E12-06-114:

Deeply Virtual Compton Scattering at Jefferson Lab, Hall A

Salamanca Hadron 2017

September 27

Frédéric Georges

Institut de Physique Nucléaire d'Orsay, France

for the Hall A DVCS collaboration

Outline

- Introduction physics motivations
- DVCS at Jlab, Hall A Goal
- Experimental setup
- Overview of the ongoing data analysis
- Summary and Outlook

Generalized Parton Distributions (GPDs)

DIS Parton Distribution Functions

Elastic Form Factors

No information on the spatial location of the constituents

No information about the underlying dynamics of the system

Elastic Scattering (ep \rightarrow e'p') \rightarrow Elastic Form Factors

- → Spatial distribution
- Inelastic Scattering (ep \rightarrow e'X) \rightarrow Parton Distribution Functions
- → Momentum distribution

• DVCS (ep \rightarrow e'p' γ)

- → Generalized Parton Distributions → Spatial-Momentum correlations
 - → Spatial-Momentum correlations& Spin structure

Deeply Virtual Compton Scattering (DVCS)

In the Bjorken Limit :
$$Q^2 = \begin{pmatrix} -q^2 & \to & \infty \\ \nu & \to & \infty \end{pmatrix}$$
 $x_B = \frac{Q^2}{2M\nu}$ fixed

Hard part (QED, can be computed)

Factorization

DVCS : ep \rightarrow e'p' γ

Parametrized by GPDs

$$t = (p'-p)^2$$
$$\xi \approx \frac{x_B}{2 - x_B}$$

Proton structure described by 4 quark GPDs:

H, E,
$$\widetilde{H}$$
 \widetilde{E}

DVCS cross section \rightarrow GPDs \rightarrow Description of the proton internal structure.

DVCS and Bethe-Heitler

At leading twist:

DVCS at Jefferson Lab, Hall A – Goal

• Data acquisition between Fall 2014 and Fall 2016

kinematic	Q ² (GeV ²)	X_{B}
kin36_1	3.2	0.36
kin36_2	3.6	0.36
kin36_3	4.5	0.36
kin48_1	2.7	0.48
kin48_2	4.4	0.48
kin48_3	5.3	0.48
kin48_4	6.9	0.48
kin60_1	5.5	0.60
kin60_2	6.1	0.60
kin60_3	8.4	0.60
kin60_4	9.0	0.60

100 days of beam (88 + 12 calibration)

- E12-06-114 goals :
 - Scaling test: Wide Q^2 scans at fixed x_B (larger Q^2 lever arm than previously & several values of x_B)
 - Separation of Re and Im parts of DVCS cross-section amplitude

DVCS at Jefferson Lab, Hall A – Apparatus

• Jlab: 12 GeV electron accelerator facility + 4 experimental Halls (A, B, C, D)

Electron beam: e

Liquid Hydrogen target: p

Spectrometer: detect e'

Calorimeter : detect γ

p' not detected

DVCS missing mass: $ep \rightarrow e'X\gamma$

Missing mass² = $(e + p - e' - \gamma)^2$

Exclusivity of the DVCS process is ensured by a cut on the missing mass.

Beam polarization measurement

Beam Polarization vs Run Number

- Moller & Compton polarization measurements
- Moller: e⁻ e⁻ scattering on dedicated Moller target (both e⁻ polarized), measure counting asymmetry.
- Compton : e⁻ γ scattering (circularly polarized laser), measure counting asymmetry.
- Moller results finalized
- Compton analysis not finalized yet, discrepancies being investigated
- Fall 2016 : beam polarization ~85%, and stable

Beam current measurement

- Used Beam Current Monitors: RF cavity in which the electron beam induces a current
- BCM calibration : induced current in cavity ↔ beam current
- 2 BCMs : U (upstream) & D (downstream), connected to several amplification electronics : D → D1, D3, D10

Run_Number Vs. ratio of charges by different BCM's to D3

- Beam current used: $10 \mu A \le I \le 20 \mu A$
- Unew & Dnew are noisier (electronics)
 → not used
- U1 & D1 are not linear ≤ 10 μA
 → not used
- D3 & D10 linear for $5 \mu A \le I \le 25 \mu A$
- D3 & D10 agree within 1%
- D10 stable against D3
- Conclusion: can rely on average of D3 & D10

