,
furthermore, the two-loop contributions, Eqs. !11" and !14". The
upper dotted line shows the empirical spectral function m#

4

Im $N(t)/t2 of Ref. %23&.

0 5 10 15 20
t [mπ

2]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Im
G

EV (t)
/t2  [1

0-3
m

π-4
]

FIG. 4. The spectral function ImGE
V(t) of the isovector electric

form factor of the nucleon divided by t2. The dashed-dotted line
gives the one-loop result, Eq. !7". The dashed line includes in ad-
dition the c4 /M term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !12" and !15". The upper
dotted line shows the empirical spectral function ImGE

V(t)/t2 of
Ref. %18&.

0 5 10 15 20
t [mπ

2]

0

2

4

6

8

10

12

14

Im
G

M
V (t)

/t2  [1
0-3

m
π-4

]

FIG. 5. The spectral function ImGM
V (t) of the isovector mag-

netic form factor of the nucleon divided by t2. The dashed-dotted
line gives the one-loop result, Eq. !8". The dashed line includes in
addition the c4 term in Eq. !10" and the full line includes, further-
more, the two-loop contributions, Eqs. !13" and !16". The upper
dotted line shows the empirical spectral function ImGE

V(t)/t2 of
Ref. %18&.

SPECTRAL FUNCTIONS OF ISOSCALAR, SCALAR, . . . PHYSICAL REVIEW C 68, 025202 !2003"

025202-5

Disp.

1 loop  

2 loops
1 loop + ci  

Disp.

1 loop  
1 loop + ci  

2 loops

1 loop  

Disp.

2 loops
1 loop + ci  

[Kaiser, PRC 68 (2003)]

4/17



Dispersively Improved   EFT
(DI  EFT)

�
�



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

DI  EFT�

6/17HADRON 2017



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

DI  EFT�

6/17HADRON 2017



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

DI  EFT�

6/17HADRON 2017



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

DI  EFT�

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

DI  EFT�

Form Factor Form Factor⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

DI  EFT�

Form Factor Form Factor

PW⇡⇡ ! N̄N PW⇡⇡ ! N̄N

⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

•The key idea is to separate the contributions to the spectral 
function into two parts (based on the Frazer and Fulco method [Frazer 

and Fulco, Phys. Rev. 117, 1609 (1960)]):

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

DI  EFT�

Form Factor Form Factor

PW⇡⇡ ! N̄N PW⇡⇡ ! N̄N

⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

•The key idea is to separate the contributions to the spectral 
function into two parts (based on the Frazer and Fulco method [Frazer 

and Fulco, Phys. Rev. 117, 1609 (1960)]):

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
|�⇡(t)|2

f0
+(t)

�⇡(t)

DI  EFT�

Form Factor Form Factor

PW⇡⇡ ! N̄N PW⇡⇡ ! N̄N

⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
|F⇡(t)|2

f1
±(t)

F⇡(t)

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

•The key idea is to separate the contributions to the spectral 
function into two parts (based on the Frazer and Fulco method [Frazer 

and Fulco, Phys. Rev. 117, 1609 (1960)]):

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
|�⇡(t)|2

f0
+(t)

�⇡(t)

Chiral EFT

DI  EFT�

Form Factor Form Factor

PW⇡⇡ ! N̄N PW⇡⇡ ! N̄N

⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
|F⇡(t)|2

f1
±(t)

F⇡(t)

J0
+ J1

±

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of the FFs.

•The key idea is to separate the contributions to the spectral 
function into two parts (based on the Frazer and Fulco method [Frazer 

and Fulco, Phys. Rev. 117, 1609 (1960)]):

J. M. Alarcón (JLab)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
�⇤
⇡(t)f

0
+(t)

Im�(t) =
3kcm

4
p
t(m2

N � t/4)
|�⇡(t)|2

f0
+(t)

�⇡(t)

Data/Dispersion Theory

Chiral EFT

DI  EFT�

Form Factor Form Factor

PW⇡⇡ ! N̄N PW⇡⇡ ! N̄N

⇡ ⇡

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
|F⇡(t)|2

f1
±(t)

F⇡(t)

J0
+ J1

±

ImGV
{E,M}(t) =

k3cm
{mN ,

p
2}
p
t
F ⇤
⇡ (t)f

1
±(t)

6/17HADRON 2017



•Analytic structure of       vs     

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

DI  EFT�

7/17



•Analytic structure of       vs     

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

fJ
±

s-channel t-channel

DI  EFT�

t

F⇡
t

7/17



•Analytic structure of       vs     

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

fJ
± JJ

±

s-channel t-channel s-channel

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

fJ
± JJ

±

s-channel t-channel s-channel

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .
•      comes out as a prediction of       . 

