

Hidden charm pentaquarks in $\Lambda_b \rightarrow J/\Psi \ \mathrm{K}^{\mathrm{-}} \ \mathrm{p}$

Luis Roca

University of Murcia (Spain)

Index:

- ✓ The LHCb pentaquarks, P_c(4450)⁺, P_c(4380)⁺
- \checkmark The role of the $\Lambda(1405)$ in $\Lambda_b o J/\psi \, ar K N$
- \checkmark P_c(4450)⁺ as a J^P=3/2⁻ $\bar{D}^*\Sigma_c \bar{D}^*\Sigma_c^*$ molecule
- ✓ Inclusion of more Λ 's and poor evidence for $P_c(4380)^+$

L.R., E.Oset, EPJ C, 76:591 (2016)

L.R., J.Nieves, E.Oset, PFD 92, 094003 (2015)

The LHCb pentaquarks, $P_c(4450)^+$, $P_c(4380)^+$

The $\Lambda_b \to J/\psi K^- p$ reaction was used to report the existence of two pentaguarks by the LHCb collaboration at CERN

LHCb Coll. (CERN), Phys.Rev.Lett. 115 (2015) 7, 072001

First claimed hidden-charm baryon

Best fit provides $(J^{P}(4380), J^{P}(4450)) = (3/2^{+}, 5/2^{+})$, but also possible $(3/2^{+}, 5/2^{-})$ and $(5/2^{+}, 3/2^{-})$

P_c(4380)⁺ more controversial:

No "apparent bump" in the experimental spectra

Strange Argand plot behaviour

Breit-Wigner expectation

Only "exotic baryons" quoted in the **PDG**:

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

 $P_c(4380)^+$

Status: *

A resonance seen in $\Lambda_b^0 \to P_c^+ K^-$, then $P_c \to J/\psi p$, with a significance of 9 standard deviations. The $J/\psi p$ quark content is $uudc\overline{c}$, a pentaquark. See also the $P_c(4450)^+$. In the best amplitude fit, the two states have opposite parity, one having J=3/2, the other J=5/2.

Extraction of the pentaquark signals requires some understanding of the dominant K^-p background. AAIJ 15P used a model-dependent approach. AAIJ 16AG reanalyzed the data making minimal assumptions about the K^-p background, and thus confirmed the strong significance of the pentaquark signals.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

 $P_c(4450)^+$

Status: *

A resonance seen in $\Lambda_b^0 \to P_c^+ K^-$, then $P_c \to J/\psi \, p$, with a significance of 12 standard deviations. The $J/\psi \, p$ quark content is $uudc\bar{c}$, a pentaquark. See also the $P_c(4380)^+$. In the best amplitude fit, the two states have opposite parity, one having J=3/2, the other J=5/2.

Extraction of the pentaquark signals requires some understanding of the dominant K^-p background. AAIJ 15P used a model-dependent approach. AAIJ 16AG reanalyzed the data making minimal assumptions about the K^-p background, and thus confirmed the strong significance of the pentaquark signals.

The Λ (1405) in $\Lambda_b \to J/\psi \ \Lambda(1405)$

Large concentration of strength around threshold

 \wedge Λ (1405) relevant

The Λ (1405) in $\Lambda_b \to J/\psi \ \Lambda(1405)$

L.R., M.Mai, E.Oset and U.G.Meißner, Eur.Phys.J.C 75 (2015) 5, 218

$$\Lambda_b \to J/\psi \, \pi \Sigma \quad \Lambda_b \to J/\psi \, \bar{K} N$$

Meson-baryon amplitudes in coupled channels from chiral unitary approach

$$T = [1 - VG]^{-1}V$$

Oset,Ramos'98; Oller,Meissner'01; Jido et al'03, Hyodo et.al'03, Garcia-Recio et al.'03, ...

Two poles in the complex plane

Amplitudes in the real axis:

Couplings to different channels:

z_R	1390 + 66i	1426 + 16i
(I=0)	g_i $ g_i $	$g_i \qquad g_i $
$\pi\Sigma$	-2.5 - 1.5i (2.9)	0.42 - 1.4i 1.5
$\bar{K}N$	$1.2 + 1.7i$ $\sqrt{2.1}$	-2.5 + 0.94i 2.7
$\eta\Lambda$	0.010 + 0.77i / 0.77	-1.4 + 0.21i 1.4
$K\Xi$	-0.45 - 0.41 i 0.61	0.11 - 0.33i 0.35

Recall: no explicit resonances included! (dynamically generated from chiral dynamics and unitarity)

Provide the actual shape of the amplituds. Not Breit-Wigners!

Lowest pole dominated by $\pi\Sigma$

Highest pole dominated by KN

Resonance shape may be different for different reactions!

Our model: L.R., J.Nieves, E.Oset, arXiv:1507.04249 [hep-ph].

