

Based on: Phys. Lett. B **767**, 465 (2017) [arXiv:1610.06727]

UNIVERSIDAD DE MURCIA

Miguel Albaladejo (U. Murcia)

In collaboration with: P. Fernández-Soler, F. K. Guo, J. Nieves

Outline

Introduction

- Why is $D_0^*(2400)$ interesting?
- Theoretical interpretations
- Experimental situation, LQCD simulations

2 Formalism: *T*-matrix for $D\pi$, $D\eta$, $D_s\overline{K}$

- Scattering in infinite volume
- Energy levels in a finite volume

3 Results

- Comparison with LQCD
- Spectroscopy
- Amplitudes

Gutain SU(3) light–flavor limit and other predictions (charm & bottom)

- *SU*(3) light–flavor limit
- Predictions for other sectors

5 Conclusions

- Chiral dynamics and two-state structure(s)
- Conclusions

Outline

Introduction

- Why is D^{*}₀(2400) interesting?
- Theoretical interpretations
- Experimental situation, LQCD simulations
- 2
- Scattering in infinite volume
- Energy levels in a finite volume

3

- Comparison with LQCD
- Spectroscopy
- Amplitudes
- 4
- SU(3) light–flavor limit
- Predictions for other sectors

5

- Chiral dynamics and two-state structure(s)
- Conclusions

Introduction: Why is $D_0^*(2400)$ interesting?

- Lightest open-charm $J^P = 0^+$ states: $\begin{cases}
 D_{s0}^*(2317), & (S, l) = (1, 0) \\
 D_0^*(2400), & (S, l) = \left(0, \frac{1}{2}\right)
 \end{cases}$
- Lightest systems to test **ChPT with heavy mesons**, besides $D^* \rightarrow D\pi$.
- Dπ interactions (where it shows up) are relevant, since Dπ appears as a final state in many reactions that are being considered now (*i.e.*, Z_c(3900) and D̄*Dπ)
- **Problems** with simple quark models expectations:
 - D^{*}_{s0}(2317) is around 150 MeV below the predicted mass. Godfrey, Isgur, Phys. Rev. D 32, 189 (1985); Godfrey, Moats, Phys. Rev. D 93, 034035 (2016) Lakhina, Swanson, Phys. Lett. B 650, 159 (2007); Ortega *et al.*, Phys. Rev. D 94, 074037 (2016)
 - Naively, one would expect D_{s0}^* (~ $c\bar{s}$) to be **heavier** than D_0^* (~ $c\bar{n}$).
- $D_0^*(2400)$ is important in weak interactions and CKM parameters:

Flynn, Nieves, Phys. Rev. D **76**, 031302 (2007)

MA, P. Fernandez-Soler, F.K. Guo, J. Nieves, D.L. Yao, in preparation

See De-Liang Yao's talk [Thursday, 15:35, Aula 2.3]

- It determines the shape of the scalar form factor $f_0(q^2)$ in semileptonic $D \to \pi$ decays.
- Relation to $|V_{cd}|$: $f_+(0) = f_0(0)$ and $d\Gamma \propto |V_{cd}f_+(q^2)|^2$.
- Even more interesting: the bottom analogue |V_{ub}|.

 Introduction
 Formalism: 7-matrix
 Results
 SU(3) light-flavor limit and other predictions (charm & bottom)

 C • O
 OOO
 OO

Introduction: Theoretical interpretations

cā states

Dai *et al.* Phys. Rev. D **68**, 114011 (2003) Narison, Phys. Lett. B **605**, 319 (2005) Bardeen *et al.*, Phys. Rev. D **68**, 054024 (2003) Lee *et al.*, Eur. Phys. J. C **49**, 737 (2007) Wang, Wan, Phys. Rev. D **73**, 094020 (2006)

$c\bar{q}$ + tetraquarks or meson-meson

Browder *et al.*, Phys. Lett. B **578**, 365 (2004) van Beveren, Rupp, Phys. Rev. Lett. **91**, 012003 (2003)

Pure tetraquarks

Cheng, Hou, Phys. Lett. B **566**, 193 (2003) Terasaki, Phys. Rev. D **68**, 011501 (2003) Chen, Li, Phys. Rev. Lett. **93**, 232001 (2004) Maiani *et al.*, Phys. Rev. D **71**, 014028 (2005) Bracco *et al.*, Phys. Lett. B **624**, 217 (2005) Wang, Wan, Nucl. Phys. A **778**, 22 (2006)