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

⇡N

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .
•      comes out as a prediction of       . 
•We calculate      at LO, NLO and estimate the N2LO corrections

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

⇡N

JJ
±

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .
•      comes out as a prediction of       . 
•We calculate      at LO, NLO and estimate the N2LO corrections

•LO           Born Terms + Conctact Terms (from      )

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

⇡N

JJ
±

⇡N

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .
•      comes out as a prediction of       . 
•We calculate      at LO, NLO and estimate the N2LO corrections

•LO           Born Terms + Conctact Terms (from      )
•NLO           Contact Terms (from       , subtracting contribution 
of t-channel resonances from the      [Bernard, Kaiser and Meißner, NPA 615 (1997)])

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

⇡N

JJ
±

⇡N

⇡N
ci

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•Analytic structure of       vs     

•We use relativistic ChEFT with explicit Deltas to calculate     .
•      comes out as a prediction of       . 
•We calculate      at LO, NLO and estimate the N2LO corrections

•LO           Born Terms + Conctact Terms (from      )
•NLO           Contact Terms (from       , subtracting contribution 
of t-channel resonances from the      [Bernard, Kaiser and Meißner, NPA 615 (1997)])
•N2LO          Estimation

J. M. Alarcón (JLab) HADRON 2017

fJ
± JJ

± ⌘ fJ
±/F⇡

No RHC (Watson’s Theorem)       
                    suited for Chiral calculations

⇡N

JJ
±

⇡N

⇡N
ci

fJ
± JJ

±

s-channel t-channel s-channel

JJ
±

JJ
±

DI  EFT�

t t

F⇡
t

7/17



•                    smooth      suited for ChEFT.

•LO:  
         

•NLO:

•NLO+N2LO :

J. M. Alarcón (JLab)
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[1] Höhler, in Landolt-Börnstein, 9b2, ed. H. Schopper (Springer, Berlin,1983)
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(c) The timelike pion FF enters only through its
squared modulus |�

⇡

(t)|2, not its phase. This re-
duces model dependence in the determination of
the empirical pion FF and represents an advantage
over approaches working with the original unitar-
ity condition, Eq. (12), where the pion FF enters
as a complex function. The squared modulus of
the timelike scalar pion FF can be extracted di-
rectly from Euclidean vacuum-to-vacuum correla-
tion functions of the scalar operator, which can
be computed in Lattice QCD (see Sec. IVA). In
the electromagnetic case the squared modulus of
the timelike pion FF can directly be measured in
e+e� ! ⇡+⇡� exclusive annihilation experiments.

We refer to the new method as “dispersively improved
�EFT” (DI�EFT). The method is applicable strictly at
4M2

⇡

< t < 16M2
⇡

, where only the ⇡⇡ channel is open
and the elastic unitarity condition Eq. (12) is valid. It is
expected that inelasticities from other channels (4⇡) are
small up to the KK̄ threshold; neglecting those the rep-
resentation of Eqs. (15) and (16) can e↵ectively be used
up to t ⇠ 1GeV2. Our method could thus in principle be
applied up to such values of t, provided that the �EFT
calculations of J0

+(t) converge su�ciently well (this ques-
tion will be investigated below).

