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Abstra
t: In this arti
le we analyze the 
ontribution from intermediate spin�0 and spin�2

resonan
es to the τ → νπππ de
ay by means of a 
hiral invariant Lagrangian in
orporating

these mesons. In parti
ular, we study the 
orresponding axial-ve
tor form-fa
tors. The

advantage of this pro
edure with respe
t to previous analyses is that it in
orporates 
hiral

(and isospin) invarian
e and, hen
e, the partial 
onservation of the axial-ve
tor 
urrent.

This ensures the re
overy of the right low-energy limit, des
ribed by 
hiral perturbation

theory, and the transversality of the 
urrent in the 
hiral limit at all energies. Furthermore,

the meson form-fa
tors are further improved by requiring appropriate QCD high-energy


onditions. We end up with a brief dis
ussion on its implementation in the Tauola Monte

Carlo and the prospe
ts for future analyses of Belle's data.
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1 Introdu
tion

The aim of this letter is to provide a 
oherent des
ription of the impa
t of s
alar (JPC =

0++
) and tensor mesons (JPC = 2++

) in tau de
ays with three pions in the �nal state. The

four targets of this theoreti
al analysis are

• Chiral invarian
e and (partial) axial-ve
tor 
urrent 
onservation: the 
hiral

invariant Lagrangian framework 
onsidered in this letter ensures the right QCD sym-

metries and leads to a hadroni
 matrix element whi
h is transverse (∂µJ
µ
A = 0) in the


hiral limit mq → 0 and where longitudinal 
orre
tions 
ome naturally suppressed by

mq. In addition, as isospin is a subgroup of the 
hiral symmetry, our 
hiral invariant

Lagrangian approa
h yields the right relation between the π0π0π−
and π−π−π+

tau

de
ay form-fa
tors, pres
ribed by isospin symmetry [1℄, without any further require-

ment. Likewise, we will be always assuming the other symmetries of QCD, parity and


harge 
onjugation.

1

• Low-energy limit: the 
onstru
tion of a general 
hiral invariant Lagrangian that in-


ludes the 
hiral pseudo-Goldstones and the meson resonan
es (1++
axial-ve
tor, 2++

tensor, et
.) ensures the right low-energy stru
ture and the possibility to mat
h the

low-energy e�e
tive �eld theory (EFT) of QCD, Chiral Perturbation Theory (χPT).

• On-shell des
ription: previous works, in spite of negle
ting the previous prin
iples,

have performed a �ne work in des
ribing the de
ays through axial-ve
tor and tensor

resonan
es when their intermediate momenta are near their mass shell [2, 3℄. Our

out
ome reprodu
es these previous results when the momentum k �owing through

the intermediate resonan
e propagator be
omes on-shell, this is, when k2 ≈ M2
R (for

the 
orresponding k and MR). The 
hiral invariant Lagrangian ensures that the

previous properties are ful�lled also o�-shell (k2 6= M2
R).

• High-energy limit: by imposing high-energy 
onditions and demanding the be-

haviour pres
ribed by QCD for the form-fa
tors at short-distan
es we will 
onstrain

the resonan
e parameters. Implementing these QCD prin
iples will make our theo-

reti
al determination phenomenologi
ally predi
tive.

This resonan
e 
hiral theory (RχT) approa
h to the 3π tau de
ay was 
onsidered

in the past taking into a

ount the impa
t of the ve
tor and axial-ve
tor resonan
es [4℄.

The 
orresponding 
urrent has been implemented into the Monte Carlo event generator

Tauola [5℄. The 
omparison with the unfolded distributions from the preliminary BaBar

Collaboration analysis [6℄ for the three-prong mode has demonstrated the mismat
h in the

low-energy part of the two-pion spe
trum [5℄ and was asso
iated with the la
k of the s
alar

meson multiplet in the original RχT 
urrent [4℄. The s
alar resonan
e 
ontribution was later

added to the three pion 
urrent phenomenologi
ally in Ref. [7℄. However, the 
orresponding

1

These assumptions also imply G-parity 
onservation, whi
h is a 
ombination of 
harge 
onjugation and

isospin symmetry.
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part does not obey isospin symmetry [1, 8℄ and, as a result, does not reprodu
e the proper


hiral low-energy behaviour (see the dis
ussion in Se
. 2 and App. A).