UChPT as explained before: $\Lambda(1405)$

 $J/\psi\,N,\; \bar{D}^*\Lambda_c,\; \bar{D}^*\Sigma_c,\; \bar{D}\Sigma_c^*$ and $\bar{D}^*\Sigma_c^*$ coupled channels Xiao, Nieves, Oset, PRD88 (2013) 056012 Wu, Molina,,Oset, Zou, PRC84 (2011) 015202

Poles at 4334 + 19i MeV, 4417 + 4i MeV and 4481 + 17i MeV

with $J^P = 3/2^-, I = 1/2$

Dominant coupling to $\bar{D}^*\Sigma_c - \bar{D}^*\Sigma_c^*$

+ unitarization

(Strength fitted to experiment)

Relative strength between both panels is not trivial at all and is a genuine prediction from the theory

Results explained with $P_c(4450)^+$ being $J^P=3/2^ \bar{D}^*\Sigma_c - \bar{D}^*\Sigma_c^*$ molecule Experimental fit allows $J^P=5/2^+$, $5/2^-$, $3/2^-$

Many Λ resonances relevant to fit the overall invariant mass spectra

Breit-Wigners with Flatté parametrization of the widths plus proper spin structure

UChPT

Results of our fit

Quality of the fit almost independent of $J^{\text{\tiny P}}$ assignments for the $\text{P}_{\text{\tiny C}}$'s

Fit without including the lowest mass pentaquak, P_c(4380)⁺:

- Similar quality of the fit

Effect of the P_c(4380)+ can be accomodated by an increase in a contact term with 5/2+ quantum numbers

(original experimental LHCb fit only included up to spin 3/2 nonresonant components)

LHCb Coll. (CERN), Phys.Rev.Lett. 115 (2015) 7, 072001

A tricky issue regarding the $\Lambda(1405)$ and a contact term...

For the $\Lambda(1405)$ channel we have

 $1 + G_{K^-p}(M_{K^-p}) t_{\bar{K}N,\bar{K}N}^{I=0}(M_{K^-p})$

Contact term negligible in exp. LHCb fit

However we get a very important contribution

NO, (by chance)

$$1 + GT = V^{-1}T,$$

$$(1 + GT)_{11} = (V^{-1}T)_{11} = \frac{T_{11}V_{22} - T_{12}V_{12}}{V_{11}V_{22} - V_{12}^2}$$

If
$$V_{12}$$
 is small $(1+GT)_{11}\simeq \frac{T_{11}}{V_{11}}\propto -T_{11}$

$$T_{11} \simeq \frac{g_1^A g_1^A}{\sqrt{s} - \sqrt{s_0^A}} + \frac{g_1^B g_1^B}{\sqrt{s} - \sqrt{s_0^B}}$$
$$T_{12} \simeq \frac{g_1^A g_2^A}{\sqrt{s} - \sqrt{s_0^A}} + \frac{g_1^B g_2^B}{\sqrt{s} - \sqrt{s_0^B}}$$

 T_{11} and T_{12} are not proportional

11: Kbar N -> Kbar N

12: Kbar N -> π Σ

and recall the $\Lambda(1405)$ has

two poles.

Summary

- P_c(4450)⁺, P_c(4380)⁺ are the only exotic baryons quoted by the PDG (1-star status)
- Only seen in one experiment and one reaction: $\Lambda_b o J/\psi K^- p$ by LHCb coll. at CERN

- The important role of $\Lambda(1405)$ in $\Lambda_b \to J/\psi \, \bar{K} N$ allows us to check the possible nature of the P_c(4450)⁺ as a J^P=3/2⁻ molecule. Results non-trivially compatible with this picture
- Further improvement: Inclusion of more Λ resonances and fit to overall spectra:
 - Good fits but similar for different J^P (not conclusive)
 - P_c(4380)⁺ not essential in the fit

effect can be mimicked by a non-resonant 5/2 contribution

BACK SLIDES

Predictions for hidden charm Baryon states

JJ Wu, R Molina, E. O, B S Zou, PRL (2010)

(I,S)	z_R	g_a				
(1/2, 0)		$\bar{D}^*\Sigma_c$	$\bar{D}^*\Lambda_c^+$	$J/\psi N$		
	4415 - 9.5i	2.83 - 0.19i	-0.07 + 0.05i	-0.85 + 0.02i		
		2.83	0.08	0.85		

In s-wave: 3/2

C W Xiao, J Nieves , E. O, PRD 2013 : $D*bar \Sigma_c*$ channel included

4417.04 + i4.11	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$ar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	0.52 - i0.07	0.08 - i0.07	2.81 - i0.07	0.12 - i0.10	0.11 - i0.51
$ g_i $	0.53	0.11	2.81	0.16	0.52
4481.04 + i17.38	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	$1.05 \pm i0.10$	0.18 - i0.09	0.12 - i0.10	0.22 - i0.05	2.84 i0.34
$ g_i $	1.05	0.20	0.16	0.22	2.86