B. Leading-order calculation

For the calculation of J0
+(t) we use SU(2)-flavor �EFT

with relativistic N and � degrees of freedom. The rela-
tivistic formulation ensures the correct analytic structure
of the amplitudes (position of branch points, threshold
behavior), which is critical in the present application.
The inclusion of the � as an explicit degree of freedom
is needed because the � Born term makes important
contributions to the ⇡⇡ ! NN̄ PWA (see below); it is
also needed to reproduce the correct scaling behavior of
the spectral function in the large-N

c

limit of QCD (see
Sec. IVB). These features have proved to be essential also
in other applications of baryon �EFT to ⇡N scattering,
photoproduction, and nucleon structure [46–56].

The basic setup of the relativistic �EFT used in the
present study (fields, Lagrangian, power counting, cou-
plings) is described in Ref. [57] and summarized in
Ref. [32]. The spin-1/2 N is described by a relativistic
bispinor field (Dirac field). The spin-3/2 � is introduced
as a 4-vector-bispinor field, which has to be subjected to
relativistically covariant constraints to eliminate spuri-
ous spin-1/2 degrees of freedom. Here we use the formu-
lation in which the spin-1/2 degrees of freedom are al-
lowed to propagate but are filtered out at the interaction
vertices (consistent vertices) [58–61]. The construction of
the chiral Lagrangian with the spin-3/2 fields has been
described in Refs. [62, 63]. Several expansion schemes
have been proposed for the �EFT with the �, assuming
certain parametric relations between the chiral parame-
ters k

⇡

⇠ M
⇡

and the N -� mass splitting m� �m
N

. In

(c)

N

(a)

∆

(b)

FIG. 4. (a, b) LO �EFT diagrams contributing to the ⇡⇡ !
NN̄ PWA. (c) Pion scalar FF in LO.

the present application the di↵erences between the vari-
ous expansion schemes for the � are irrelevant, because
the calculations are carried out at an accuracy where �
loops do not enter. The only di↵erence to �EFT with N
only is in the appearance of the � Born graphs at leading
order. We therefore denote the order of our calculations
by LO, NLO, N2LO, as is common in �EFT with N only.
Regarding the power counting, we note that �EFT

calculations with relativistic baryons must in principle
deal with power-counting-breaking terms arising from
chiral loops with baryons, i.e., lower-order terms in chi-
ral counting resulting from higher-order terms in the
loop expansion. The standard power counting for loops
can be recovered by adopting the extended-on-mass-shell
(EOMS) scheme [64]. While diagrams with chiral loops
are not considered in the present study, it is important to
mention this scheme here, as it ensures that the tree-level
results are not mixed up with power-counting-breaking
terms arising from chiral loops.
The LO �EFT diagrams for the I = J = 0 ⇡⇡ ! NN̄

partial-wave amplitude f0
+(t) are the N Born term

shown in Fig. 4a and the � Born term in Fig. 4b;
⇡⇡NN contact terms appear only in higher orders and
will be discussed below. In the LO calculation of the
ratio J0

+(t), Eq. (16), the pion FF in the denominator is
evaluated at LO, see Fig. 4c. At this order in �EFT the
pion is pointlike, �

⇡

(t) ⌘ �
⇡

(0) = M2
⇡

. The LO result
for J0

+(t) is therefore just the result for f0
+(t) divided by

M2
⇡

. At this accuracy our approach based on Eq. (15)
simply amounts to multiplying the LO �EFT result for
the nucleon spectral function Im�(t) (as obtained by
direct �EFT calculation of the spectral function without
the unitarity condition) by the normalized empirical
pion FF |�

⇡

(t)|2/M4
⇡

,

Im�(t) = Im�(t) [LO] ⇥ |�
⇡

(t)|2
M4

⇡

. (17)

This formula permits an extremely simple implementa-
tion of unitarity at LO accuracy. The factor |�

⇡

(t)|2/M4
⇡

describes the enhancement of the direct �EFT result for
the spectral function due to ⇡⇡ rescattering. Numeri-
cal results obtained with this approximation will be pre-
sented below.
The analytic expressions for the LO �EFT results

for J0
+(t) are given in Appendix A. The numerical val-
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the present application the di↵erences between the vari-
ous expansion schemes for the � are irrelevant, because
the calculations are carried out at an accuracy where �
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only is in the appearance of the � Born graphs at leading
order. We therefore denote the order of our calculations
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The LO �EFT diagrams for the I = J = 0 ⇡⇡ ! NN̄

partial-wave amplitude f0
+(t) are the N Born term

shown in Fig. 4a and the � Born term in Fig. 4b;
⇡⇡NN contact terms appear only in higher orders and
will be discussed below. In the LO calculation of the
ratio J0

