

The charged and neutral Zc states at BESIII Pei-Rong Li University of Chinese Academy of Sciences, Beijing

(On behalf of the BESIII collaboration)

Pei-RongLi

XVII International Conference on Hadron Spectroscopy and Structure(Hadron2017)

Introduction

The BESIII Experiment

• The Z_c states

Summary

Constitution of hadrons in QCD

ordinary matter

π=ūd

Mesons are color-

anticolor pairs

Other possible combinations of quarks and gluons :

Baryons are red-blue-

green triplets

Λ=usd

However, none of them are established and they are exotica!!!

S

EXAMPLE SITE SET UP: SET UP:

Pei-RongLi

Features of the BEPC Energy Region

- Rich of resonances: charmonia(-like) and charmed hadrons
- Threshold characteristics (pairs of τ , D, D_s, Λ_c ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the new hadrons: glueballs, hybrids, multi-quark states

The Zc states

Z states: charmonium-like states carrying electric charge; must contain at least cc and a light qq pair

- Couples to *cc*
- Has electric charge 1
- \rightarrow consists of at least four quarks of $c\bar{c}u\bar{d}$

Pei-RongLi

Hadron2017, Salamanca, Spain

from APS/Alan Stonebraker

EESII Confirmations from other experiments

Consistent results from other electron-positron annihilation experiments!

- > Its mass lies close to the threshold of $m(D)+m(D^*)$
 - DD* molecule?

tetraquark? and other scenarios:

• Cusp?

. . .

• Threshold effect?

Other decay mode of the Zc(3900)?
Partner(s) of the Zc?

$\mathbf{H} = \mathbf{H}^+ e^- \rightarrow \pi^- Z^+_{\ c} (3885) \rightarrow \pi^- (\mathrm{DD}^*)^+ \text{ at } 4.26 \mathrm{GeV}$

Pei-RongLi

EXAMPLE Structures and Cross sections in $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$

PRL111, 242001 (2013)

Simultaneous fit to 4.23/4.26/4.36 GeV data and $16 \eta_c$ decay modes: 8.9 σ M(Z_c(4020)) = 4022.9\pm0.8\pm2.7 MeV; Γ (Z_c(4020)) = 7.9\pm2.7\pm2.6 MeV

$$\sigma(e^+e^- \to \pi^{\pm}Z_c(3900)^{\mp} \to \pi^+\pi^-h_c)$$
 <13 pb @4.23GeV
<11 pb @4.26GeV

Pei-RongLi

$e^+e^- \rightarrow \pi^- Z^+_c (4025) \rightarrow \pi^- (D^*D^*)^+ at 4.26 GeV$

 $Z_{c}(4020)=Z_{c}(4025)?$

PRL113, 132001 (2014)

assume it as a particle, Zc(4025), and fit to the π^- recoil mass distribution

resonance parameter:

$m(Z_c(4025))$	=	$4026.3\pm2.6\pm3.7{\rm MeV/c^2},$
$\Gamma(Z_c(4025))$	=	$24.8 \pm 5.6 \pm 7.7 \mathrm{MeV}.$

401 \pm 47 Z_c(4025) events

$$\sigma(e^+e^- \to (D^*\bar{D}^*)^{\pm}\pi^{\mp})$$

=(137 ± 9 ± 15) pb

$$\frac{\sigma(e^+e^- \to Z_c^{\pm}(4025)\pi^{\mp} \to (D^*\bar{D}^*)^{\pm}\pi^{\mp})}{\sigma(e^+e^- \to (D^*\bar{D}^*)^{\pm}\pi^{\mp})} = 0.65 \pm 0.09 \pm 0.06$$

Coupling to D*D* is much larger than to π -h_c if they are the same state Pei-RongLi Hadron2017, Salamanca, Spain

EVALUATE: Discoveries of the charged Z_c^{\pm} 's by 2014

- Searching for isospin partners of these states are important to identify the nature
- Measurement of their quantum numbers

Pei-RongLi

Pei-RongLi

PRD92,092006 (2015)