Heavy-light meson–meson molecules

Barnes *et al.*, Phys. Rev. D **68**, 054006 (2003) Szczepaniak, Phys. Lett. B **567**, 23 (2003) Kolomeitsev, Lutz, Phys. Lett. B **582**, 39 (2004) Hofmann, Lutz, Nucl. Phys. A **733**, 142 (2004) Guo *et al.*, Phys. Lett. B **641**, 278 (2006) Gamermann *et al.*, Phys. Rev. D **76**, 074016 (2007) Faessler *et al.*, Phys. Rev. D **76**, 014005 (2007) Flynn, Nieves, Phys. Rev. D **75**, 074024 (2007) Albaladejo *et al.*, Eur. Phys. J. C **76**, 300 (2016)

Introduction	Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
000				

Introduction: Experimental situation, LQCD simulations

• Experimental situation:

	Collab.	M (MeV)	Г/2 (MeV)	Ref.
	Belle	2308 <u>+</u> 36	138 <u>+</u> 33	Phys. Rev. D 69, 112002 (2004)
leu	BaBar	2297 <u>+</u> 22	137 <u>+</u> 25	Phys. Rev. D 79, 112004 (2009)
Z	FOCUS	2407 <u>+</u> 41	120 <u>+</u> 40	Phys. Lett. B 586 , 11 (2004)
ar.	LHCb	2360 ± 33	128 <u>+</u> 29	Phys. Rev. D 92, 012012 (2015)
С	FOCUS	2403 <u>+</u> 38	142 <u>+</u> 21	Phys. Lett. B 586 , 11 (2004)

• Lattice QCD:

Masses larger than the physical ones if using cs interpolators only.

Bali, Phys. Rev. D **68**, 071501 (2003) UKQCD Collab., Phys. Lett. B **569**, 41 (2003)

 Masses consistent with D^{*}₀(2400) and D^{*}_{s0}(2317) obtained when "meson-meson" interpolators are employed.

> Mohler, Prelovsek, Woloshyn, Phys. Rev. D **87**, 034501 (2013) Mohler *et al.*, Phys. Rev. Lett. **111**, 222001 (2013)

Recent LQCD study with $D\pi$, $D\eta$ and $D_s \bar{K}$ coupled-channel scattering. A bound state with large coupling to $D\pi$ is identified with $D_n^*(2400)$.

Hadron Spectrum Collab., JHEP 1610, 011 (2016)

cf. talks: Ch. Thomas on Monday, R. Briceño on Tuesday

Outline

1

Why is D^{*}₀(2400) interesting?

- Theoretical interpretations
- Experimental situation, LQCD simulations

Formalism: *T*-matrix for $D\pi$, $D\eta$, $D_s\overline{K}$

- Scattering in infinite volume
- Energy levels in a finite volume

3

2

- Comparison with LQCD
- Spectroscopy
- Amplitudes

4

- *SU*(3) light–flavor limit
- Predictions for other sectors

5

- Chiral dynamics and two-state structure(s)
- Conclusions

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
•00			

$D\pi$, $D\eta$, $D_s\overline{K}$ scattering: infinite volume

• Coupled channel *T*-matrix: $D\pi$, $D\eta$, $D_s\overline{K}$ scattering $[J^P = 0^+, (S, I) = (0, \frac{1}{2})]$.

• **Unitarity:**
$$T^{-1}(s) = V^{-1}(s) - G(s)$$

• Normalization: $-ip_{ii}(s)T_{ii}(s) = 4\pi\sqrt{s}(\eta_i(s)e^{2i\delta_i(s)}-1).$

- $G_{ii}(s) = G(s, m_i, M_i)$, regularized with a subtraction constant $a(\mu)$ ($\mu = 1$ GeV).
- Analytical continuations: Riemann sheets (RS) denoted as $(\xi_1 \xi_2 \xi_3)$:

 Formalism: 7-matrix
 Results
 SU(3) light-flavor limit and other predictions (charm & bottom)

 O● ○
 ○○○
 ○○○○

$D\pi$, $D\eta$, $D_s\overline{K}$ scattering: infinite volume (II)

• **Chiral symmetry** used to compute the $\mathcal{O}(\rho^2)$ potential:

$$f^{2}V_{ij}(s,t,u) = C_{\rm LO}^{ij}\frac{s-u}{4} + \sum_{a=0}^{5}h_{a}C_{a}^{ij}(s,t,u)$$

Guo *et al.*, Phys. Lett. B **666**, 251 (2008) Liu *et al.*, Phys. Rev. D **87**, 014508 (2013)