+(t), Eq. (16), the pion FF in the denominator is
evaluated at LO, see Fig. 4c. At this order in �EFT the
pion is pointlike, �
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(0) = M2
⇡

. The LO result
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+(t) divided by
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This formula permits an extremely simple implementa-
tion of unitarity at LO accuracy. The factor |�
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(t)|2/M4
⇡

describes the enhancement of the direct �EFT result for
the spectral function due to ⇡⇡ rescattering. Numeri-
cal results obtained with this approximation will be pre-
sented below.
The analytic expressions for the LO �EFT results

for J0
+(t) are given in Appendix A. The numerical val-
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p
t) J0

+(t); this combination is equal
to Im�(t)/|�

⇡

(t)|2 by virtue of Eq.(15). One observes
that the contributions from the N and � Born term am-
plitudes have the same sign and are roughly comparable
in magnitude.

C. Estimates of higher-order corrections

At NLO accuracy corrections to the ⇡N scattering am-
plitude arise only from NLO ⇡⇡NN contact terms in
the chiral Lagrangian. The NLO contributions to the
I = J = 0 ⇡⇡ ! NN̄ PWA in Eq. (16) therefore have a
simple structure. Corrections to the pion FF appear only
at N2LO accuracy through pion loops. The expression
for the NLO corrections to J0

+(t) is given in Eq. (A15) of
Appendix A. At this accuracy Eq. (17) is still valid, and
the NLO corrections to the spectral function are obtained
simply by replacing J0

+(t) by its NLO expression.
For evaluating the higher-order corrections we use the

LECs of ⇡N scattering. The values have to be adjusted
consistently with the logic of our unitarity-based ap-
proach. The LECs in standard �EFT absorb rescattering
e↵ects that are treated explicitly within our unitarity-
based approach. The contact terms appropriate for our
approach are therefore obtained by subtracting the ef-
fects of rescattering from the original LECs. To do this
in practice, we describe the rescattering e↵ects in the
I = J = 0 ⇡⇡ channel through the � meson exchange
model of Ref. [65]. The resonance saturation hypothesis
[66] then allows us to estimate how much of the original
LECs is due to rescattering and subtract those amounts
(see Fig. 6).

We take the NLO �EFT ⇡N amplitude from Ref. [57]
and perform the partial-wave projection according to the
formulas of Ref. [13]. The LECs appearing in this ampli-
tude at NLO have been determined through relativis-
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FIG. 6. Adjustment of the LECs of the NLO ⇡⇡NN contact
term in our unitarity-based approach. The original contact
term (filled circle, left-hand side) is equated with the sum of
� meson exchange and a reduced contact term (open circle).
The reduced contact terms are used in the present scalar FF
calculation with explicit unitarization.

tic �EFT analysis of ⇡N scattering with explicit �’s
[57, 67]. Performing the adjustment as described above,
we obtain the values c

i

(i = 1, 2, 3) listed in Table III
in Appendix A. We use the parameters to evaluate the
NLO contribution to J0

+(t) and estimate its uncertainty
by varying the values in the determined range. Numeri-
cal results from this procedure will be shown below.
At N2LO accuracy both the ⇡⇡ ! NN̄ PWA and the

pion FF involve loop corrections, and the structure of
the �EFT expressions becomes considerably richer. At
this order ⇡⇡ rescattering in the t-channel occurs both
in the PWA and in the pion FF, so that both functions
become complex at t > 4M2

⇡

; one should therefore be
able to verify explicitly that they have the same phase,
and that the phase cancels in the ratio in Eq. (16). Fur-
thermore, at N2LO ⇡N and ⇡� s-channel intermediate
states appear in the PWA and contribute to its left-hand
cut. Here we do not pursue a full N2LO calculation of
the function J0