Reflects the highest mass $\Lambda(1405)$ pole

Two different UChPT models:

✓ Higher order meson-baryon Lagrangians fitted to photoproduction and meson-baryon cross sections

Bruns, Mai, Meißner, Phys.Lett. B697 (2011) 254

✓ Lowest order chiral Lagrangian with modified kernel

(Our model explained above)

L.R., E.Oset, Phys.Rev.C 88 (2013) 055206

$$\sum |T|^2 = 3|a|^2 + |b|^2 \frac{3}{2} \vec{k}^2 + |c|^2 3 \vec{k}^2 + |e|^2 \frac{2}{3} \vec{k}^4 + |f|^2 \frac{2}{3} \vec{k}^2 \left[(\vec{p} \cdot \vec{k})^2 + \frac{1}{3} \vec{k}^2 \vec{p}^2 \right] - \frac{4}{3} \vec{k}^2 \vec{p} \cdot \vec{k} \left[\text{Re}(bf^*) - 2 \, \text{Re}(cf^*) \right],$$

$$-\frac{1}{3} \kappa p \cdot \kappa \left[\text{Re}(bf^{-}) - 2 \text{Re}(cf^{-}) \right],$$

$$a = \alpha_{1} \left(1 + G_{K^{-}p}(M_{K^{-}p}) t_{\bar{K}N,\bar{K}N}^{I=0}(M_{K^{-}p}) \right)$$

$$+ \delta_{J_{B}^{P},\frac{1}{2}}^{-1} - \alpha_{2} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4450)} + i \frac{\Gamma_{P_{c}(4450)}}{2}}$$

$$+ \delta_{J_{A}^{P},\frac{1}{2}}^{-1} - \alpha_{3} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4380)} + i \frac{\Gamma_{P_{c}(4380)}}{2}}$$

$$+ \alpha_{4} \frac{1}{M_{K^{-}p} - m_{\Lambda(1800)} + i \frac{\Gamma_{\Lambda(1800)}}{2}},$$

$$b = \frac{4}{3} \alpha_{5} \frac{1}{M_{K^{-}p} - m_{\Lambda(1600)} + i \frac{\Gamma_{\Lambda(1800)}}{2}}$$

$$+ \frac{4}{3} \alpha_{6} \frac{1}{M_{K^{-}p} - m_{\Lambda(1810)} + i \frac{\Gamma_{\Lambda(1810)}}{2}} + C_{3/2} \left[1 + \delta_{J_{B}^{P},\frac{3}{2}}^{-1} - \alpha_{2} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4450)} + i \frac{\Gamma_{P_{c}(4350)}}{2}} + \delta_{J_{A}^{P},\frac{3}{2}}^{-1} - \alpha_{3} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4380)} + i \frac{\Gamma_{P_{c}(4350)}}{2}} \right]$$

$$\begin{split} c &= -\frac{1}{3}\alpha_{5}\frac{1}{M_{K^{-}p} - m_{\Lambda(1600)} + i\frac{\Gamma_{\Lambda(1600)}}{2}} \\ &- \frac{1}{3}\alpha_{6}\frac{1}{M_{K^{-}p} - m_{\Lambda(1810)} + i\frac{\Gamma_{\Lambda(1810)}}{2}} + C_{1/2}\left[1\right. \\ &+ \delta_{J_{B}^{P}, \frac{1}{2}} - \alpha_{2} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4450)} + i\frac{\Gamma_{P_{c}(4450)}}{2}} \\ &+ \delta_{J_{A}^{P}, \frac{1}{2}} - \alpha_{3} G_{J/\psi p} \frac{g_{J/\psi p}^{2}}{M_{J/\psi p} - m_{P_{c}(4380)} + i\frac{\Gamma_{P_{c}(4380)}}{2}}\right] \\ e &= \alpha_{7}\frac{1}{M_{K^{-}p} - m_{\Lambda(1520)} + i\frac{\Gamma_{\Lambda(1520)}}{2}} \\ &+ \alpha_{8}\frac{1}{M_{K^{-}p} - m_{\Lambda(1690)} + i\frac{\Gamma_{\Lambda(1690)}}{2}}, \\ f &= C_{5/2}\left[1 + \delta_{J_{B}^{P}, \frac{5}{2}} + \alpha_{9} \frac{1}{M_{J/\psi p} - m_{P_{c}(4450)} + i\frac{\Gamma_{P_{c}(4450)}}{2}} + \delta_{J_{A}^{P}, \frac{5}{2}} + \alpha_{10} \frac{1}{M_{M^{-}p} - m_{P_{c}(4450)}}\right]. \end{split}$$