- Values of h_a and $a(\mu)$ have been **previously fixed**:
 - Fitted to reproduce scattering lengths obtained in a LQCD simulation
 - They are not fitted in this work. We make "predictions"

$D\pi$, $D\eta$, $D_s\overline{K}$ energy levels in a finite volume

- Periodic boundary conditions imposes momentum quantization
- Lüscher formalism: Commun. Math. Phys. 105, 153 (1986) Nucl. Phys. B 354, 531 (1991)

infinite volume	finite volume
$\vec{q} \in \mathbb{R}^3$	$\vec{q} = \frac{2\pi}{L}\vec{n}, \vec{n} \in \mathbb{Z}^3$
$\int d^3q$	$\frac{1}{2} \Sigma$
$J_{\mathbb{R}^3} \overline{(2\pi)^3}$	$\overline{L^3} \underset{\vec{n} \in \mathbb{Z}^3}{\angle}$

• In practice, changes in the T-matrix: $T(s) \rightarrow \widetilde{T}(s, L)$:

Döring et al., Eur. Phys. J. A 47, 139 (2011)

$$\begin{split} \mathcal{G}_{ii}(s) &\to \tilde{\mathcal{G}}_{ii}(s,L) = \mathcal{G}_{ii}(s) + \lim_{\Lambda \to \infty} \left(\frac{1}{L^3} \sum_{\vec{n}}^{|\vec{q}| < \Lambda} l_i(\vec{q}) - \int_0^{\Lambda} \frac{q^2 \mathrm{d}q}{2\pi^2} l_i(\vec{q}) \right), \\ V(s) &\to \tilde{V}(s,L) = V(s), \\ T^{-1}(s) &\to \tilde{T}^{-1}(s,L) = V^{-1}(s) - \tilde{\mathcal{G}}(s,L), \end{split}$$

• Free energy levels: $E_{n,\text{free}}^{(i)}(L) = \omega_{i1}((2\pi n/L)^2) + \omega_{i2}((2\pi n/L)^2)$

• Interacting energy levels $E_n(L)$: $\tilde{T}^{-1}(E_n^2(L), L) = 0$ (poles of the \tilde{T} -matrix).

Outline

- Why is $D_0^*(2400)$ interesting?
- Theoretical interpretations
- Experimental situation, LQCD simulations
- 2
- Scattering in infinite volume
- Energy levels in a finite volume

3 Results

- Comparison with LQCD
- Spectroscopy
- Amplitudes

4

- SU(3) light–flavor limit
- Predictions for other sectors

5

- Chiral dynamics and two-state structure(s)
- Conclusions

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

- LQCD: [G. Moir et al., JHEP 1610, 011 (2016)]
- Bands: [M. A. et al., Phys. Lett. B 767, 465 (2017)]
- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation.
- We compute E_n(L) and compare.
 No fit is performed.
- *E* > 2.7 GeV is probably beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a bound state (see below).
- Second level has large shifts w. r. t. thresholds: Resonance? (see below).

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

- LQCD: [G. Moir et al., JHEP 1610, 011 (2016)]
- Bands: [M. A. et al., Phys. Lett. B 767, 465 (2017)]
- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation.
- We compute *E_n(L)* and compare.
 No fit is performed.
- *E* > 2.7 GeV is probably beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a bound state (see below).
- Second level has large shifts w. r. t. thresholds: Resonance? (see below).

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
	000		

- LQCD: [G. Moir et al., JHEP 1610, 011 (2016)]
- Bands: [M. A. et al., Phys. Lett. B 767, 465 (2017)]
- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation.
- We compute *E_n(L)* and compare.
 No fit is performed.
- *E* > 2.7 GeV is probably beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a bound state (see below).
- Second level has large shifts w. r. t. thresholds: Resonance? (see below).

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

- LQCD: [G. Moir et al., JHEP 1610, 011 (2016)]
- Bands: [M. A. et al., Phys. Lett. B 767, 465 (2017)]
- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation.
- We compute *E_n(L)* and compare.
 No fit is performed.
- *E* > 2.7 GeV is probably beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a **bound state** (see below).
- Second level has large shifts w. r. t. thresholds: Resonance? (see below).

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
	000		

- LQCD: [G. Moir et al., JHEP 1610, 011 (2016)]
- Bands: [M. A. et al., Phys. Lett. B 767, 465 (2017)]
- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation.
- We compute *E_n(L)* and compare.
 No fit is performed.
- *E* > 2.7 GeV is probably beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a **bound state** (see below).
- Second level has large shifts w. r. t. thresholds: Resonance? (see below).