Trigger efficiency measurement

Pion Rejector 1

VDC

→ Measure efficiency of 3rd (left out) detector

• S0, S2 and Cerenkov efficiency > 99%

Spectrometer optics calibration

Reconstructed vertex (not calibrated)

Reconstructed vertex (calibrated)

- Issue with one spectrometer magnet during Spring 2016, changed magnet during Fall 2016
- → Optics calibrations
- \rightarrow Good vertex resolution ($\sigma = 3.5$ mm with spectrometer at 15.18 deg)
- \rightarrow Good momentum resolution ($\sigma_{dp/p} = 10^{-3}$)

Spectrometer acceptance study

- R-function: computes distance (R-value) of an event to the edges of the spectrometer 4D-acceptance.
- More efficient cut than four 1D-cuts (because of correlations).
- Cut on R-value : R-cut. Data and Monte Carlo event distributions must agree for R-value > R-cut.
- MC simulation will use R-cut to compute spectrometer acceptance.

Coincidence time correction

VDC

Corrected for:

- Trigger jitter (relative time between calorimeter and spectrometer triggers)
- Calorimeter blocks relative time (cabling)
- S2m paddles relative time
- Photons travel time in S2m
- Electron travel time

Good identification of calorimeter - spectrometer coincidence allows to remove accidentals.

Calorimeter energy calibration

- Proton detected in spectrometer, electron detected in calorimeter.
- Compute expected electron energy using detected proton (elastic) : E_e,
- Reconstruct electron energy in calorimeter : E_{e}
- Adjust calorimeter blocks calibration coefficients so that $E_e = E_e$.

Calorimeter energy calibration

- Extremely fast initial loss of gain of the calorimeter blocks (radiation damage)
- Slower but continuous loss of gain afterward
- Small recovery after long down time

Calorimeter energy calibration

- Compute correction coefficients by reconstructing π^0 invariant mass.
- Optimize π^0 invariant mass mean value and resolution
- Correct calorimeter calibration coefficients between elastic calibrations

Dead time

- Use scalers to compute dead time.
- Took specific runs to check that our dead time correction is correct
- Normalized "spectrometer electron" rates corrected by dead time are independent from beam current
 - Study ongoing...

Dead time = 1 - live time

Live time = $\frac{\text{live scaler rate}}{\text{raw scaler rate}}$

Ι (μΑ)	Live Time	Normalized "spectrometer electron" rate / LT (Hz/μA)		
10.61	0.985	3.422		
15.32	0.976	3.450		
20.53	0.965	3.449		

Summary and Outlook

- Data acquisition ended in Fall 2016 with very good statistics
- Data analysis in progress
 - Calibrations complete
 - Lot of corrections/preliminary studies (almost) complete
 - Next : DIS cross-section, MC simulation, π^0 substraction, DVCS cross-section extraction, systematic uncertainties
 - 2018: Preliminary DVCS cross-sections extraction!

Thank You!

Questions?

Backup slides

DVCS cumulated statistics

Scaling tests of the DVCS cross section

Could not go back and complete kin48_[234] because of beam energy change over the summer 2016.

kinematic	% of target charge	PAC days	
1: 00 4			
kin36_1	100.0	3	
kin36_2	100.0	2	-
kin36_3	100.0	1	-
kin48_1	100.0	5	-
kin48_2	56.6	4	—
kin48_3	76.4	4	-
kin48_4	53.0	7	-
kin60_1	100.0	13	-
kin60_2	0.0	16	
kin60_3	100.0	13	—
kin60_4	0.0	20	

~50% of beam time allocation completed between 2014 and 2016.

DVCS missing mass and exclusivity

DVCS missing mass:

 $\mathrm{ep} \to \mathrm{e'}\mathrm{X}\gamma$

Missing mass² = $(e + p - e' - \gamma)^2$

Exclusivity of the DVCS process is ensured by a cut on the missing mass.

