Recent measurements of exclusive hadronic cross sections at BABAR and the implications for the muon g-2 calculation

Fabio Anulli INFN, Sezione di Roma On behalf of the BABAR Collaboration

Salamanca

HADRON

2017

XVII International Conference on Hadron Spectroscopy and Structure

Outline

- The question of the muon g-2
- BABAR and the initial-state radiation (ISR) method
- Recent experimental results

$$-e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}\pi^{0}$$
 arXiv:1709.01171 (05-Sep-2017)

$$-e^{+}e^{-} \to \pi^{+}\pi^{-}\eta$$
 preliminary

$$-e^{+}e^{-} \to K_{S}K_{L}\pi^{0}, K_{S}K_{L}\pi^{0}\pi^{0}, K_{S}K_{L}\eta$$
 PRD 95, 052001 (2017)

$$-e^{+}e^{-} \to K_{S}K^{+}\pi^{-}\pi^{0}, K_{S}K^{+}\pi^{-}\eta$$
 PRD 95, 092005 (2017)

- Implications for the muon g-2
- Conclusions and perspectives

The anomalous magnetic moment of the lepton

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \quad a = \frac{g - 2}{2}$$

- (1928) pointlike Dirac particles: g=2, a=0
- (1948) anomaly discovered for the electron:

$$- a_e^{\text{exp}} = (1.19 \pm 0.05) \, 10^{-3} \text{ (Kusch-Foley)}$$

- (1948) explained by $O(\alpha)$ QED corrections
 - $a_e^{\text{th}} = \alpha/2\pi = 1.16 \ 10^{-3}$ (Schwinger)
- First triumph of QED!

1st order QED corrections

 a_l sensitive to quantum fluctuations, not only from QED.

==> Must include all contributions for a precise calculation

More quantum fluctuations

$$a^{Th} = a^{SM} + a^{NP} ?$$

$$a^{Th} = a^{SM} + a^{NP}$$
? $a^{SM} = a^{QED} + a^{had} + a^{EW}$

$$\delta a_{\ell} \propto \frac{m_{\ell}^2}{M^2}$$

 a_u much more sensitive than a_e to NP. Typical gain of order $(m_u/m_e)^2 \approx 4 \times 10^4$

Status for a_{μ} before BABAR measurement

SM calculation vs experimental result (in units of 10⁻¹⁰)

QED	11 658 471.895	± 0.008	
Weak	15.4	± 0.1	
LO Hadronic Vacuum Polarization (HVP)	692.3	± 4.2	
NLO HVP	-9.79	± 0.09	
Hadronic Light by Light	10.5	± 2.6	
a_{μ}^{SM}	11 659 180.2	± 4.9	
$a_{\mu}^{\ \ exp}$ E821 @BNL: PRD73, 072	0 <mark>03 (2006)</mark> 11 659208.9	± 6.3	
$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM}$	28.7	± 8.0	→3.6σ

DHMZ: Eur. Phys. J C 71, 1515 (2011)

Main theoretical uncertainties from hadronic corrections;

- Light-by-Light: becoming important, improvements rely on lattice-QCD calculations
- Leading HVP: estimated using experimental data on e^+e^- annihilations

HVP calculations

- Quark loops not computable from QCD (low mass scale)
- Can use dispersion relations and optical theorem to relate the vertex corrections to the e^+e^- hadrons cross section

$$\operatorname{Im}\left[\begin{array}{c} \prod_{s} \left[\begin{array}{c} \prod_{s} \left(s\right) \\ \end{array}\right] \right] = \frac{\sigma^{0}\left[e^{+}e^{-} \to \operatorname{hadrons}\left(\gamma\right)\right]}{\sigma_{pt}} \equiv R(s); \quad \sigma^{0}(s) = \sigma(s)\left(\frac{\alpha}{\alpha(s)}\right)^{2}$$

Dispersion integral
$$a_{\mu}^{had,LO-HVP} = \frac{\alpha^2 m_{\mu}^2}{9\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{\hat{K}(s)}{s^2} R(s)$$

 $K(s)/s^2 \sim 1/s^2$ emphasizes the role of the processes at low energies

The hadronic cross section

In order to calculate the total cross section:

- Sum up the main contributions from experimentally measured exclusive cross sections ($\pi\pi$, 3 π , 4 π , KK, KK π , KK $\pi\pi$,...)
- Estimate the missing channels (e.g. from isospin relations)
- Above a certain energy (typically 1.8 GeV), use pQCD and cross-check with inclusive R(s) measurements

Main contributions to a_{μ} and to its error (new *BABAR* measurements included)

BABAR detector and collected data sample

Ten years of operation from 1999 to 2008

• Integrated luminosity: ~530 fb⁻¹

- NIM **A729**, 615 (2013)

Initial State Radiation at B-factories

$$\gamma_{\text{(ISR)}} \frac{d\sigma_{e^+e^- \to f\gamma}(s, m_f)}{dm_f d\cos\theta_{\gamma}^*} = \frac{2m_f}{s} W(s, x, \theta_{\gamma}^*) \cdot \sigma_{e^+e^- \to f}(m_f)$$

- The hadronic cross section $e^+e^- \rightarrow f$ can be extracted from the ISR cross section $e^+e^- \rightarrow \gamma f$.
- The radiator function W(s,x) is calculated in QED with accuracy better than 1% level

ISR studies at the $\Upsilon(4S)$ yield the same observables as low energy e^+e^- experiments!

- ➤ Quantum numbers at production vertex JPC=1⁻⁻
- ➤ Continuous ISR spectrum:
 - Access a large energy range from threshold up to $\sqrt{s} \sim 8 \text{ GeV}$
- $\triangleright \alpha_{em}$ suppression compensated by the huge luminosity
- > Comparable or better sensitivity than previous measurements based on energy scan

Common analysis strategy

- > Events selection for an ISR tagged analysis:
 - ISR photon is the γ with highest E_{γ}^{*} & with $E_{\gamma}^{*}>3$ GeV
 - All particles detected inside a fiducial volume
 - Back-to-back topology between ISR γ and the rest of the event
 - π/K/p discrimination using dE/dx and Cherenkov angle
 - Kinematic fit requiring \vec{p} and E conservation
 - mass constraint for intermediate narrow states
 - Fit χ^2 used for signal selection and background subtraction

Monte Carlo simulations and data control samples are used for detector acceptances, selection efficiencies and estimates of different background sources

The ISR program for Light Quark Mesons in BABAR

Summary of cross sections measured by BABAR

- long list of published papers
- >20 final states studied

• Four new analyses, with 7 final states discussed in this talk

Before *BABAR* measurement (for most channels):

- limited precision
- big differences among experiments
- small energy ranges covered F. Anulli Hadronic cross sections and muon g-2

$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$

arXiv:1709.01171 (submitted to Phys.Rev.D)

$E_{ m CM}({\sf GeV})$	Syst. unc.
1.2 - 2.7	3.1%
2.7 - 3.2	6.7%
> 3.2	7.1%

- Dominant ISR-background $\pi^+\pi^-3\pi^0$ removed by using data
- Most precise measurement to date
- Widest energy range
 - $0.85 < E_{CM} < 4.5 \text{ GeV}$

Contribution to
$$g_{\mu}-2$$

$$a_{\mu}(0.85 < \sqrt{s} < 1.8 \, {\rm GeV}) = \ (17.9 \pm 0.1_{
m stat} \pm 0.6_{
m syst}) imes 10^{-10}$$

• BABAR data reduce uncertainty in $a_{\mu}^{\pi+\pi-\pi0\pi0}$ by a factor of 2.5

$$e^+e^- \to \omega \pi^0 \to (\pi^+\pi^-\pi^0)\pi^0$$

Large contribution from $e^+e^- \to \omega \pi^0$ with $\omega \to \pi^+\pi^-\pi^0$

- BABAR data more precise and on much wider range than previous experiments.
- Some discrepancies resolved.