$e^+e^- \rightarrow (D\underline{D}^*)^+\pi^- + c.c. (DT method)$

Good agreement between ST & DT method

Pei-RongLi

EST C The

The Zc Family at BESIII

State	Mass (MeV/c ²)	Width (MeV)	Decay	Process
Z _c (3900)±	3899.0±3.6±4.9	$46 \pm 10 \pm 20$	$\pi^{\pm}J/\psi$	$e^+e^- \to \pi^+\pi^- J/\psi$
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- ightarrow \pi^0\pi^0 J/\psi$
Z _c (3885)±	3883.9 \pm 1.5 \pm 4.2 Single D tag	24.8 \pm 3.3 \pm 11.0 Single D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- \rightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
	3881.7 \pm 1.6 \pm 2.1 Double D tag	$26.6 \pm 2.0 \pm 2.3$ Double D tag	$(D\overline{D}^*)^{\pm}$	$e^+e^- \rightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- \to (D\overline{D}^*)^0\pi^0$
Z _c (4020) [±]	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_c$	$e^+e^- ightarrow \pi^+\pi^-h_c$
Z _c (4020) ⁰	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^0 h_c$	$e^+e^- \to \pi^0\pi^0h_c$
Z _c (4025)±	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^\pm \pi^\mp$
Z _c (4025) ⁰	4025.5 ^{+2,0} _{-4.7} ±3.1	$23.0\pm6.0\pm1.0$	$D^*\overline{D}^*$	$e^+e^- \to (D^*\overline{D}{}^*)^0\pi^0$

Which is the nature of these states? Different decay channels of the same observed states? Other decay modes?

Pei-RongLi

EXAMPLE Spin-parity determination of the Z_c^+ (3900)

PRL 119.072001 (2017)

PRD96,032004 (2017)

Data samples:

- 16 energy points from \sqrt{s} =4.008 to 4.600 GeV.
- The total integrated luminosity (L_{int}) is 5.1 fb⁻¹.

Reconstructed modes:

Mode I: $\Psi(3686) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow l^+l^-$ ($l=e/\mu$) Mode II: $\Psi(3686) \rightarrow neutrals+J/\psi$, $neutrals=(\pi^0\pi^0, \pi^0, \eta \text{ and } \gamma\gamma) J/\psi \rightarrow l^+l^-$ ($l=e/\mu$)

Looking at the Dalitz plots in large data set \rightarrow quite different behaviors

Simple fit to the resonant structure of $\pi^+\psi(3686)$ at 4.416GeV

- A prominent narrow structure is observed in $\pi\psi(3686)$ mass spectrum for data at $\sqrt{s} = 4.416$ GeV.
- An S-wave Breit-Wigner fit function is performed on the Dalitz plot of $M^2(\pi^+\psi(3686))$ versus $M^2(\pi^-\psi(3686))$ $\frac{p \cdot q/c^2}{(M_R^2 - x)^2 + M_R^2 \cdot \Gamma^2/c^4} + \frac{p \cdot q/c^2}{(M_R^2 - y) + M_R^2 \cdot \Gamma^2/c^4}$
- The fit yields a mass of M=4032.1 \pm 2.4 MeV/c² and a width of Γ =26.1 \pm 5.3 MeV, with a significance of 9.2 σ

PRD96,032004 (2017)

A CARE A

Check on the resonance structures at other energy points

- Similar fits are carried out to data at $\sqrt{s} = 4.258$ and 4.358 GeV.
- No fit is applied at $\sqrt{s} = 4.226$ GeV due to its different behavior on the Dalitz plot and anomalous spectrum in M²($\pi^+\pi^-$). **PRD96,032004 (2017)**

- In the fits to data of 4.258 and 4.358 GeV, the $\pi^+\psi(3686)$ resonance parameters are fixed to that at 4.416 GeV. The resonances are confirmed with stat. significances of 9.6 σ and 3.6 σ at 4.258 and 4.358 GeV, respectively.
- At 4.226 GeV, the resonance structures are close to the kinematic boundary

Decay channel:

$$e^+e^- \to \pi^0\pi^0\psi(3686),$$

 $\psi(3686) \to \pi^+\pi^- J/\psi, \quad J/\psi \to l^+l^-(l=e/\mu).$

Data sample

- ▶ 16 energy point from $\sqrt{s} = 4.008$ to 4.600 GeV.
- The total luminosity(\mathcal{L}): 5.2 fb⁻¹.

Exploration of the intermediate structure

Pei-RongLi

Hadron2017, Salamanca, Spain

Simple fits to the $\pi^0 \psi$ (3686) resonance

- A possible intermediate state is also observed in the $\pi^0 \psi(3686)$ spectrum at 4.416 GeV.
- A 2D fit with a fixed width to charged structure observed in $e^+e^ \rightarrow \pi^+\pi^-\psi(3686)$ is performed on the Dalitz distribution of $M^2(\pi^0\psi(3686))$ vs $M^2(\pi^0\psi(3686))$.

$$\frac{p_1 \cdot q_1/c^2}{(x - M_R^2)^2 + M_R^2 \cdot \Gamma^2/c^4} + \frac{p_2 \cdot q_2/c^2}{(y - M_R^2)^2 + M_R^2 \cdot \Gamma^2/c^4}$$

• The fit yields a mass (4038.7 \pm 6.5) MeV/c² (Prel.) with a significance 6.0 σ .

