COMPASS legacy results concerning longitudinal spin structure of the nucleon

Elena Zemlyanichkina

on behalf of the COMPASS Collaboration

Joint Institute for Nuclear Research
Dubna, Russia
The COMPASS Fixed target experiment at CERN SPS

COMPASS

Common Muon Proton Apparatus for Structure and Spectroscopy

Main task: study of hadron structure and spectroscopy

Data taking since 2002

Participants:
- \(~240\) scientists
- 28 institutions from 12 countries

LHC

COMPASS

SPS

E. Zemlyanichkina (JINR, Dubna)

COMPASS legacy results

HADRON’17, 24-29 Sept.
C0mmon Muon and Proton Apparatus for Structure and Spectroscopy

TARGET:

120 cm total length
2 or 3 cells, oppositely polarised material: 6LiD or NH$_3$

polarisation: about 50% or 90%

2.5 T solenoid field

Polarised BEAM: about 80%

μ^+ at 160 (200) GeV/c

FEATURES

angular acceptance: ± 180 mrad

track reconstruction: $p > 0.5$ GeV/c

h, e, μ identification: calorimeters and muon filters

π, K, p identification (RICH);

$p > 2, 9, 18$ GeV/c, respectively

DETECTOR

two stage spectrometer

60 m length

about 350 detector planes

COMPASS spectrometer for muon run, NIMA 577 (2007) 455
Nucleon spin structure in DIS: $\mu + N \rightarrow \mu' + X$

Definitions of DIS variables...

- $Q^2 = -q^2$ \quad γ^* virtuality
- $x = Q^2/(2Pq)$ \quad Bjorken variable
- $y = Pq/(Pk)$ \quad relative γ^* energy
- $W = P + q$ \quad γ^*-N cms energy

...and of the γ^*-N asymmetry (e.g. for γ^*-p):

$A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$

Specifications:

- $\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{2Mq^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$
- Symmetric part of $W^{\mu\nu}$ – unpolarised DIS, antisymmetric – polarised DIS
- Nominally $F_{1,2}$, $q(x, Q^2) \rightarrow g_{1,2}$, $\Delta q(x, Q^2)$
- $q = q^+ + q^-$, $\Delta q = q^+ - q^-$, but...
- ...anomalous gluon contribution to $g_1(x, Q^2)$
- ...$g_2(x, Q^2)$ has no interpretation in terms of partons.

slide from B. Badelek, “Low x 2017”
Results on $A_1(x)$ and $g_1(x)$ at the measured values of Q^2

- Good agreement of new COMPASS $A_1(x)$ and $g_1(x)$ with world data
- $g_1^p(x)$ clearly positive at lowest measured x; $g_1^d(x)$ compatible with zero
The asymmetry A_p^1 as a function of Q^2 in bins of x

In none of the x bins, a significant Q^2 dependence is observed.
World data on g_1^p and g_1^d, $Q^2 > 1$ (GeV/c)^2

Continuous line: COMPASS NLO QCD fit to the world data, $W^2 > 10$ (GeV/c^2)^2
Dashed line: extrapolation to $W^2 < 10$ (GeV/c^2)^2

Data little sensitive to Δg
Flavour separation using SIDIS data

SIDIS permits to separate q and \bar{q} distributions, in LO:

\[A_1^h = \frac{\sum_q e_q^2 \Delta q(x) \int D_q^h(z)dz}{\sum_q e_q^2 q(x) \int D_q^h(z)dz} \]

COMPASS: measured on both proton and deuteron targets for π^+, π^-, K^+, K^-

COMPASS: LO DSS FFs and LO unpolarised MRST assumed

NLO parametrisation of DSSV describes the data well

\[\Delta S = \int_0^1 (\Delta s(x) + \Delta \bar{s}(x))dx = -0.09 \pm 0.01 \pm 0.02 \] from DIS + SU(3), while from SIDIS it is compatible with zero but depends upon chosen FFs

Most critical:

\[R_{SF} = \frac{\int D_{\bar{s}}^{K^+}(z)dz}{\int D_u^{K^+}(z)dz} \]

\[\Delta S = \int_0^1 (\Delta s(x) + \Delta \bar{s}(x))dx = -0.09 \pm 0.01 \pm 0.02 \] from DIS + SU(3), while from SIDIS it is compatible with zero but depends upon chosen FFs

Most critical:

\[R_{SF} = \frac{\int D_{\bar{s}}^{K^+}(z)dz}{\int D_u^{K^+}(z)dz} \]
Direct measurements of $\Delta g(x)$