DVCS Calorimeter DAQ

- Jlab : High Luminosity → Challenge : Pile-up.
- Analog Ring Sampler boards: 1GHz Digitizer electronics, 128 ns samples.
- → Allows clear identification of DVCS photons and pile-up resolution.
- → Challenge: Large amount of data to deal with, **need "smart" trigger**.

DVCS Trigger System

- Level 1 Electron Trigger in Spectrometer :
 - Coincidence : Scintillator paddle + Gaz Cerenkov detector
- If Level 1 trigger fired → Level 2 Coincidence with Calorimeter:
 - Calorimeter ARS boards freeze
 - Look for event in Calorimeter
 - Energy threshold
- If level 2 fired → Event recorded (ARS encoding slow → dead time)
- If level 2 NOT fired → Event NOT recorded (no ARS encoding → fast)
- Then, clear ARS boards and resume acquisition

Beam energy measurement

- Beam energy calculated from the settings of the accelerator. But calibration of the method is from the "6 GeV era" → Does not yield correct beam energy value for the "12 GeV era".
- Accurate beam energy measurement: "Dispersive" method, measures beam bending in a dipole with known magnetic field.
- But beam energy shifts against time \rightarrow A few beam energy measurements is not enough for several weeks/months of running.
- Solution: Dispersive beam energy measurement provides **correction scale factor** to the value calculated from the accelerator settings.
- Conclusion: reliable beam energy using "calculated value * scale factor", run by run.
- $1 \le \text{scale factor} \le 1.003$

Quality analysis

Main rejection reasons:

- Very short runs / Very few "real" events recorded (beam trips)
- Abnormal trigger rates
- Abnormally high dead time

Fall 2016:

- Kin36_2: removed ~3.8% of total charge
- Kin36_3: removed ~5.3% of total charge
- Kin60_1: removed ~0.9% of total charge
- kin60_3: removed ~1% of total charge

Spring 2016:

- Kin48_1: removed ~1.3% of total charge
- Kin48_2: removed ~0.5% of total charge
- Kin48_3: removed ~1% of total charge
- Kin48_4: removed ~3.9% of total charge

Fall 2014:

• Kin36_1: removed negligible percentage of total charge

Raster calibration

- Raster calibration complete
- Raster size calibrated against BPM readings.

Raster calibration

LrbGmp.Raster.rawcur.x:LrbGmp.Raster2.rawcur.x

Raster 1 and 2 synchronicity in x - normalized chi2

- Failing raster power supply → loss of synchronization between raster 1 and 2.
- Calibration not possible (assumes raster 1 and 2 synchronized).
- > 50% of kin48_3 statistics affected.
- But simulation shows that error on variable reconstruction is smaller than experimental resolution.

Spectrometer – calorimeter synchronization

Mismatch monitoring

- Loss of synchronization between spectrometer and calorimeter during Fall 2016.
- 63 runs compromised (3.5 full days of production ~ 30% of kin60_1 statistics)
- Synchronization recovered using 6Hz clock signal sent to both spectrometer and calorimeter.
- Negligible loss of statistics.

Dead time

- Use scalers to compute dead time.
- Took specific runs to check that our dead time correction is correct
- Prescales effect : normalized DVCS rates well corrected by dead time (< 1%)
- Beam current effect: Normalized DVCS rates corrected by dead time are still dependent on beam current
 - Suspicion: Accidental coincidences calorimeter-spectrometer

109.4

• Study in progress...

1.0

32

4.44

Prescale	Ι (μΑ)	Live Time	DVCS rate (Hz)	(Prescale * DVCS ra	ate) / (I * L	ive Time) (Hz/μA)
1	4.41	0.164	564.6		782	
2	4.53	0.320	566.8		783	
4	4.54	0.626	561.4		790	
8	4.56	1.0	448.8		787.4	
16	4.55	1.0	224.4		789.1	

I (µA)	Live Time	Normalized DIS rate / LT (Hz/µA)	Normalized DVCS rate / LT (Hz/µA)
10.61	0.985	3.422	5.212
15.32	0.976	3.450	5.615
20.53	0.965	3.449	5.936

Dead time = 1 - live time

Live time = $\frac{\text{live scaler rate}}{\text{raw scaler rate}}$

Prescale:

 $\frac{1}{Prescale}$ events are recorded

(Recording is the main source of dead time)