

Elena Zemlyanichkina on behalf of the COMPASS Collaboration

Joint Institute for Nuclear Research Dubna, Russia

COMPASS at CERN

COmmon Muon and Proton Apparatus for Structure and Spectroscopy COMPASS TARGET:

120 cm total length 2 or 3 cells, oppositely polarised material: ⁶LiD or NH₃ polarisation: about 50% or 90%2.5 T solenoid field

Polarised BEAM: about 80%

 μ^{+} at 160 (200) GeV/c

FEATURES

angular acceptance: ± 180 mrad track reconstruction:

p > 0.5 GeV/c

 h, e, μ identification: calorimeters

and muon filters

 π , K, p identification (RICH); p > 2, 9, 18 GeV/c, respectively

DFTFCTOR

two stage spectrometer 60 m lenght about 350 detector planes

COMPASS spectrometer for muon run, NIMA 577 (2007) 455

Nucleon spin structure in DIS: $\mu + N \rightarrow \mu' + X$

$$\bullet \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{\alpha^2}{2Mq^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

- Symmetric part of $W^{\mu\nu}-$ unpolarised DIS, antisymmetric polarised DIS
- Nominally $F_{1,2}$, $q(x,Q^2) \longrightarrow g_{1,2}$, $\Delta q(x,Q^2)$ where $q=q^++q^-$, $\Delta q=q^+-q^-$, but...
- ...anomalous gluon contribution to $g_1(x,Q^2)$
- $...g_2(x,Q^2)$ has no interpretation in terms of partons.

Definitions of DIS variables...

$$Q^2=-q^2$$
 γ^* virtuality $x=Q^2/(2Pq)$ Bjorken variable $y=Pq/(Pk)$ relative γ^* energy $W=P+q$ γ^* -N cms energy

...and of the γ^* -N asymmetry (e.g. for γ^* -p):

$$A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

slide from B. Badelek, "Low x 2017"

Results on $A_1(x)$ and $g_1(x)$ at the measured values of Q^2

Phys.Lett.B 753 (2016) 18

- Phys.Lett.B 769 (2017) 034 Good agreement of new COMPASS $A_1(x)$ and $g_1(x)$ with world data
- $g_1^p(x)$ clearly positive at lowest measured x; $g_1^d(x)$ compatible with zero

The asymmetry ${\cal A}^1_p$ as a function of ${\cal Q}^2$ in bins of x

In none of the x bins, a significant \mathbb{Q}^2 dependence is observed.

World data on g_1^p and g_1^d , $Q^2 > 1$ $(\text{GeV}/c)^2$

Continuous line: COMPASS NLO QCD fit to the world data, $W^2>10~({\rm GeV}/c^2)^2$ Dashed line: extrapolation to $W^2<10~({\rm GeV}/c^2)^2$

Phys. Lett. B 753 (2016) 18

Phys. Lett. B 769 (2017) 034

Data little sensitive to Δg

Flavour separation using SIDIS data

COMPASS, Phys. Lett. B 693 (2010) 227 DSSV, Phys. Rev. D 80 (2009) 034030

SIDIS permits to separate q and \bar{q} distributions, in LO:

$$A_1^h = \frac{\sum_q e_q^2 \Delta q(x) \int D_q^h(z) dz}{\sum_q e_q^2 q(x) \int D_q^h(z) dz}$$

COMPASS: measured on both proton and deuteron targets for π^+ , π^- , K^+ , K^-

- COMPASS: LO DSS FFs and LO unpolarised MRST assumed
- NLO parametrisation of DSSV describes the data well

 $\Delta S=\int_0^1 (\Delta s(x)+\Delta \bar{s}(x)) dx=-0.09\pm 0.01\pm 0.02$ from DIS + SU(3), while from SIDIS it is compatible with zero but depends upon chosen FFs Most critical: $R_{SF}=\frac{\int D_{\bar{s}}^{K+}(z)dz}{\int D_{u}^{W+}(z)dz}$

Direct measurements of $\Delta g(x)$

Direct measurements via the cross section asymmetry for the photon-gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high p_T hadron pair (LO)): $A_{\gamma N}^{PGF} \approx \langle a_{LL}^{PGF} \rangle \frac{\Delta g}{g}$

COMPASS, EPJC 77 (2017) 209

COMPASS from SIDIS on d for any $(p_T)_h$ and at LO: $\Delta g/g = 0.113 \pm 0.038(stat.) \pm 0.036(syst.)$ at $\langle Q^2 \rangle \approx 3 (\text{GeV}/c)^2$, $\langle x_g \rangle \approx 0.1$

clearly positive gluon polarisation!