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

Latt., Low 😝 Latt., High 🖶

Meson Masses	M (MeV)	Г/2 (MeV)	RS	<i>g</i> _{Dπ}	$ g_{D\eta} $	$ g_{D_S\bar{K}} $
	2264+8	0	(000)	$7.7^{+1.2}_{-1.1}$	$0.3^{+0.5}_{-0.3}$	$4.2^{+1.1}_{-1.0}$
lattice	2468^{+32}_{-25}	113^{+18}_{-16}	(110)	$5.2^{+0.6}_{-0.4}$	$6.7^{+0.6}_{-0.4}$	$13.2^{+0.6}_{-0.5}$
	2105^{+6}_{-8}	102^{+10}_{-12}	(100)	$9.4^{+0.2}_{-0.2}$	$1.8^{+0.7}_{-0.7}$	$4.4^{+0.5}_{-0.5}$
physical	2451^{+36}_{-26}	134^{+7}_{-8}	(110)	$5.0^{+0.7}_{-0.4}$	$6.3^{+0.8}_{-0.5}$	$12.8^{+0.8}_{-0.6}$
	-26	-8	,	-0.4	-0.5	-0.6

• We also study DK, $D_s\eta$, (S, I) = (1, 0) $D_{c0}^*(2317)$: $M = 2315^{+18}_{-28}$ MeV.

• For lattice masses, we find a **bound state** (000) and a **resonance** (110)

For physical masses:

- The bound state evolves into a **resonance** (100) above $D\pi$ threshold
- The resonance varies very little, and is still a resonance (110).
- For both states, the coupling pattern is similar.
- PDG includes only one resonance, "suspiciously" lying between both.

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

Meson Masses	M (MeV)	Г/2 (MeV)	RS	<i>g</i> _{Dπ}	$ g_{D\eta} $	$ g_{D_S\bar{K}} $	
lattice	2264 ^{+ 8} -14	0	(000)	$7.7^{+1.2}_{-1.1}$	$0.3^{+0.5}_{-0.3}$	$4.2^{+1.1}_{-1.0}$	
	2468^{+32}_{-25}	113^{+18}_{-16}	(110)	$5.2^{+0.6}_{-0.4}$	$6.7^{+0.6}_{-0.4}$	$13.2^{+0.6}_{-0.5}$	
physical	2105^{+6}_{-8}	102^{+10}_{-12}	(100)	$9.4^{+0.2}_{-0.2}$	$1.8^{+0.7}_{-0.7}$	$4.4^{+0.5}_{-0.5}$	
	2451^{+36}_{-26}	134^{+7}_{-8}	(110)	$5.0^{+0.7}_{-0.4}$	$6.3^{+0.8}_{-0.5}$	$12.8^{+0.8}_{-0.6}$	
• We also study DK Dn $(Sl) = (1.0)$							

We also study
$$DK$$
, $D_s\eta$, $(S, T) = (1, 0)$
 $D_{s0}^*(2317)$: $M = 2315^{+18}_{-28}$ MeV.

- For lattice masses, we find a **bound state** (000) and a resonance (110)
- For physical masses:
 - The bound state evolves into a **resonance** (100) above $D\pi$ threshold.
 - The resonance varies very little, and is still a **resonance** (110).
 - For both states, the coupling pattern is similar.
- PDG includes only one resonance, "suspiciously" lying between both.

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

Meson Masses	M (MeV)	Г/2 (MeV)	RS	<i>g</i> _{Dπ}	$ g_{D\eta} $	$ g_{D_S\bar{K}} $
	2264 ^{+ 8} -14	0	(000)	$7.7^{+1.2}_{-1.1}$	$0.3^{+0.5}_{-0.3}$	$4.2^{+1.1}_{-1.0}$
lattice	2468 ⁺³² -25	113^{+18}_{-16}	(110)	$5.2^{+0.6}_{-0.4}$	$6.7^{+0.6}_{-0.4}$	$13.2^{+0.6}_{-0.5}$
physical	2105 ⁺⁶ -8	102^{+10}_{-12}	(100)	$9.4^{+0.2}_{-0.2}$	$1.8^{+0.7}_{-0.7}$	$4.4^{+0.5}_{-0.5}$
	2451^{+36}_{-26}	134^{+7}_{-8}	(110)	$5.0^{+0.7}_{-0.4}$	$6.3^{+0.8}_{-0.5}$	$12.8^{+0.8}_{-0.6}$

• We also study DK, $D_s\eta$, (S, I) = (1, 0) $D_{s0}^*(2317)$: $M = 2315^{+18}_{-28}$ MeV.