This letter fo
uses on the impa
t of the lowest s
alar (σ and f0(980)) resonan
es and the

isosinglet tensor f2(1270), whi
h may be dire
tly produ
ed from the W−
or generated via

an intermediate pion or an a1 state. Also we dis
uss the implementation of the asso
iated


urrents into Tauola and present an estimate of tensor and s
alar 
ontributions to the three-

pion partial width. In Se
. 2, one �nds the general formulae for the three-pion axial-ve
tor

form-fa
tor (AFF): the Lorentz stru
ture de
omposition and the isospin relation between

π−π−π+
and π0π0π−


hannels. In order to avoid any possible double-
ounting we have

separated the 
ontributions to the three-pion AFF in the following way: 1) previous 3π-

AFF 
omputations [4, 5℄ in
orporate the diagrams in
luding ve
tor resonan
e ex
hanges

and non-resonant 
ontributions from the O(p2) χPT Lagrangian [9℄; 2) Se
. 3 provides the


ontribution to the 3π-AFF from diagrams with s
alar ex
hanges; 3) the 
ontribution due to

spin�2 resonan
e ex
hanges is dis
ussed in Se
. 4. Se
. 5 is dedi
ated to the implementation

in the Monte Carlo generator Tauola and some basi
 numeri
al results. We provide the


on
lusions in Se
. 6 and some te
hni
al details have been relegated to the Appendi
es.

2 Axial-ve
tor form-fa
tor into three pions: general formulae

The matrix element of the tau-de
ay into the three pions is determined in terms of the

transverse form-fa
tors F1, F2 and F3 and a longitudinal one FP :

〈 3π|d̄γµγ5u|0 〉 = H3π(q2, s1, s2)
µ

= i Pµν
T (q)

[
F1(s1, s2, q

2) (p1 − p3)ν + F2(s1, s2, q
2) (p2 − p3)µ

+ F3(s1, s2, q
2) (p1 − p2)µ

]
+ i qµ FP (s1, s2, q

2) , (2.1)

with q = p1 + p2 + p3, s1 = (p2 + p3)
2
, s2 = (p3 + p1)

2
and s3 = (p1 + p2)

2
, and PT (q)

µν =

gµν − qµqν/q2. The three transverse form-fa
tors are linearly dependent and we will leave

only F1 and F2 as our basis. The longitudinal form-fa
tor FP vanishes in the 
hiral limit and

is suppressed by m2
π/q

2
[4℄. Our formulae for the hadroni
 form-fa
tors will be 
al
ulated

in the isospin limit. We will take mπ = (mπ0 +2mπ+)/3 and, in general, apply the relation

q2 = s1 + s2 + s3 − 3m2
π to express the form-fa
tors in terms of the three independent

kinemati
 variables q2, s1, s2.

Bose symmetry implies that

F1(s1, s2, q
2) = F2(s2, s1, q

2) ,

FP (s1, s2, q
2) = FP (s2, s1, q

2) , (2.2)

and therefore there are only two independent form-fa
tors, e.g., F1 and FP .