Direct measurements via the cross section asymmetry for the photon-gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high p_T hadron pair (LO)): $A_{\gamma N}^{PGF} \approx \langle a_{LL}^{PGF} \rangle \frac{\Delta g}{g}$

COMPASS, EPJC 77 (2017) 209

COMPASS from SIDIS on d for any $(p_T)_h$ and at LO:
$\Delta g/g = 0.113 \pm 0.038\,(\text{stat.}) \pm 0.036\,(\text{syst.})$ at $\langle Q^2 \rangle \approx 3\,(\text{GeV}/c)^2$, $\langle x_g \rangle \approx 0.1$

clearly positive gluon polarisation!
Fragmentation functions (FFs, D_{qh}^h)

- FFs describe parton fragmentation into hadrons
- FFs are needed in analysis which deals with a hadron(s) in the final state
- In Leading Order QCD, D_{qh}^h describes probability density for a quark of flavour q to fragment into hadron of type h
- The cleanest way to access FFs is in e^+e^- annihilation. However,
 - only sensitive to the sum of $q + \bar{q}$ fragmentation
 - flavour separation possibilities are limited
- In SIDIS data, FFs are convoluted with PDFs. However,
 - possibility to separate fragmentation from q and \bar{q}
 - full flavour separation possible
- By studying pp collisions with a high p_T hadrons, access to gluon fragmentation functions
- SIDIS data are crucial to understand quark fragmentation process
Multiplicity measurement

- Hadron multiplicities are defined as number of observed hadrons in a number of DIS events, in LO

\[
\frac{dM^h(x, z, Q^2)}{dz} = \frac{d^3\sigma^h(x, z, Q^2)/dx dQ^2 dz}{d^2\sigma^{DIS}(x, Q^2)/dx dQ^2}
\]

where \(z \) is a fraction of the virtual photon energy carried by a hadron

- Experimentally measured hadron multiplicities need to be corrected for various effects, e.g.
 - spectrometer acceptance and reconstruction program efficiency
 - RICH efficiency and purity (for \(\pi \) and \(K \))
 - radiative corrections
 - diffractive vector meson production
Multiplicities of π^{\pm} on isoscalar target

- Results published in PLB 764 (2017) 001
- Some preliminary data were used in DSS+ fit
- COMPASS performed LO fit, using HKNS FF program
- Results agree with world FFs. As expected $D_{fav} > D_{unf}$
The π multiplicity sum

For iso-scalar target:

$$\frac{dM^{\pi^+}}{dz} + \frac{dM^{\pi^-}}{dz} = D_{fav} + D_{unf} - \frac{2S}{5Q+2S}(D_{fav} - D_{unf}) \approx D_{fav} + D_{unf}$$

- $Q = u + \bar{u} + d + \bar{d}; S = s + \bar{s}$
- $D_{fav} = D_{q}^h$ where q is a valence quark of h
- $D_{unf} = D_{\bar{q}}^h$ where q is NOT a valence quark of h
- $D(Q^2, z) \rightarrow$ obtained multiplicity sum is effectively independent of x
- in fixed target experiment x and Q^2 are correlated, but Q^2 dependence of z integrated FF is weak

$$M^{\pi^+} + M^{\pi^-} = \int_{0.2}^{0.85} \left(\frac{dM^{\pi^+}}{dz} + \frac{dM^{\pi^-}}{dz} \right) dz \text{ vs. } x \text{ should be almost flat}$$
The π^+ / π^- multiplicity ratio

- Significant cancellation of experimental systematic errors
- A good agreement between HERMES and COMPASS
- Difference between HERMES and JLab likely explained by different W
- A good agreement between COMPASS and EMC data for unidentified hadrons
Multiplicities of K^\pm on isoscalar target

- More than 620 data points
- Results published in PLB 767 (2017) 133
Kaon multiplicity sum and ratio

For iso-scalar target:

\[5\left(\frac{dM^{K^+}}{dz} + \frac{dM^{K^-}}{dz}\right) \approx D^K_Q + S/Q D^K_S \approx 4D^K_{fav} + 6D^K_{unf} + S/Q D^K_S \]

There are large differences observed between COMPASS and HERMES:

- shape of the distribution at low \(x \)
- the value of \(M^{K^+} + M^{K^-} \) at high \(x \) \(\rightarrow \int D_Q \)
- \(M^{K^+} / M^{K^-} \) multiplicity ratio (while agrees for \(\pi \) case)
Kaon multiplicity ratio at high z: physics motivation