- For lattice masses, we find a **bound state** (000) and a resonance (110)
- For physical masses:
 - The bound state evolves into a **resonance** (100) above $D\pi$ threshold.
 - The resonance varies very little, and is still a **resonance** (110).
 - For both states, the coupling pattern is similar.
- PDG includes only one resonance, "suspiciously" lying between both.

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

Meson Masses	M (MeV)	Г/2 (MeV)	RS	<i>g</i> _{Dπ}	$ g_{D\eta} $	$ g_{D_S\bar{K}} $
1	2264 ^{+ 8} -14	0	(000)	$7.7^{+1.2}_{-1.1}$	$0.3^{+0.5}_{-0.3}$	$4.2^{+1.1}_{-1.0}$
lattice	2468 ⁺³² -25	113^{+18}_{-16}	(110)	$5.2^{+0.6}_{-0.4}$	$6.7^{+0.6}_{-0.4}$	$13.2^{+0.6}_{-0.5}$
physical	2105^{+6}_{-8}	102^{+10}_{-12}	(100)	$9.4^{+0.2}_{-0.2}$	$1.8^{+0.7}_{-0.7}$	$4.4^{+0.5}_{-0.5}$
	2451^{+36}_{-26}	134^{+7}_{-8}	(110)	$5.0^{+0.7}_{-0.4}$	$6.3^{+0.8}_{-0.5}$	$12.8^{+0.8}_{-0.6}$
			_		_	

• We also study DK, $D_s\eta$, (S, I) = (1, 0) $D_{c0}^*(2317)$: $M = 2315^{+18}_{-28}$ MeV.

- The $D_0^*(2400)$ structure is actually produced by two different states (poles), together with complicated interferences with thresholds.
- This two-state structure was previously reported, and receives now a robust support.

Kolomeitsev, Lutz, Phys. Lett. B 582, 39 (2004)

Guo et al., Phys. Lett. B 641, 278 (2006)

Guo et al., Eur. Phys. J. A 40, 171 (2009)

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	Conclusions
	000		

Results: Amplitudes

•
$$-i\rho_i(s)T_{ii}(s) = 4\pi\sqrt{s}\left(\eta_i(s)e^{2i\delta_i(s)}-1\right)$$

• Lower pole at
$$\sqrt{s} = 2.1 - 0.1 i$$
 GeV:

•
$$|T_{11}(s)|^2$$
 peaks at $\sqrt{s} \simeq 2.1$ GeV

•
$$\delta_{11}(s) = \pi/2$$
 at $\sqrt{s} \simeq 2.2$ GeV.

• Higher pole at
$$\sqrt{s} = 2.45 - 0.13 i$$
 GeV:

- Small enhancement in $|T_{D\pi}(s)|^2$.
- Clear peak in the D_sK̄ amplitude. Narrow, non-conventional shape, stretched between thresholds cusps.
- Possible tests in $B \rightarrow DPP'$ decays?

Outline

1

- Why is D^{*}₀(2400) interesting?
- Theoretical interpretations
- Experimental situation, LQCD simulations
- 2
- Scattering in infinite volume
- Energy levels in a finite volume

3

- Comparison with LQCD
- Spectroscopy
- Amplitudes

SU(3) light–flavor limit and other predictions (charm & bottom)

- *SU*(3) light–flavor limit
- Predictions for other sectors

5

- Chiral dynamics and two-state structure(s)
- Conclusions

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
		● 0 00	

SU(3) light–flavor limit

• SU(3) flavor limit: $m_i \rightarrow m = 0.49$ GeV, $M_i \rightarrow M = 1.95$ GeV.

• Irrep decomposition: $\overline{\mathbf{3}} \otimes \mathbf{8} = (\overline{\mathbf{15} \oplus \mathbf{6} \oplus \overline{\mathbf{3}}})$. *T* and *V* can be **diagonalized**:

$$\begin{split} V_d(s) &= D^{\dagger}V(s)D = \text{diag}\left(V_{\overline{15}}(s), V_{\overline{6}}(s), V_{\overline{3}}(s)\right) = \underbrace{A(s) \text{diag}(1, -1, -3)}_{I_d(s)}, \\ T_d(s) &= \text{diag}\left(T_{\overline{15}}(s), T_{\overline{6}}(s), T_{\overline{3}}(s)\right) \,. \end{split}$$

 $T_A^{-1}(s) = V_A^{-1}(s) - G(s, m, M) \quad (e.g., \text{each } T_A(s) \text{ is "single channel"}) \,.$

• $\overline{15}$ is repulsive. 6 and $\overline{3}$ are attractive. "Curiously", $\overline{3}$ admits a $c\overline{q}$ interpretation.