Isospin symmetry relates the matrix elements with π−π−π+
and π0π0π−

�nal states [1℄:

2

H−−+
µ (p1, p2, p3) = H00−

µ (p3, p2, p1) +H00−
µ (p3, p1, p2) . (2.3)

2

Isospin violation e�e
ts were found to be very suppressed in this de
ay, of the order of 0.4% and 10−3%,

respe
tively for the π−π−π+
and π0π0π−


hannels [10℄.
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Thus, the form-fa
tors for π−π−π+
and π0π0π−

are related in the form

Fπ−π−π+

1 (s1, s2, q
2) = Fπ0π0π−

1 (s1, s3, q
2)−Fπ0π0π−

1 (s2, s3, q
2)−Fπ0π0π−

1 (s3, s2, q
2) , (2.4)

Fπ−π−π+

P (s1, s2, q
2) = Fπ0π0π−

P (s1, s3, q
2) + Fπ0π0π−

P (s2, s3, q
2) . (2.5)

It is also possible to revert this expressions and to express the π0π0π−
matrix element in

terms of the π−π−π+
(App. D) but for sake of simpli
ity, from now on, we will always refer

to the π0π0π−
form-fa
tors and assume Eqs. (2.4) and (2.5) whenever the π−π−π+

one is

needed. The advantage of our 
hiral Lagrangian approa
h is that it implements by default

this isospin relation (and Bose symmetry, of 
ourse), as isospin is a subgroup of the 
hiral

group.

It is worth to stress that the π−π−π+
and π0π0π−

hadroni
 
urrents are in general not

the same [8, 11, 12℄. The diagrams with intermediate ve
tor and axial-ve
tor resonan
es

give the same F1(s1, s2, q
2) form-fa
tor up to a global sign di�eren
e [4℄. However, on the


ontrary to the approa
h therein, tensor and s
alar resonan
es generate 
ontributions to the

π−π−π+
and π0π0π−

hadroni
 
urrents with a di�erent kinemati
al stru
ture (determined

by Eqs. (2.4) and (2.5)). For further details on the isospin relation between 
hannels see

Refs. [1, 8, 11℄ and App. D. In the next Se
tions we will fo
us on the three-pion tree-

level produ
tion via intermediate s
alar and tensor resonan
es, whi
h will be dressed with

appropriate widths when 
ompared to data. Apart from this, we will not in
orporate other

one-loop 
ontributions like, e.g, the non-resonant triangular topologies with three internal

propagators (with the mesons KKK∗
, ππρ, et
.) and the external pions and W 
onne
ted

at the verti
es.

3 The de
ay τ → πππντ through s
alar resonan
es

We �rst 
onsider the three-pion produ
tion via an intermediate state with a s
alar S and a

pion. If isospin and C-parity are 
onserved then G-parity requires that the s
alar resonan
e

has isospin ful�lling (−1)I = +1 �i.e., even isospin�, whi
h in our 
ase implies I = 0.

The hadroni
 matrix element for the transition from an axial-ve
tor 
urrent into an

isosinglet s
alar S and a pion has the general Lorentz stru
ture [13℄

〈SI=0(k)π
−(p)|d̄γαγ5u|0 〉 = −2iPT (q)

αν pν Fa
Sπ(q

2; k2) + i qα Ha
Sπ(q

2; k2) , (3.1)

where q = k+p and the s
alar fun
tion Fa
Sπ(q

2) provides AFF into Sπ in the 
hiral limit, as

Ha
Sπ is suppressed by m2

π due to the partial 
onservation of the axial-ve
tor 
urrent. Here

the isosinglet s
alar SI=0 refers to the resonan
e without ss̄ 
omponent, SI=0 ∼ uū + dd̄,

whi
h we will relate with the lightest s
alar isos
alar resonan
e, the f0(500) or σ. We

leave the dis
ussion of the properness of this approa
h for a next Se
tion: here we will just

assume the large-NC framework [14�16℄ and the phenomenologi
al implementation will be

later worked out.

In Fig. 1, we show the three relevant diagrams that must be taken into a

ount in the

Sπ produ
tion at large NC (and analogously later in the produ
tion of a tensor resonan
e

T and a pion): a) the dire
t produ
tion W− → Sπ−
; b) the intermediate π−

produ
tion
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a) b) c)

A
S, TS, TS, T

Figure 1. Relevant diagrams for the hadroni
 tau de
ays into an isosinglet s
alar S and a pion

and its 
orresponding AFF (similar to those for the de
ay into a isosinglet tensor T and a pion).