- About 8000 signal events
- Complements and improves the precision of the *BABAR* result from 2007 [PRD 76, 092005], based on 232 fb⁻¹ and the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay mode

- Data in agreement with previous data
- Similar precision below 1.6 GeV, significantly better accuracy above
- The total systematic uncertainty near the cross section maximum, 1.35-1.80 GeV, is 4.5%

$e^+e^- \rightarrow \pi^+\pi^-\eta, \eta \rightarrow \gamma\gamma$

Cross section (nb)

• Process dominated by the $\rho(770)\eta$ intermediate state, but it has a complex E_{CM} structure

Resonance model

 $\rho(770) + \rho(1450)$

 $\rho(770) - \rho(1450)$

 $\rho(770) - \rho(1450) - \rho(1700)$

 $\rho(770) - \rho(1450) + \rho(1700)$

 $\rho(770) - \rho(1450) + \rho(1700) + \rho(2150)$

vector meson don	mnance model
e^+	γ
	}
γ	V η , $\xi \sim \gamma$

\	ρ τ
7	`
	$\sim \sim 10^{-7}$
	$\gamma_{\mathbf{ISR}}$
ϵ	,1310

V = ρ (770), ρ (1450), ρ (1700), higher ρ excitations

- Coupling constants governing the decays ~real: phase differences are 0 or π only
- Need an additional resonance to describe data above E_{cm}= 2.3 GeV

model

0

1

2

3

4

Cross section (nb)

 $E_{cm} < 2.2 \text{ GeV}$

$e^+e^- \rightarrow K\overline{K}\pi\pi$

• Six different combinations in the $e^+e^- \to KK\pi\pi$ processes. Four were previously measured by BABAR:

Phys. Rev. D 89, 092002 (2014) Phys. Rev. D 86, 012008 (2012) $\sigma(e^+e^- \rightarrow K_SK_L\pi^+\pi^-)$, nb $\sigma(e^+e^- \rightarrow K^+K^-\pi^+\pi^-)$, nb - BaBar ISR $\sigma(e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ $\sigma(e^+e^- \rightarrow K_S K_S \pi^+\pi^-)$ → DM1 0.5 0.6 0.75 0.40.5 E_{c.m.} (GeV) 3.2 E_{c.m.} (GeV) 0.25E_{c.m.} (GeV)

$e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$

Phys. Rev. D95, 052001 (2017)

- First measurement of this channel
- Systematic uncertainties are 25% at the peak, grows to 60% at 2 GeV
- Dominant contribution from $K^*(892)K\pi$ intermediate state

BABAR

$e^+e^- \rightarrow K_S K^+\pi^-\pi^0$

Phys. Rev. D95, 092005 (2017)

Intermediate state			
$K^{*0}K_{S}^{0}\pi^{0}$			
$K^{*0}K^{\pm}\pi^{\mp}$			
$K_2^* (1430)^0 K_S^0 \pi^0$			
$K_2^*(1430)^0K^{\pm}\pi^{\mp}$			
$K^*(892)^{\pm}K^0_S\pi^{\mp}$			
$K^*(892)^{\pm}K^{\mp}\pi^0$			
$K_2^*(1430)^{\pm}K_S^0\pi^{\mp}$			
$K_2^*(1430)^{\pm}K^{\mp}\pi^0$			
$K^{*0} \overline{K}^{*0}$			
$K^*(892)^+K^*(892)^-$			
$K_S^0 K^{\pm} \rho(770)^{\mp}$			

- First measurement of this channel (6400 signal events)
- Systematic uncertainties are 6-7% below 2 GeV
- Very reach intermediate state composition
 - Dominant contribution from $K^*(892)K\pi$
 - Large $K_SK^+\rho(770)$ contribution; $K^*(892)^+K^*(892)^-$ is ~15%
- Large $J/\psi \rightarrow K_S K^+\pi^-\pi^0$ peak (first observation of this J/ψ decay)

$e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \eta$, $K_S K^+ \pi^- \eta$

Phys. Rev. D95, 052001 (2017)

- First measurement
- Systematic uncertainty is 10% near the peak, grows to 30% at 3.0 GeV
- Dominant K*(892)K intermediate state

- First measurement
- Systematic uncertainty is 25% at the peak, grows to 60% at 2 GeV
- First measurement
- Systematic uncertainty is 12-19% below 3 GeV
- Dominant K*(892)Kη intermediate state.