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
		● 0 00	

SU(3) light–flavor limit

• SU(3) flavor limit: $m_i \rightarrow m = 0.49$ GeV, $M_i \rightarrow M = 1.95$ GeV.

• Irrep decomposition: $\overline{\mathbf{3}} \otimes \mathbf{8} = (\overline{\mathbf{15} \oplus \mathbf{6} \oplus \mathbf{3}})$. *T* and *V* can be **diagonalized**:

$$\begin{split} V_d(s) &= D^{\dagger}V(s)D = \text{diag}\left(V_{\overline{15}}(s), V_{\overline{6}}(s), V_{\overline{3}}(s)\right) = \underbrace{A(s) \text{diag}(1, -1, -3)}_{I_d(s)}, \\ T_d(s) &= \text{diag}\left(T_{\overline{15}}(s), T_{\overline{6}}(s), T_{\overline{3}}(s)\right) \,. \end{split}$$

 $T_A^{-1}(s) = V_A^{-1}(s) - G(s, m, M) \quad (e.g., \text{ each } T_A(s) \text{ is "single channel"}) \,.$

• $\overline{15}$ is repulsive. 6 and $\overline{3}$ are attractive. "Curiously", $\overline{3}$ admits a $c\overline{q}$ interpretation.

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)
		0000

SU(3) light-flavor limit (II) Connecting **physical** (x = 0) and **flavor SU(3)** (x = 1) limits:

$$\begin{split} m_i &= m_i^{\rm phy} + x(m-m_i^{\rm phy}) \;, \quad (m=0.49~{\rm GeV}) \;, \\ M_i &= M_i^{\rm phy} + x(M-M_i^{\rm phy}) \;, \quad (M=1.95~{\rm GeV}) \;. \end{split}$$

- The high D₀^{*} connects with a 6 virtual state (unph. RS, below threshold).
- The low **D**^{*}₀ connects with a **3** bound state (ph. RS, below threshold).
- The D^{*}_{s0}(2317) also connects with the 3 bound state.

- The low D_0^* and the $D_{s0}^*(2317)$ are SU(3) flavor partners.
- This solves the "puzzle" of D_{s0}(2317) being lighter than D₀(2400): it is not, the lower D₀ pole (M = 2105 MeV) is lighter.

M. Albaladejo (U. Murcia): Two-pole (two-state) structure of D_0^* (2400)

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
		0000	

Predictions for other sectors: charm

					0+		1+	
(S, I)	Channels	15	6	3	М	Γ/2	М	Γ/2
(2.1)					(R) 2105 ⁺⁶ ₋₈	102^{+10}_{-12}	(R) 2240 ⁺⁵ ₋₆	93 ⁺⁹ _9
$(0, \frac{1}{2})$	$D^{(*)}\pi, D^{(*)}\eta, D^{(*)}sK$	~	1	1	(R) 2451 ⁺³⁶ ₋₂₆	134^{+7}_{-8}		
(1,0)	$D^{(*)}K$, $D^{(*)}_{s}\eta$	1	X	✓	(B) 2315 ⁺¹⁸ ₋₂₈		(B) 2436 ⁺¹⁶ ₋₂₂	
(-1,0)	$D^{(*)}\bar{K}$	×	✓	X	(V) 2342 ⁺¹³ ₋₄₁		-	
(1,1)	D _s ^(*) π, D ^(*) K	1	1	Х	-		-	

• HQSS relates 0^+ ($D_{(s)}P$) and 1^+ ($D_{(s)}^*P$) sectors: similar resonance pattern.

- Two pole structure: higher D_1 pole probably affected by ρ channels.
- $D\bar{K}$ [0⁺, (-1,0)]: this virtual state (from **6**) has a large impact on the scattering length, $a_{(-1,0)}^{D\bar{K}} \simeq 0.8$ fm. (Rest of scattering lengths are $|a| \simeq 0.1$ fm.)