+(t) including loops. Instead, we estimate
the size of the N2LO corrections in a simple way, by us-
ing the N2LO tree level result and varying the LECs in
a meaningful range. To this end we impose the unsub-
tracted dispersion relation for the scalar FF at t = 0
(sigma term),

�(0) =
1

⇡

Z 1

4M2
⇡

dt0
Im�(t0)

t0
, (18)

with the integration restricted to the region t0 < 1GeV2.
This relation fixes the LECs in the N2LO tree level result
in terms of �(0). We then generate an uncertainty band
by varying �(0) in the range 45–59 MeV. The first value
was determined in an earlier dispersive analysis of the
sigma term [68], while the second was obtained by �EFT
from modern ⇡N PWAs and pionic atom data [46]. Nu-
merical results for J0

+(t) with these parameters will be
shown below.

D. Pion form factor

For the pion scalar FF in Eq. (17) we take the result
of the dispersive analysis of Ref. [35]; for earlier results
see Refs. [33, 34]. The analysis includes the KK̄ chan-
nel at t > 1GeV2 in a coupled-channel approach; we
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states appear in the PWA and contribute to its left-hand
cut. Here we do not pursue a full N2LO calculation of
the function J0

+(t) including loops. Instead, we estimate
the size of the N2LO corrections in a simple way, by us-
ing the N2LO tree level result and varying the LECs in
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with the integration restricted to the region t0 < 1GeV2.
This relation fixes the LECs in the N2LO tree level result
in terms of �(0). We then generate an uncertainty band
by varying �(0) in the range 45–59 MeV. The first value
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from modern ⇡N PWAs and pionic atom data [46]. Nu-
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For the pion scalar FF in Eq. (17) we take the result
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nel at t > 1GeV2 in a coupled-channel approach; we
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This relation fixes the LECs in the N2LO tree level result
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see Refs. [33, 34]. The analysis includes the KK̄ chan-
nel at t > 1GeV2 in a coupled-channel approach; we
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FIG. 1. Distribution of strength in the dispersive integrals for
the scalar charge radius, Eq. (7), and the Cheng-Dashen dis-
crepancy, Eq. (8). The plot shows the integrands as functions
of t, divided by the value of the integral, i.e., normalized to
unit area under the curves.

The spectral function of the scalar nucleon FF has been
constructed using amplitude analysis techniques with
empirical input [17, 19]. Figure 1 shows the distribution
of strength in the dispersive integrals Eqs. (7) and (8).
One sees that the integral converges rapidly, and that the
main contribution comes from the region t0 . 0.5GeV2.
This determines the range where one needs to calculate
spectral function if one aims for a first-principles calcu-
lation of the scalar quantities through their dispersive
integrals.

Evaluation of the integrals with the empirical spec-
tral functions of Ref. [17] has found hr2i ⇠ 1.6 fm2, sub-
stantially larger than the proton’s charge radius hr2i1 ⇠
0.65 fm2 (Dirac radius). The discrepancy �

�

has been
obtained at ⇠ 14MeV. The significance of these findings
will be discussed in Sec. III.

The scalar FF of the pion is defined analogously to
that of the nucleon in Eq. (2),

h⇡(p0)|O
�

(0) |⇡(p)i = �
⇡

(t), (9)

where ⇡ = ⇡+,⇡�,⇡0 (isospin symmetry) and t = (p0 �
p)2 < 0 in the physical region. The value at t = 0 is

�
⇡

(0) = M2
⇡

, (10)

which follows from the fact that the scalar operator corre-
sponds to the chiral-symmetry-breaking pion mass term
in the chiral Lagrangian. The corresponding timelike FF
is defined as

h0|O
�

(0) |⇡(p0)⇡(p)i = �
⇡

(t), (11)

where now t = (p + p0)2 > 4M2
⇡

in the physical region.
The scalar FF of the pion is of physical interest in itself,
and enters in dispersive calculations of nucleon scalar FF.
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FIG. 2. (a) Unitarity relation for the imaginary part of the
nucleon scalar FF on the two-pion cut, Eq. (12). (b) Real
function J0

+(t), Eq. (16), defined as the ratio of the ⇡⇡ ! NN̄
PWA and the pion FF. (c) Unitarity relation in terms of J0

+(t)
and the squared modulus of the pion FF, Eq.(15).