Single straight lines stand for pions and the wavy line for the external axial-ve
tor sour
e (from an

in
oming W−

).

W− → π− → Sπ−
; 
) and the s
alar produ
tion through an intermediate axial-ve
tor

resonan
e, W− → a1 → Sπ−
.

3.1 The RχT Lagrangian for s
alar �elds

The resonan
e Lagrangian has the generi
 stru
ture

LRχT = Lnon−R +
∑

R

LR +
∑

R,R′

LRR′ + ... (3.2)

whi
h respe
tively 
ontains operators without resonan
es, operators with one resonan
e

�eld, terms with two resonan
e �elds, et
. In the 
ase of the tau de
ay into three pions

through an intermediate s
alar produ
tion, the relevant 
hiral invariant Lagrangian 
onsists

of three parts:

• Operators with one resonan
e �eld [9℄:

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LS = cd〈Suµuµ 〉+ cm〈Sχ+ 〉 , (3.3)

• Operators with an axial-ve
tor and a s
alar �eld (whi
h provides the ASπ vertex in

diagram 
) in Fig. 1) [13℄:

LAS = λAS
1 〈 {∇µS,A

µν}uν 〉 . (3.4)

Operators of the LAS Lagrangian that do not 
ontribute to the ASπ vertex are not

shown here [13℄.

• Operators without resonan
e �elds [9, 17, 18℄:

L(2)
non−R =

F 2

4
〈uµuµ + χ+ 〉 , (3.5)

This non-resonant O(p2) Lagrangian generates the W− → π−
transition vertex in

Fig. 1.a. It also provides an O(p2) 
ontribution without intermediate resonan
es to

the πππ AFF whi
h was a

ounted in previous analyses [4℄. Thus, in order to avoid

double 
ounting, we will not 
onsider these non-resonant πππ AFF diagrams.
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For the axial-ve
tor �eld Aµν = Aa
µνλ

a/
√
2 we have used the antisymmetri
 tensor

representation [9, 19℄, with

Aµν =




0 a+1 0

a−1 0 0

0 0 0




µν

+ ... (3.6)

with the dots standing for the other axial-ve
tor resonan
es of the multiplet, whi
h will not

be relevant in the present study. For the 
hiral tensors 
ontaining the light pseudos
alars,

the masses and the external ve
tor and axial-ve
tor sour
e �elds we used [9, 20℄

U = u2 = exp{πaλa/F} , DµU = ∂µU − irµU + iUℓµ , uµ = iu†(DµU)u† ,

χ± = u†χu† ± uχ†u , fµν
± = uFµν

L u† ± u†Fµν
R u , ∇µ· = ∂µ ·+[Γµ, ·] ,

Γµ = 1
2

{
u†(∂µ − irµ)u+ u(∂µ − iℓµ)u

†} , (3.7)

with the s
alar-pseudos
alar sour
e χ = 2B0diag(mu,md,ms)+ ... (the dots stand for terms

not relevant for this 
al
ulation) and Fµν
L and Fµν

R the �eld strength tensors of the left and

right sour
es, respe
tively ℓα and rα. If we are only interested in the W±

urrents one takes

ℓα = g√
2
(W+

α T+ + h.c.) and rα = 0, with T+ = Vud(λ
1 + iλ2)/2 + Vus(λ

4 + iλ5)/2. The πa

generi
ally refer to the SU(3) 
hiral pseudo-Goldstones (a = 1...8). At large NC (and for

the non-strange 
urrent) this pro
ess only o

urs for the isosinglet s
alar SI=0 ∼ uū + dd̄,

with no ss̄ strange quark 
omponent:

S =




SI=0√
2

0 0

0 SI=0√
2

0

0 0 0


 + ... (3.8)

where the dots stand for other resonan
es in the multiplet not relevant for the present work.