Fragmentation functions (FFs, \mathcal{D}_q^h)

- FFs describe parton fragmentation into hadrons
- FFs are needed in analysis which deals with a hadron(s) in the final state
- \bullet In Leading Order QCD, D_q^h describes probability density for a quark of flavour q to fragment into hadron of type h
- The cleanest way to access FFs is in e^+e^- annihilaton. However,
 - lacktriangle only sensitive to the sum of q+ar q fragmentation
 - flavour separation possibilities are limited
- In SIDIS data, FFs are convoluted with PDFs. However,
 - lacktriangle possibility to separate fragmentation from q and ar q
 - full flavour separation possible
- ullet By studying pp collisions with a high p_T hadrons, access to gluon fragmentation functions
- SIDIS data are crucial to understand quark fragmentation process

Multiplicity measurement

 Hadron multiplicities are defined as number of observed hadrons in a number of DIS events, in LO

$$\frac{dM^h(x,z,Q^2)}{dz} = \frac{d^3\sigma^h(x,z,Q^2)/dxdQ^2dz}{d^2\sigma^{DIS}(x,Q^2)/dxdQ^2} \label{eq:delta}$$

where z is a fraction of the virtual photon energy carried by a hadron

- Experimentally measured hadron multiplicities need to be corrected for various effects, e.g.
 - spectrometer acceptance and reconstruction program efficiency
 - RICH efficiency and purity (for π and K)
 - radiative corrections
 - diffractive vector meson production

Multiplicities of π^{\pm} on isoscalar target

- Results published in PLB 764 (2017) 001
- Some preliminary data were used in DSS+ fit
- COMPASS performed LO fit, using HKNS FF program
- ullet Results agree with world FFs. As expected $D_{fav} > D_{unf}$

For iso-scalar target:

•
$$\frac{dM^{\pi^+}}{dz} + \frac{dM^{\pi^-}}{dz} = D_{fav} + D_{unf} - \frac{2S}{5Q + 2S}(D_{fav} - D_{unf}) \approx D_{fav} + D_{unf}$$

- $Q = u + \bar{u} + d + \bar{d}$: $S = s + \bar{s}$
- $D_{fav} = D_q^h$ where q is a valence quark of h
- $ightharpoonup D_{unf} = D_q^h$ where q is NOT a valence quark of h
- $D(Q^2,z) \xrightarrow{q}$ obtained multiplicity sum is effectively independent of x
- in fixed target experiment x and Q^2 are correlated, but
 - Q^2 dependence of z integrated FF is weak

•
$$\mathcal{M}^{\pi^+}+\mathcal{M}^{\pi^-}=\int_{0.2}^{0.85}(\frac{dM^{\pi^+}}{dz}+\frac{dM^{\pi^-}}{dz})dz$$
 vs. x should be almost flat

The π^+/π^- multiplicity ratio PLB 764 (2017) 001

- Significant cancellation of experimental systematic errors
- A good agreement between HERMES and COMPASS
- ullet Difference between HERMES and JLab likely explained by different W
- A good agreement between COMPASS and EMC data for unidentified hadrons

Multiplicities of K^{\pm} on isoscalar target

- More than 620 data points
- Results published in PLB 767 (2017) 133

Kaon multiplicity sum and ratio PLB 767 (2017) 133

For iso-scalar target:

•
$$5(\frac{dM^{K^+}}{dz} + \frac{dM^{K^-}}{dz}) = \approx D_Q^K + S/QD_S^K \approx 4D_{fav}^K + 6D_{unf}^K + S/QD_S^K$$

- There are large difference observed between COMPASS and HERMES
 - shape of the distribution at low x
 - ▶ the value of $\mathcal{M}^{K^+} + \mathcal{M}^{K^-}$ at high $x \to \int D_Q$
 - $\mathcal{M}^{K^+}/\mathcal{M}^{K^-}$ multiplicity ratio (while agrees for π case)

Kaon multiplicity ratio at high z: physics motivation

- There are e^+e^- measurements of multiplicities up to z=0.98
- \bullet So far, region z > 0.85 was not investigated in SIDIS
- In LO QCD + independent fragmentation and proton target

$$\frac{dM^{K^{+}}}{dz}\frac{dz}{dM^{K^{-}}} = \frac{4uD_{fav} + (4\bar{u} + d + \bar{d} + s)D_{unf} + \bar{s}D_{str}}{4\bar{u}D_{fav} + (4u + d + \bar{d} + \bar{s})D_{unf} + sD_{str}}$$

