On the structure observed in the in-flight ${}^{3}\text{He}(K^{-}, \Lambda p)n$ reaction at J-PARC

Takayasu SEKIHARA

(Japan Atomic Energy Agency)

in collaboration with

Eulogio OSET (Valencia Univ.)

and Angels RAMOS (Barcelona Univ.)

[1] <u>T. S.</u>, E. Oset and A. Ramos, *PTEP* <u>2016</u> 123D03

[2] <u>T. S.</u>, E. Oset and A. Ramos, JPS Conf. Proc. <u>13</u> (2017) 020002.

[3] <u>T. S.</u>, E. Oset and A. Ramos, Acta Phys. Polon. <u>B</u> (201x) xxx [arXiv:1709.08487 [nucl-th]].

Contents

1. Introduction

firon1

2. What makes the peak structure in the J-PARC E15 experiment ?

Kaonic nuclei

++ From NN to hadron-hadron interaction ++
 Our ultimate goal: To understand completely the strong interaction between various combinations of hadrons.
 --- cf. π meson exchange for the NN interaction.

++ Kaonic nuclei ++

 Because KN interaction is strong enough to make a bound state, there should exist kaonic nuclei, which are bound states of K and nuclei via strong interaction between them.

Kaonic nuclei should exist !!

There are several motivations to study kaonic nuclei:

- 1. Exotic states of many-body systems in strong interaction.
- **2.** Feedback to the \overline{KN} interaction.
- 3. Kaons in finite nuclear density.

++ The "*K*− *pp*" state ++

The KNN (I=1/2) state --- so-called "K - pp" state --- is the simplest state of the kaonic nuclei.

There have been many studies on this state.

<u>Theoretical studies</u>:

Akaishi and Yamazaki, *Phys. Rev.* <u>C65</u> (2002) 044005; Shevchenko, Gal and Mares, *Phys. Rev. Lett.* <u>98</u> (2007) 082301; Ikeda and Sato, *Phys. Rev.* <u>C76</u> (2007) 035203; Dote, Hyodo and Weise, *Nucl. Phys.* <u>A804</u> (2008) 197; Wycech and Green, *Phys. Rev.* <u>C79</u> (2009) 014001; Bayar, Yamagata-Sekihara and Oset, *Phys. Rev.* <u>C84</u> (2011) 015209; Barnea, Gal and Liverts, *Phys. Lett.* <u>B712</u> (2012) 132; ...

Experimental studies:

- M. Agnello et al. [FINUDA], Phys. Rev. Lett. 94 (2005) 212303;
- T. Yamazaki et al. [DISTO], Phys. Rev. Lett. 104 (2010) 132502;
- A. O. Tokiyasu et al. [LEPS], Phys. Lett. <u>B728</u> (2014) 616;
- Y. Ichikawa et al. [J-PARC E27], PTEP 2015 021D01; 061D01;
- T. Hashimoto et al. [J-PARC E15], PTEP 2015 061D01; ...

--- However, this state is still controversial.

--- However, this state is still controversial.

JAEA Hiron

--- However, this state is still controversial.

JAEA Hiron

-- However, this state is still controversial.

JAEA Hiron

++ J-PARC E15 data ++

Recently, the J-PARC E15 collaboration has observed a structure

near the \overline{KNN} threshold in the in-flight ³He (K^- , Λp) *n* reaction.

Y. Sada et al., PTEP 2016 051D01.

++ J-PARC E15 data ++

Recently, the J-PARC E15 collaboration has observed a structure

near the $\overline{K}NN$ threshold in the in-flight ³He (K^- , Λp) *n* reaction.

Y. Sada et al., PTEP <u>2016</u>051D01.

++ J-PARC E15 data ++

Recently, the J-PARC E15 collaboration has observed a structure

near the \overline{KNN} threshold in the in-flight ³He (K^- , Λp) *n* reaction.

2. What makes the peak structure in the J-PARC E15 experiment ?

17

 $\begin{cases} K^- n \to K^- n_{\text{escape}} \\ K^- p \to \bar{K}^0 n_{\text{escape}} \end{cases}$

• Amplitude T_1 ($k_{lab} = 1 \text{ GeV/c}$):

--- Fitted so as to reproduce the Exp. $d\sigma/d\Omega$.

Note: Form factor for the \overline{K} absorption also favors forward n.

XVII International Conference on Hadron Spectroscopy and Structure @ Salamanca (Sep. 25 - 29, 2017)

 \overline{K}

 K^{-}

 N_{2}

³He

++ Propagating kaon ++

 The slow kaon after the first collision propagates and is absorbed into two nucleons.
 The expression of <u>the propagator</u>:

$$= \frac{1}{(p_{\text{prop}}^{\mu})^2 - m_K^2 + im_K \Gamma_K} \quad \text{--- Two-nucleon Abs.}$$
width $\Gamma_K = 15$ MeV.

--> This can create <u>a "kinematic peak"</u>,

because the propagating kaon can go almost on its mass shell.

(1/prop~0)

 Taking the shaded box = 1. (w/o dynamics of KNN system)
 --> <u>The quasi-elastic kaon</u> scattering in the first step.

++ Scenario I: Uncorrelated $\Lambda(1405)p$ ++

• We now consider <u>scenario I</u>: Uncorrelated $\Lambda(1405)p$.

JAEA Hidroft

K

XVII International Conference on Hadron Spectroscopy and Structure @ Salamanca (Sep. 25 - 29, 2017)

 $\Lambda(1405)$ here !

even they do not bound.

++ Uncorrelated $\Lambda(1405)p$: Numerical results ++ Now we calculate the Λp mass spectrum of the ³He (K-, Λp) n

reaction in the uncorrelated $\Lambda(1405)p$ scenario.

++ Scenario II: <u>KNN</u> bound state ++

We next consider <u>scenario II</u>: <u>KNN</u> bound state. Signal is strong ?

++ **KNN** bound state: Numerical results ++

We calculate the mass spectrum in <u>scenario II</u>.

++ Data in 2nd run of J-PARC E15 ... ++

Exclusive ³He(K⁻, Λ p)n M(\(1405)+p) Sakuma-sun at MENU 2016. M(K*+p+p) $M(\Sigma + \pi)$ 20 Ap invariant mass 400r E15^{1st} Counts per 20 MeV/c² Multi-NA sur data 350 E15^{2nd} 3NA(Apn) $3NA(\Sigma pn)$ 2NA(Apn_) (x5)wo structures are seen around M[K+p+p]!? Sekihara, Öset, Ramos, RNN (A) arXiv:1607.02058 100 50 2.2 2.4 2.6 2.8 2.5 2.25 2.45 2.3 2.35 2.4 2.55 MAP [GeV] I.M.(Λp) (GeV/c²)

3. Summary

3. Summary

There should exist kaonic nuclei, generated by the strong interaction between antikaon and nuclei.

- We have investigated the origin of the peak structure near the KNN threshold in the ³He (K⁻, Λp) n reaction observed by J-PARC E15.
 We have considered 2 scenarios to create the peak.
 - 1. <u>Uncorrelated $\Lambda(1405)p$ </u>, which does not make a bound state. --> Inconsistent with the Exp. data.
 - 2. <u>*KNN* bound state</u>.
 - --> Qualitatively well reproduce the Exp. data.

- We must "prove" the E15 peak is indeed the KNN signal.
- --- Need to check consistency between experiments and theories.

* * *

- High statistics data from Exp. & More precise calc. from theory.
- Angular dependence of the peak structure.
- □ Branching ratio $\Lambda p / \Sigma^0 p$. □ Spin / parity of the structure. □ ...

Thank you very much for your kind attention !