II. METHOD

A. Dispersively improved �EFT

We now describe the method for calculating the spec-
tral function of nucleon FFs on the two-pion cut in �EFT
using a representation based on the elastic unitarity con-
dition and the N/D method. While we use the scalar
FF as a specific example, the method is general and can
be applied to the FFs of any G-parity-even operator cou-
pling to the ⇡⇡ state.
In the region 4M2

⇡

< t < 16M2
⇡

only the ⇡⇡ state con-
tributes to the discontinuity of the nucleon FF through
the process Eq. (3). In this situation the spectral function
can be computed using the elastic unitarity condition,
which expresses the conservation of flux in the t-channel
[13–15]. For the scalar nucleon FF it takes the form [17]

Im�(t) =
3kcm
4ep2

N

p
t
f0
+(t)�

⇤
⇡

(t), (12)

where

kcm ⌘
p
t/4�M2

⇡

(13)

is the center-of-mass momentum of the pions in the ⇡⇡
system, and

ep
N

⌘ p
m2

N

� t/4 (14)

is related to the unphysical momentum of the nucleons
in the NN̄ system (see Fig. 2a). The function f0

+(t) is
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FIG. 2. (a) Unitarity relation for the imaginary part of the
nucleon scalar FF on the two-pion cut, Eq. (12). (b) Real
function J0

+(t), Eq. (16), defined as the ratio of the ⇡⇡ ! NN̄
PWA and the pion FF. (c) Unitarity relation in terms of J0

+(t)
and the squared modulus of the pion FF, Eq.(15).

II. METHOD

A. Dispersively improved �EFT

We now describe the method for calculating the spec-
tral function of nucleon FFs on the two-pion cut in �EFT
using a representation based on the elastic unitarity con-
dition and the N/D method. While we use the scalar
FF as a specific example, the method is general and can
be applied to the FFs of any G-parity-even operator cou-
pling to the ⇡⇡ state.
In the region 4M2

⇡

< t < 16M2
⇡

only the ⇡⇡ state con-
tributes to the discontinuity of the nucleon FF through
the process Eq. (3). In this situation the spectral function
can be computed using the elastic unitarity condition,
which expresses the conservation of flux in the t-channel
[13–15]. For the scalar nucleon FF it takes the form [17]

Im�(t) =
3kcm
4ep2

N

p
t
f0
+(t)�

⇤
⇡

(t), (12)

where

kcm ⌘
p
t/4�M2

⇡

(13)

is the center-of-mass momentum of the pions in the ⇡⇡
system, and

ep
N

⌘ p
m2

N

� t/4 (14)

is related to the unphysical momentum of the nucleons
in the NN̄ system (see Fig. 2a). The function f0

+(t) is
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a!1 a�1 a!2 a�2
(0.58, 0.85) (�0.49, 0.26) (�0.13, 0.38) (�0.23, 0.28)

LO NLO NLO+N2LO GLS [1] HKMS[2]
hr2iS (fm2) (�(0) = 59 MeV) 1.06 1.40–1.67 1.03–1.13 – 1.07(4)

(�(0) = 45 MeV) 1.38 1.83–2.19 1.34–1.49 1.6 –

LO NLO NLO+N2LO GLS [3] HDKM [4] ChPT O(p3) ChPT O(p4)
�� (MeV) 13.3 17.4 - 20.6 13.3 - 14.5 15.2(4) 13.9(3) 4.6 14.0 + 4M4

⇡ ē2

LO NLO NLO+N2LO Exp.
hr2Eip (fm2) (1.11, 1.49) (1.05, 1.52) (0.46, 0.94 ) (0.71 , 0.77)
hr2Mip (fm2) (1.19, 1.46) ( 1.04, 1.54) – (0.60 , 0.76)
hr2Ein (fm2) (-0.84, -0.47) ( -0.88, -0.40) ( -0.29, 0.18) -0.12
hr2Min (fm2) (1.29 , 1.64) ( 1.08, 1.81) – (0.77, 0.79)
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DI  EFT� 5