Formalism: T-matrix	Results	SU(3) light–flavor limit and other predictions (charm & bottom)	
		0000	

Predictions for other sectors: bottom

					0+		1+			
(S, I)	Channels	15	6	3	М	Γ/2	M	Γ/2		
(- 1)					(R) 5537 ⁺⁹ ₋₁₁	116^{+14}_{-15}	(R) 5581 ⁺⁹ ₋₁₁	115^{+13}_{-15}		
$(0, \frac{1}{2})$	$B^{(*)}\pi, B^{(*)}\eta, B^{(*)}s$	1	1	1	(R) 5840 ⁺¹² ₋₁₃	25^{+6}_{-5}				
(1,0)	$ar{B}^{(*)}$ K, $ar{B}^{(*)}_{s}$ η	1	×	1	(B) 5724 ⁺¹⁷ ₋₂₄		(B) 5768 ⁺¹⁷ ₋₂₃			
(-1,0)	$\bar{B}^{(*)}\bar{K}$	X	✓	X	(V–B) t	hr.	(V–B) t	hr.		
(1,1)	$ar{B}_{s}^{(*)}\pi,ar{B}^{(*)}K$	✓	1	X	-		-			

- Heavy flavour symmetry relates charm (D) and bottom (\overline{B}) sectors.
- $(0, \frac{1}{2})$: B_0^* , two-pole pattern also observed.
- (−1,0): [B^(*)K̄]: very close to threshold. Relevant prediction.
 Can be either **bound or virtual** (6) within our errors.
- (1, 1): [B̄_sπ, B̄K, 0⁺], X(5568) channel. No state is found: 15 and 6. If it exists, it is not dynamically generated in B_sπ, BK̄ interactions.

M. A. et al., Phys. Lett. B 757, 515 (2016); Guo et al., Commun. Theor. Phys. 65, 593 (2016)

• (1,0): Our results for $B_{s_0}^*$ and B_{s_1} agree with **other results** from LQCD:

Lang et al., Phys. Lett. B 750, 17 (2015); M. A. et al. Eur. Phys. J. C77, 170 (2017)

Outline

1

- Why is D^{*}₀(2400) interesting?
- Theoretical interpretations
- Experimental situation, LQCD simulations
- 2
- Scattering in infinite volume
- Energy levels in a finite volume

3

- Comparison with LQCD
- Spectroscopy
- Amplitudes

4

SU(3) light–flavor limit
 Predictions for other sector:

S Conclusions

- Chiral dynamics and two-state structure(s)
- Conclusions

Chiral dynamics and two-state structure(s)

• Other famous two-poles structures rooted in chiral dynamics:

 $\Lambda(1405)\left[\Sigma\pi,\,N\bar{K}\right]$

Oller, Meißner, Phys. Lett. B **500**, 263 (2001) Jido *et al.*, Nucl. Phys. A **725**, 181 (2003) García-Recio *et al.*, Phys. Lett. B **582**, 49 (2004) Magas *et al.*, Phys. Rev. Lett. **95**, 052301 (2005) $K_1(1270)$

Roca *et al.*, Phys. Rev. D **72**, 014002 (2005) Geng *et al.*, Phys. Rev. D **75**, 014017 (2007) García-Recio *et al.*, Phys. Rev. D **83**, 016007 (2011)

• Chiral dynamics:

- Incorporates the SU(3) light-flavor structure,
- Determines the strength of the interaction,
- Ensures lightness of Goldstone bosons, which in turn separates generating channels from higher hadronic channels.

Formalism: T-matrix	Results	SU(3) light-flavor limit and other predictions (charm & bottom)	Conclusions ○●

Conclusions

- We have studied $D\pi$, $D\eta$, $D_s\bar{K}$ scattering $[0^+, (S, I) = (0, \frac{1}{2})]$
- So far only one pole reported experimentally, but...
- We have presented a strong support for the **existence of two** D_0^* (2400) states (different poles), based on a succesful, no-fitting comparison of our *T*-matrix with the energy levels of a recent LQCD simulation.
- A SU(3) study shows that $D_{s0}^{*}(2317)$ and the lower $D_{0}^{*}(2400)$ are flavour partners: they complete a $\overline{3}$ multiplet.
- The lower pole ($M = 2105^{+6}_{-8}$ MeV) is **lighter** than $D^*_{s0}(2317)$, solving this apparent contradiction.
- Predictions for other sectors (heavy vectors, bottom sector) have been also given. In particular:
 - The two-pole structure is also seen in the **bottom sector**.
 - A very **near-threshold** state (bound or virtual) is predicted for BK ($\overline{B}\overline{K}$).