- There are e^+e^- measurements of multiplicities up to $z = 0.98$

- So far, region $z > 0.85$ was not investigated in SIDIS

In LO QCD + independent fragmentation and proton target

$$\frac{dM_{K^+}}{dz} \frac{dz}{dM_{K^-}} = \frac{4uD_{fav} + (4\bar{u} + d + d + s)D_{unf} + \bar{s}D_{str}}{4\bar{u}D_{fav} + (4u + d + d + \bar{s})D_{unf} + sD_{str}}$$

So far, all the studies show that $D_{unf} \approx 0$ for $z \approx 0.5$

\Rightarrow for data with $z > 0.75$, one can neglect it

$$\frac{dM_{K^+}}{dz} \frac{dz}{dM_{K^-}} = \frac{4uD_{fav} + \bar{s}D_{str}}{4\bar{u}D_{fav} + sD_{str}}$$, or

$$\frac{dM_{K^+}}{dz} < \frac{u}{\bar{u}}$$

- For isoscalar target:

$$\frac{dM_{K^+}}{dz} \frac{dz}{dM_{K^-}} < \frac{u+d}{\bar{u}+d}$$
Kaon multiplicity ratio at high z: physics motivation

- Typical ratio $(u + d)/(\bar{u} + \bar{d})$ at $Q^2 = 1.6$ (GeV/c)2 and $x = 0.03$:
 - 2.15 (MSTW08 LO), or 2.05 (MRST04L)
 - 1.90 ± 0.10 (NNPDF3.0L), or 2.35 ± 0.20 (NNPDF2.3)
 - $2.12 - 2.38$ (NLO)

- Note, that in NLO the cross section formula is more complex ($\sim \alpha_S/2\pi$)

- In Lund string model the kaon multiplicity ratio goes (almost) in the LO QCD allowed region

E. Zemlyanichkina (JINR, Dubna)
Kaon multiplicity ratio at high z from COMPASS

• High z region is free from kaons coming from decays of diffractively produced ϕ

• Why ratio?
 ▶ radiative corrections largely cancel
 ▶ experimental systematic uncertainties are also mostly canceled out
 ▶ DIS sample is not needed

• COMPASS can and DID measure kaon multiplicity ratio at high z
Kaon multiplicity ratio at high z from COMPASS Analysis

- We try to keep all the cuts as in the published kaon paper, but
 - z range was extended above 0.85
 - stricter cuts on K/π separation were applied
 - improved method of acceptance corrections was used
 - 4 times more data was used than in PLB 767 (2017) 133

- Here we concentrate in region of $x < 0.05$
 - $\langle x \rangle = 0.03$
 - $\langle Q^2 \rangle = 1.6$ (GeV/c)2
 - 40000 K^+ and K^- analysed for $z > 0.75$
Results

- Observe clear discrepancy between LO QCD expectation and data
- This discrepancy is even larger than presented in figure because of the z smearing
- Obtained result may indicate that factorisation and/or universality of FF does not hold in the studied region
- Further calculations are welcome, also at higher orders

No z unfolding, which would further increase the ratio
Kaon multiplicity ratio at high z from COMPASS

z unfolded kaon multiplicity ratio

- A “hybrid method” was used consisting of
 - smearing matrix $z_{\text{generated}}$ vs. $z_{\text{reconstructed}}$ from MC
 - functional form assumed for the K^+, K^- yields: $\alpha e^{-\beta z} (1 - z)^\gamma$

- As expected, unfolding procedure further increases the ratio K^+/K^-
- However, for $z < 0.95$ the unfolding impact is not that dramatic

![Graph showing the unfolded kaon multiplicity ratio](image)
Summary

DIS gave and is giving fundamental contributions to the study of the nucleon structure. The COMPASS contribution is remarkable:

- **Structure functions** g_1^d and g_1^p (PLB 753 (2016) 18, and PLB 769 (2017) 034)
- **Helicity PDFs** (PLB 693 (2010) 227, and EPJC 77 (2017) 209)
- h^\pm, π^\pm, and K^\pm multiplicities from DIS on an isoscalar target
 - Large sample of precise data vs. (x, y, z) covering a wide kinematical range, constitute an important input for future FF global analysis
 - PLB 764 (2017) 001, and PLB 767 (2017) 133
- **Preliminary results** for the kaon multiplicity ratio K^+/K^- at high z were shown
 - Results are inconsistent with prediction of (N)LO pQCD
 - They may indicate that factorisation and/or universality of FF does not hold in the studied region
 - Hints of the problem can already be noticed in the published data
 - More calculations are needed, possibly also at higher orders