LO NLO NLO+N2LO LQCD [12] Exp. [13–41]

hr2Eip (fm2) (1.31, 1.59) (1.25 , 1.62) (0.73 , 1.02) 0.589(39)(33) (0.71 , 0.77)

hr2M ip (fm2) (1.26 , 1.50) (1.27 , 1.54) – 0.506(51)(42) (0.60 , 0.76)

hr2Ein (fm2) (-0.64 , -0.37) (-0.68 , -0.30) (-0.08, 0.21) -0.038(34)(6) -0.12

hr2M in (fm2) (1.24 , 1.59) ( 1.25, 1.65) – 0.586(58)(75) (0.77, 0.79)

TABLE III: Mean square charge and magnetic radius of the nucleon.

GE(Q
2) = 1� hr2Ei

3!
Q2 +

hr4Ei
5!

Q4 � hr6Ei
7!

Q6 +
hr8Ei
9!

Q8 + . . . (9)

GM (Q2)

µN
= 1� hr2M i

3!
Q2 +

hr4M i
5!

Q4 � hr6M i
7!

Q6 +
hr8M i
9!

Q8 + . . . (10)

Note that while for proton an neutron, the magnetic
radii are normalized to the magnetic moment, this is not
the case for the isovector and isoscalar components.

The improvement provided by the DI-ChEFT ap-
proach, is then necessary to give a reliable estimation of
the isovector component of the lowest moments, which is
the dominant component of the higher order moments.

In Tables ??,??,?? and ?? we show separately the re-
sults for the isovector and isoscalar components of the
derivatives of the form factors up to the fourth order.
The first thing to notice is that, even though the isoscalar
contribution (and its uncertainty) is not negligible in the
second derivative, its e↵ect decreases as the order of the
derivative increases. This is simply because the isoscalar
component starts getting sizable contributions at ener-
gies around the ! mass, while the isovector contribution
starts already at the ⇡⇡ threshold (see Ref. [7] for a de-
tailed discussion). This increasing weight of the near-
threshold region with the order of the moments, sup-
press the model dependence coming from the isoscalar
component, and reduces the importance of the higher or-
der corrections of the spectral function as higher order
derivatives are considered. In Tables ?? and ?? we sum-
marize the results for the moments. There, one sees how
both, the uncertainty (coming mostly from the isoscalar
component) and the importance of higher order correc-
tions (that a↵ect the higher energy part of the spectral
function) decrease as the order of the moment increases.

Evaluating this dispersive integral, we find the follow-
ing values for the derivatives of GE

D. Nucleon electromagnetic form factors

(Comments regarding our extraction of the FF though
dispersion theory)

Dispersion theory allows us write

GV
E

LO NLO NLO+N2LO

hr4i( fm4) 1.82 (1.72, 1.86) (0.97, 0.99)

hr6i( fm6) 9.88 (9.54, 10.03) (7.00, 7.07)

hr8i( fm8) 139.77 (137.41, 140.96) (119.08, 119.59)

GS
E

hr4i( fm4) (0.43, 0.75)

hr6i( fm6) (1.15, 1.96)

hr8i( fm8) (5.26, 8.82)

GV
M

LO NLO

hr4i( fm4) 6.48 (5.81, 6.20)

hr6i( fm6) 38.18 (35.27, 39.75)

hr8i( fm8) 567.95 (537.73, 584.18)

GS
M

hr4i( fm4) (0.32, 1.07)

hr6i( fm6) (0.89, 2.73)

hr8i( fm8) (4.13, 12.12)

TABLE IV: Moments of Gn
M .

GE,M (t) =
1

⇡

Z 1

4M2
⇡

dt0
ImGE,M (t0)

t0 � t
. (11)

Since the charge and magnetic moment of the nucleons
are known, and the isovector contribution to the charge
radii are well constrained, we impose two subtraction in
the isovector component of (12) and one subtraction in
the isoscalar one in order give more weight to the near-
threshold region with respect to the higher energy ones.