3.2 AFF into Sπ−

Our 
hiral invariant Lagrangian leads to the AFF predi
tion,

3

Fa
Sπ(q

2; k2) =
2cd
Fπ

+

√
2FAλ

AS
1

Fπ

q2

M2
A − q2

, (3.9)

Ha
Sπ(q

2; k2) =
4

Fπ

m2
π

q2(q2 −m2
π)

[
cd(qp) + cmq2

]
, (3.10)

with (qp) = (q2 +m2
π − k2)/2, being k2 = M2

S for an on-shell s
alar (later, when this s
alar

is 
onsidered o�-shell and de
aying in two pions with momenta pi and pj it will take the

value k2 = (pi + pj)
2
). The cm operator 
ontributes through the s-
hannel pion ex
hange

to the longitudinal form-fa
tor in Eq. (3.10).

4

3

There was a typo in the sign of the FAλ
SA
1 term of Fa

Sπ in Table A.2, App. A in Ref. [13℄. It has been


orre
ted in Eq. (3.9). The same applies to the later high-energy 
onstraint (3.14) (the �nal 
onstrained

form-fa
tor (3.15) remains nevertheless the same as in Ref. [13℄).

4

There is an indire
t large-NC 
ontribution to these form-fa
tors through the pion-wave fun
tion renor-

malization proportional to m2
π indu
ed by the s
alar Lagrangian [21℄. This e�e
tively amounts to a repla
e-
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3.3 3π-AFF through an intermediate s
alar resonan
e

Considering not only the Sπ produ
tion but also the subsequent de
ay S → ππ one obtains

the 
orresponding 
ontribution to the πππ-AFF.

Using the Lagrangian in Eqs. (3.4)�(3.5), we obtain the 
ontribution from s
alar reso-

nan
e ex
hanges to the π0π0π−
AFFs de�ned in (2.1),

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
2

3
Fa
Sπ(q

2; s3)GSππ(s3) , (3.11)

Fπ0π0π−

P (s1, s2, q
2)

∣∣∣∣
S

= Ha
Sπ(q

2; s3)GSππ(s3) , (3.12)

with qpj = (m2
π + q2− sj)/2. The ASπ form-fa
tor is the previous one in Eq. (3.9) whereas

propagation of the isosinglet S and its de
ay into ππ gives

GSππ(s3) =

√
2

F 2
π

1

M2
S − s3

[cd(s3 − 2m2
π) + 2cmm2

π] . (3.13)

Noti
e that we are giving the full result, in
luding pion mass 
orre
tions produ
ed by our

Lagrangian in Eqs. (3.4)�(3.5).

5

Requiring that the 
ontribution to the transverse 
omponent of the Πµν
AA(q) spe
tral

fun
tion vanishes implies that Fa
Sπ(q

2) −→ 0 for q2 → ∞ (see App. B), giving the 
on-

straint [13℄

FAλ
AS
1 =

√
2cd , (3.14)

and the form-fa
tor predi
tion

Fa
Sπ(q

2; s3) =
2cd
Fπ

M2
A

M2
A − q2

. (3.15)

This high-energy 
onstraint is similar to the asymptoti
 form-fa
tor high-energy behaviour

pres
ribed by Brodsky-Lepage quark-
ounting rules [22℄, whi
h imply, for instan
e, that the

pion ve
tor form-fa
tor vanishes like ∼ 1/q2 at in�nite momentum transfer [9, 22℄.

The subsequent de
ay of the s
alar into ππ is given by GSππ(s3) and would provide

the absorptive πππ 
ontribution to ImΠµν
AA. However, in the narrow-width limit for S, the

three-pion phase-spa
e integral yields a delta fun
tion δ(s3 − M2
S) that sets the s3 value

to M2
S . Thus, the integral is fa
torized into the two-body integration of |Fa

Sπ(q
2)|2 over

the Sπ−
phase-spa
e and a 
onstant angular integration over the phase-spa
e of the two

ment of F by Fπ, as shown in (3.9) and (3.10). A similar thing happens in the other form-fa
tors studied

in the next Se
tions, where this pion-wave fun
tion renormalization due to the s
alars [21℄ is taken into

a

ount in a similar way.