Total $e^+e^- \rightarrow KK\pi$ and $e^+e^- \rightarrow KK\pi\pi$ cross sections

From V.P. Druzhinin, EPJ Web of Conferences 142, 01013 (2017)

- All modes have now been measured by BABAR!
 - KK π covers ~12% of the total cross section for E_{CM}~1.6 GeV
 - KK $\pi\pi$ covers ~25% of the total cross section for E_{CM}~2 GeV
- Precision on $(g-2)_{\mu}$ significantly improved (no reliance on isospin)

$$a_{\mu}^{\text{KK}\pi} = (2.45 \pm 0.15) \text{ x} 10^{-10}$$

previously $(2.39 \pm 0.16) \text{ x} 10^{-10}$

$$a_{\mu}^{\text{KK}\pi\pi} = (0.85 \pm 0.05) \text{ x} 10^{-10}$$

previously $(1.35 \pm 0.39) \text{ x} 10^{-10}$

Updated a_{μ} status

SM calculation vs experimental result with latest BABAR results included (in units of 10^{-10})

QED	11 658 471.895	± 0.008	
Weak	15.4	± 0.1	
LO Hadronic Vacuum Polarization (HVP)	692.6	± 3.3	(2011) ± 4.2
NLO HVP	-9.87	± 0.09	
NNLO HVP	1.24	± 0.01	
Hadronic Light by Light	10.5	± 2.6	
a_{μ}^{SM}	11 659 181.7	± 4.2	(2011) ± 4.9
a_{μ}^{exp}	11 659209.1	± 6.3	_ 1.5
$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM}$	27.4	± 7.6	(2011) ± 8.0

M. Davier, arXiv:1612.0274 (2017)

still 3.60

Conclusions and perspectives

- BABAR pioneered the use of the ISR method to precisely measure low-energy exclusive hadronic cross sections
- New *BABAR* results reduce the uncertainty in $a_u^{had,LO}$:
 - $-e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: from ~7% to ~3%
 - $-e^+e^- \rightarrow \text{KK}\pi\pi$ (all channel are now measured!): from ~30% to ~6%
- New measurement expected soon from BABAR and other experiments (BES, CMD-3, SND)
 - in particular a new measurement $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ from *BABAR* is in progress
- Expectation from direct measurement
 - g-2 @ Fermilab target: improve precision from 0.54 to 0.14 ppb
 - E34 @ Jparc target: 0.1 ppb
- Potentially a SM breaking at $\sim 7\sigma$ could be observed with the combined progresses expected for e^+e^- data and direct g-2 measurements, should the present experiment-theory discrepancy be confirmed

Conclusions and perspectives

- BABAR pioneered the use of the ISR method to precisely measure low-energy exclusive hadronic cross sections
- New *BABAR* results reduce the uncertainty in $a_u^{had,LO}$:
 - $-e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$: from ~7% to ~3%
 - $-e^+e^- \rightarrow KK\pi\pi$ (all channel are now reasured!): from ~30% to ~6%
- New measurement expected social AR and other experiments (BES, CMD-3, SND)
 - in particular a new $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ from BABAR is in progress
- Expectation from surement
 - g-2 @ Fermilab get: improve precision from 0.54 to 0.14 ppb
 - E34 @ Jparc target: 0.1 ppb
- Potentially a SM breaking at $\sim 7\sigma$ could be observed with the combined progresses expected for e^+e^- data and direct g-2 measurements, should the present experiment-theory discrepancy be confirmed

Backup Slides

The E-821 direct a_{μ} measurement at BNL

- $\pi^+ \rightarrow \mu^+ \nu$ violates $P ==> \mu^+$ polarized
- μ^+ stored in a cyclotron: constant \overrightarrow{B} field
 - μ rotating with frequency ω_c ; spin precessing with freq. ω_s
 - $\omega_a = \omega_s \omega_c = a_u eB/m_u$
- $\mu \rightarrow ev\overline{v}$ violates P ==> e direction (energy in LAB) remembers μ polarization
 - fraction of detected e with E>E_{threshold} modulated with freq. ω_a

$$a_{\mu}^{\text{exp}}$$
 = (11 659 208.0 ± 5.4 ± 3.3) 10⁻¹⁰ E821 PRD73.072003.2006 (± 6.3) (0.54 ppm)

How to measure σ_{had}

"Conventional" method: Energy Scan

- σ_{had} measured varying the beam energies within the accessible range $\implies \sqrt{s} = 2E_b$
- Effect of ISR mitigated requiring (E,p) balance, between initial and final state

Alternative method: Radiative Return

- Developed by KLOE and BABAR
- The emission of an ISR photon lower the effective c.m. energy of the e^+e^- collision : $s \rightarrow s'=s(1-x)$
 - Study e^+e^- annihilations for a continous and wide spectrum of energies $\sqrt{s'}$ below the nominal \sqrt{s}
 - No change of operating conditions of the collider
 - Optimal use of the available luminosity

ISR studies at the $\Upsilon(4S)$ can yield the same observables as the low energy e^+e^- experiments!