• consistent with the resonance in the charged mode $\pi^+\psi(3686)$

• Similar fits with fixed width and mass are carried out to the data sample at 4.258 and 4.358 GeV.

Comparison to the study of $Z' \rightarrow \pi^+ \psi(3686)$ at Belle

ISR returned productions of $\pi^-\pi^+\psi(2S)$ at Belle

Belle, Phys.Rev. D91, 112007 (2015)

• The charged $\pi^+\psi(3686)$ structure is about 4.030 GeV/c² at BESIII

> M=4030.3 \pm 0.1 MeV/c² Γ =5.1 \pm 0.2 MeV

 BESIII's result deviates from that of the structure observed by Belle by over 3σ.

Multiquark Hybrid Hadrocharmonium

Molecule Threshold effects Cusps

States or/and interactions

What is the role of threshold

--Many new observations near thresholds: D*D,D*D*, D₁D, ...

* Phase variations appear in many process: not unique for resonance

To have a complete picture, more findings are desired

Summary

• BESIII is successfully operating since 2008

– Continue taking data beyond 2020 in the τ -charm mass region

- Observations of the Zc states in the final states of $\pi^+ J/\psi$, $\pi^+ h_c$, $\pi^+ \psi$ (3686), D<u>D</u>* and D*<u>D</u>*
- Amplitude analysis on the Zc(3900) gives J^P=1⁺
 → more similar works on other Zc candidate states are ongoing
- We find complex behavior in Dalitz plots in the charged mode e⁺e⁻ →π⁺π⁻ψ(3686) and the neutral mode e⁺e⁻ →π⁰π⁰ψ(3686)
 ✓ A resonance structure of πψ(3686) around 4.030 GeV is observed
 ✓ Still unresolved discrepancies between the fit model and data.
 - \checkmark This deviates from that of the structure observed by Belle

Thank you!!

Amplitude analysis of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

PRL 119.072001 (2017)

(c)

(a) (b) In the process $e^+e^- \rightarrow \gamma^* \rightarrow \pi^+\pi^- J / \psi$

- The helicity value of γ^* is taken as $\lambda_0 = \pm 1$ due to from e+e- annihination
- $\gamma^* \rightarrow \mathbf{Z}_c^{\pm} \pi^m$, $\mathbf{Z}_c^{\pm} \rightarrow \mathbf{J} / \psi \pi^{\pm}$, we try \mathbf{J}^p for X: $\mathbf{0}^-$, $\mathbf{1}^-$, $\mathbf{1}^+$, $\mathbf{2}^-$, $\mathbf{2}^+$, and $\mathbf{0}^+$ is not allowed
- Z⁺_c and Z⁻_c states are assumed as isospin partner, with the same mass and coupling constant
- Six processes are inclued in fitting to data: σ_0 , $\mathbf{f}_0(980)$, $\mathbf{f}_2(1270)$, $\mathbf{f}_0(1370)$, \mathbf{Z}_c^{\pm} , and $\pi^+\pi^-\mathbf{J}/\psi$

EXAMPLE SIME Determiend properties of the $Z_c^+(3900)$

• If Z_c is parameterized with a Flatte-like formula $M_{pole} = 3881.2 \pm 4.2 \pm 52.7$ MeV, $\Gamma_{pole} = 51.8 \pm 4.6 \pm 36.0$ MeV $g_1' = 0.075 \pm 0.006 \pm 0.025$ GeV²

 $g_2 \, ' g_1 \, ' = 27.1 \pm 2.0 \pm 1.9$

(consistent with the previous published results)

- Born cross section for $e^+e^- \rightarrow Z_c^+\pi^- + c.c. \rightarrow \pi^+\pi^- J/\psi$ $21.8 \pm 1.0 \pm 4.4$ pb at 4.23 GeV $11.0 \pm 1.2 \pm 5.4$ pb at 4.26 GeV
- Search for $e^+e^- \rightarrow Z_c^+(4020)\pi^- + c.c. \rightarrow \pi^+\pi^- J/\psi$ gives upper limits at 90% C.L.:

<0.9 pb at 4.23 GeV; <1.4 pb at 4.26 GeV

then
$$\frac{\sigma(e^+e^- \to Z_c^+(4020) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)}{\sigma(e^+e^- \to Z_c^+(3900) \ \pi^- + c.c \to \pi^+\pi^- J/\psi)} < 4\%$$
 at 4.23 GeV
<13% at 4.26 GeV