We reconstruct the form factors using the following
dispersive representation

a!1 a�1 a!2 a�2
(0.58, 0.85) (�0.49, 0.26) (�0.13, 0.38) (�0.23, 0.28)

LO NLO NLO+N2LO GLS [1] HKMS[2]
hr2iS (fm2) (�(0) = 59 MeV) 1.06 1.40–1.67 1.03–1.13 – 1.07(4)

(�(0) = 45 MeV) 1.38 1.83–2.19 1.34–1.49 1.6 –

LO NLO NLO+N2LO GLS [3] HDKM [4] ChPT O(p3) ChPT O(p4)
�� (MeV) 13.3 17.4 - 20.6 13.3 - 14.5 15.2(4) 13.9(3) 4.6 14.0 + 4M4

⇡ ē2

LO NLO NLO+N2LO Exp.
hr2Eip (fm2) (1.11, 1.49) (1.05, 1.52) (0.46, 0.94 ) (0.71 , 0.77)
hr2Mip (fm2) (1.19, 1.46) ( 1.04, 1.54) – (0.60 , 0.76)
hr2Ein (fm2) (-0.84, -0.47) ( -0.88, -0.40) ( -0.29, 0.18) -0.12
hr2Min (fm2) (1.29 , 1.64) ( 1.08, 1.81) – (0.77, 0.79)
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⇡
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Since the charge and magnetic moment of the nucleons
are known, and the isovector contribution to the charge
radii are well constrained, we impose two subtraction in
the isovector component of (18) and one subtraction in
the isoscalar one in order give more weight to the near-
threshold region with respect to the higher energy ones.

We reconstruct the form factors using the following
dispersive representation
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where the (±) sign depends on whether one is considering
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Summary and Conclusions



•Chiral EFT can be combined with dispersion theory improve 
calculation of Form Factors.
•Studying the analytic structure of the matrix element allows us to 
separate the perturbative vs the non-perturbative part:

•t-channel     non-perturbative                (data, lattice, dispersion theory)
•s-channel     perturbative     ChEFT     Prediction from        scattering.

•            achieves good predictions for the spectral functions up to  
t~0.3 GeV2 and potentially up to 1 GeV2.
•Direct application to            operators     Scalar and EM FFs

•EFT of DM detection (scalar FF).
•Proton Radius Puzzle (higher order derivatives).

•Promising new approach to unveil the structure of the nucleon 
from first principles.

J. M. Alarcón (JLab) HADRON 2017
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•We estimate the size of the N2LO corrections by considering only 
the tree level contributions.

•Born Terms are accounted for though
•Contact terms depend on  

•Scalar

•Vector

•Estimate the value of             and               by imposing the charge 
sum rules

J. M. Alarcón (JLab) HADRON 2017

gA ! gA � 2d18M
2
⇡

di

A+ = �4⌫2mN

f2
⇡

(d14 � d15) B+ =
4⌫mN

f2
⇡

(d14 � d15)

B� = 0A� =
2⌫

f2
⇡

⇥
2(d1 + d2 + 2d5)M

2
⇡ � (d1 + d2)t+ 2d3⌫

2
⇤

Dominant
d1 + d2 d14 � d15

�(0) =
1

⇡

Z ⇤

4M2
⇡

dt0
Im�(t0)

t0
GE,M (0) =

1

⇡

Z ⇤

4M2
⇡

dt0
ImGE,M (t0)

t0

1 GeV2 1 GeV2
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•To reconstruct the EM form factors, we need the isoscalar 
component as well.
•One cannot apply the same approach as in the isovector case.
•In the isospin limit, only odd number of pions contribute (           )
•The isocalar component is dominated by the     and     exchanges.
•We model the isoscalar spectral functions through the exchange of 
these VM in the narrow width approximation.

•We use SU(3) symmetry, some assumptions about the         ratio 
and empirical          couplings from [Machleidt PRC 63 (2001)]  [Belushkin et al., PRC 75 (2007)]

ImFS
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aVi �(t�M2
V ) (i = 1, 2)

a!1 a�1 a!2 a�2
(0.58, 0.85) (�0.49, 0.26) (�0.13, 0.38) (�0.23, 0.28)
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