ISR method in a nutshell

Born approximation
$$\frac{d\sigma_{e^+e^- \to f\gamma}(s, m_f, \theta_{\gamma}^*)}{dm \, d\cos \theta_{\gamma}^*} = \frac{2m}{s} W(s, x, \theta_{\gamma}^*) \cdot \sigma_{e^+e^- \to f}(m_f)$$

$$x = \frac{E_{\gamma}}{E_b} \qquad m^2 = s' = s(1-x) \qquad \theta_{\gamma}^* : \text{ISR photon polar}$$

$$x = \frac{E_{\gamma}}{E_{b}} \qquad m^{2} = s' = s(1-x)$$

angle in the e^+e^- c.m.

Radiator function (at lowest order):

$$w_0(s,x,\theta^*) = \frac{\alpha}{\pi x} \left| \frac{\left(2 - 2x + x^2\right)\sin^2\theta^* - \frac{x^2}{2}\sin^4\theta^*}{\left(\sin^2\theta^* + \frac{4m_e^2}{s}\cos^2\theta^*\right)^2} - \frac{4m_e^2}{s} \frac{(1 - 2x)\sin^2\theta^* - x^2\cos^4\theta^*}{\left(\sin^2\theta^* + \frac{4m_e^2}{s}\cos^2\theta^*\right)} \right|$$

cross section
$$\sigma_0(e^+e^- \to f)$$

cross section
$$\sigma_0(e^+e^- \to f)$$
 $\sigma_0(m_i) = \frac{\Delta N(m_i)}{\Delta m} \frac{1}{\varepsilon(s, m_i)(1 + \delta_{rad}) d\mathcal{L}(m_i)/dm}$
reconstruction radiative corrections ISR luminosity

ISR differential luminosity
$$\frac{d\mathcal{L}}{dm} = \frac{2m}{s} \frac{\alpha}{\pi \cdot x} \cdot \left(\left(2 - 2x + x^2 \right) \log \frac{1 + C}{1 - C} - x^2 C \right) L_{ee}$$
Luminosity integrated by the collider

 \bullet obtained from integration of the radiator function over θ_{ν}^*

- known at <1% level</p>

 $\cos heta_{ ext{min}}^*$ the collider Detector angular

acceptance

To tag or not to tag

Tagged approach:

□ fully reconstructed
 events → great
 background reduction
 □ ~90% signal loss

Untagged approach:

- © typically higher efficiency
- higher background reduced by requiring the missing mass consistent with zero

• At $\sqrt{s}=10.58$ GeV and for low m_f , (i.e. large x) the hadronic system has a large boost opposite to the photon direction ==> the efficiency is almost insensitive to tagging

This is why at *BABAR*:

- Light Quarks final states

 ⇔ Tagged analyses
- Heavy Quarks final states

 ⇔ Untagged analyses

Druzhinin et al, arXiv:1105.4975

ISR vs Energy scan

- Uniform data quality all-over the energy range no systematics from point-to-point normalization
- Statistically very competitive samples α_{em} suppression compensated by the huge luminosity integrated by B- or Φ -factories
- Boost of the hadronic system:
 - \triangleright $\varepsilon \neq 0$ at threshold
- If hard photon detected:
 - > loose hadron selection
 - ➤ hadronic system at wide angle (in LAB ref)
 - large geometric acceptance
 - ε weakly dependent on angular distribution in the c.m. of the hadrons system
- Higher (and different) background sources
 - \blacktriangleright main backgrounds from different ISR processes and $e^+e^- \rightarrow qq$ production
- Limited mass resolution (~ few MeV)

The ISR program for Light Quark Mesons in BABAR

Background to $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

Background subtracted using simulation normalized to data or using the data sideband

Largest ISR background: $\pi^+\pi^-3\pi^0\gamma_{ISR}$

- Cross section not well measured; only previous measurement is from 1979
- Perform new measurement using similar techniques to that used for the $\pi^+\pi^-\pi^0\pi^0$ cross section
- Obtain reliable background estimate, adjusting the shape and normalization of $e^+e^- \rightarrow \pi^+\pi^-3\pi^0$ in the simulation