Based on: Phys. Lett. B **767**, 465 (2017) [arXiv:1610.06727]

UNIVERSIDAD DE MURCIA

Miguel Albaladejo (U. Murcia)

In collaboration with: P. Fernández-Soler, F. K. Guo, J. Nieves

Connecting SU(3) and physical limits Riemann sheets

Riemann sheets:

 $\mathcal{G}_{ii}(S)$ -

SU(3) limit:

$$\mathcal{G}_{ii}(S) + i \frac{p_i(S)}{4\pi\sqrt{S}} \xi_i \qquad \qquad m_i = m_i^{\text{phy}} + x(m - m_i^{\text{phy}}) , \quad (m = 0.49 \text{ GeV}) , \\ M_i = M_i^{\text{phy}} + x(M - M_i^{\text{phy}}) , \quad (M = 1.95 \text{ GeV}) .$$

- Physical case (x = 0): RS specified by ($\xi_1 \xi_2 \xi_3$), $\xi_i = 0$ or 1.
- SU(3) symmetric case (x = 1): all channels have the same threshold, so there are only two RS (000) and (111).
- To connect the **lower pole** with the T₆ virtual state,

$$\xi_3=x \qquad (1,1,0) \rightarrow (1,1,x)$$

• To connect the **lower pole** with the T_3 bound state,

$$\xi_1 = 1 - x \qquad (1, 0, 0) \to (1 - x, 0, 0)$$

Lattice QCD parameterization

Parameters																				
	$g_i^{(0)}$ $g_i^{(1)}$				$\gamma_{ij}^{(0)}$							$\gamma_{ij}^{(1)}$						$\chi^2/N_{\rm dof}$		
m	1	2	3	1	2	3	11	12	13	22	23	33	11	12	13	22	23	33		
✓	1	-	1	-	-	-	1	-	-	~	-	1	-	-	-	-	-	-	6	3.35
1	1	-	1	-	-	-	1	1	-	\checkmark	-	1	-	-	-	-	-	-	7	2.70
1	1	-	1	-	-	-	1	-	1	\checkmark	-	1	-	-	-	-	-	-	7	3.14
✓	1	-	1	-	-	-	1	-	-	✓	✓	1	-	-	-	-	-	-	7	2.13
✓	1	√	-	-	-	-	1	-	-	~	-	~	-	-	-	-	-	-	6	13.1
1	1	√	-	-	-	-	1	~	-	\checkmark	-	~	-	-	-	-	-	-	7	11.7
✓	1	√	-	-	-	-	1	-	~	\checkmark	-	~	-	-	-	-	-	-	7	2.07
✓	1	✓	-	-	-	-	1	-	-	✓	✓	✓	-	-	-	-	-	-	7	2.07
✓	1	√	1	-	-	-	1	-	-	~	-	✓	-	-	-	-	-	-	7	1.76
✓	1	√	1	-	-	-	1	✓	-	\checkmark	-	✓	-	-	-	-	-	-	8	1.71
✓	1	✓	1	-	-	-	1	1	✓	✓	-	✓	-	-	-	-	-	-	9	1.76
✓	1	1	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	5	2.15
1	1	✓	1	-	-	-	-	-	-	-	-	-	1	-	-	~	-	-	6	1.78
1	1	✓	1	-	-	-	-	-	-	-	-	-	1	-	-	~	-	1	7	1.71
✓	1	1	1	1	-	-	1	-	-	~	-	-	-	-	-	-	-	-	8	1.68
✓	1	✓	1	1	-	-	1	-	-	-	-	✓	-	-	-	-	-	-	7	2.01
✓	1	✓	✓	1	-	-	1	-	-	✓	-	\checkmark	-	-	-	-	-	-	8	1.63
✓	1	✓	1	1	1	-	1	-	-	✓	-	✓	-	-	-	-	-	-	9	1.66
✓	1	✓	✓	1	-	✓	1	-	-	✓	-	\checkmark	-	-	-	-	-	-	9	1.68

Table 11. The S-wave t-matrix parametrisations used in section 3.3.1 where " \checkmark " denotes a free parameter and " \ddagger " a parameter fixed to zero. The channel labels are ordered by increasing mass, $1 = D\pi$, $2 = D\eta$ and $3 = D_s \tilde{K}$. The forms shown also included a free P-wave part contributing an additional 3 parameters. Forms with $\chi^2/N_{dof} > 1.9$ (shown in italics) were not used in our final analysis as described in the text of section 3.3.1. JHEP10(2016)011