• So far, all the studies show that $D_{unf} \approx 0$ for $z \approx 0.5$ \Rightarrow for data with z > 0.75, one can neglect it

$$\frac{dM^{K^+}}{dz}\frac{dz}{dM^{K^-}}=\frac{4uD_{fav}+\bar{s}D_{str}}{4\bar{u}D_{fav}+sD_{str}}$$
, or $\frac{dM^{K^+}}{dz}\frac{dz}{dM^{K^-}}<\frac{u}{\bar{u}}$

• For isoscalar target:
$$\frac{dM^{K^+}}{dz} \frac{dz}{dM^{K^-}} < \frac{u+d}{\bar{u}+\bar{d}}$$

Kaon multiplicity ratio at high z: physics motivation

- Typical ratio $(u+d)/(\bar{u}+\bar{d})$ at $Q^2=1.6~({\rm GeV}/c)^2$ and x=0.03:
 - ▶ 2.15 (MSTW08 LO), or 2.05 (MRST04L)
 - ▶ 1.90 ± 0.10 (NNPDF3.0L), or 2.35 ± 0.20 (NNPDF2.3)
 - ▶ 2.12 2.38 (NLO)
- ullet Note, that in NLO the cross section formula is more complex ($\sim lpha_S/2\pi$)
- In Lund string model the kaon multiplicity ratio goes (almost) in the LO QCD allowed region

Phys. Lett. B 767 (2017) 133

Kaon multiplicity ratio at high z from COMPASS

- \bullet High z region is free from kaons coming from decays of diffractively produced ϕ
- Why ratio?
 - radiative corrections largely cancel
 - experimental systematic uncertainties are also mostly canceled out
 - DIS sample is not needed
- ullet COMPASS can and DID measure kaon multiplicity ratio at high z

Kaon multiplicity ratio at high z from COMPASS Analysis

- We try to keep all the cuts as in the published kaon paper, but
 - ► z range was extended above 0.85
 - stricter cuts on K/π separation were applied
 - improved method of acceptance corrections was used
 - ▶ 4 times more data was used than in PLB 767 (2017) 133
- Here we concentrate in region of x < 0.05
 - $\langle x \rangle = 0.03$
 - $\langle Q^2 \rangle = 1.6 \; (\text{GeV}/c)^2$
 - ▶ $40000~K^+$ and K^- analysed for z>0.75

Kaon multiplicity ratio at high z from COMPASS

- Observe clear discrepancy between LO QCD expectation and data
- This discrepancy is even larger than presented in figure because of the z smearing
- Obtained result may indicate that factorisation and/or universality of FF does not hold in the studied region
- Further calculations are welcome, also at higher orders

No z unfolding, which would futher increase the ratio

Results

Kaon multiplicity ratio at high z from COMPASS

COMPASS

z unfolded kaon multiplicity ratio

- A "hybrid method" was used consisting of
 - ightharpoonup smearing matrix $z_{generated}$ vs. $z_{reconstructed}$ from MC
 - functional form assumed for the K^+ , K^- yields: $\alpha e^{(-\beta z)}(1-z)^{\gamma}$
- ullet As expected, unfolding procedure further increases the ratio K^+/K^-
- ullet However, for z < 0.95 the unfolding impact is not that dramatic

Summary

DIS gave and is giving fundamental contributions to the study of the nucleon structure. The COMPASS contribution is remarkable:

- Structure functions g_1^d and g_1^p (PLB 753 (2016) 18, and PLB 769 (2017) 034)
- Helicity PDFs (PLB 693 (2010) 227, and EPJC 77 (2017) 209)
- h^{\pm} , π^{\pm} , and K^{\pm} multiplicities from DIS on an isoscalar target
 - Large sample of precise data vs. (x, y, z) covering a wide kinematical range, constitute an important input for future FF global analysis
 - ▶ PLB 764 (2017) 001, and PLB 767 (2017) 133
- \bullet Preliminary results for the kaon multiplicity ratio K^+/K^- at high z were shown
 - Results are inconsistent with prediction of (N)LO pQCD
 - They may indicate that factorisation and/or universality of FF does not hold in the studied region
 - ▶ Hints of the problem can already be noticed in the published data
 - ▶ More calculations are needed, possibly also at higher orders