5

The fun
tion GSππ(s3) is not the s
alar form-fa
tor and, therefore, does not need to obey asymptoti


high-energy behaviour pres
ribed by QCD [22℄. Noti
e that only on-shell hadron matrix elements are well-

de�ned and the o�-shell behaviour is ambiguous as it 
an be modi�ed through �eld rede�nitions in the

hadroni
 generating fun
tional [17, 18℄. GSππ(s3) just provides a) the on-shell de
ay S → ππ (through its

residue at s3 = M2
S) and b) the 
ontribution to the πππ AFF from topologies with an intermediate s
alar

�either on-shell or o�-shell�.
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pions produ
ed by the s
alar. Therefore, in this limit, the large q2 behaviour of this three-

pion 
ontribution to the spe
tral fun
tion is ruled by the form-fa
tor Fa
Sπ(q

2) in the way

di
tated by Eq. (B.5) (up to a global 
onstant fa
tor). We will use this theoreti
al large�NC

information and use it to 
onstrain our form-fa
tor even if we will later model it in order

to in
lude important subleading e�e
ts in 1/NC su
h as the σ width.

6

The Sπ AFF is then ruled by the cd 
oupling in the limit m2
π ≪ q2. Even though

its pre
ise experimental value is still un
lear, more or less all analyses agree on a value

cd ∼ 30 MeV (see [23℄ and referen
es therein).

3.4 S
alar resonan
e widths

The lightest isos
alar parti
le is the broad s
alar σ, with Mpole
σ = 441+16

− 8 MeV, Γpole
σ =

544+18
−25 MeV [24℄. It is thought to 
ontain mostly just u and d quark 
omponents, where the

two�pion 
hannel is its only kinemati
ally allowed de
ay. On the other hand, as it follows

from its predominant de
ay intoKK̄, the next s
alar isosinglet, the f0(980), is 
onsidered to

have a large strange quark 
omponent, being its nπ de
ay modes are suppressed. However,

for sake of 
ompleteness we will in
lude both isos
alars into 
onsideration.

A �rst approa
h to the physi
al QCD 
ase is provided by the in
lusion of a σ�f0(980)

splitting through the substitution [23, 25℄,

1

M2
S − s

−→ cos2 φS

M2
σ − s

+
sin2 φS

M2
f0

− s
, (3.16)

where φS is the s
alar mixing angle. For the σ− f0 mixing we will use the numeri
al value

φS = −8◦ [25℄.

Due to the sin2 φS suppression the f0(980) produ
es a 
learly subdominant e�e
t with

respe
t to the impa
t of the broad σ. However, the 
omparison of the modi�ed RχT

spe
tra [7℄

7

with the unfolded distributions [6℄ from the preliminary BaBar Collaboration

τ → ντπππ analysis has shown a statisti
ally signi�
ant mismat
h: the π+π−
experimental

spe
tral fun
tion is well reprodu
ed up to 1 GeV ex
ept for a small sharp bump 
on
entrated

at 980 MeV whi
h di�ers from the f0-absent theoreti
al RχT expression by a few per
ent.

The in
lusion of the f0 and its o

urren
e here via the σ−f0 mixing in Eq. (3.16) is expe
ted

to improve the phenomenologi
al des
ription of the data.

3.4.1 In
orporating the σ meson width

So far in previous Se
tions we have 
arried on a large-NC 
omputation where one had an

intermediate ex
hange of narrow-width s
alars. This approximation seems to be suitable

6

Phenomenologi
ally, in order to study the a1 meson �nite size e�e
ts, Ref. [2℄ 
onsidered an additional

ad ho
 exponential suppression fa
tor exp{−R2|~pπ− |2/2} in addition to the analogous GSππ(s3) fun
tions.

However, the �t to the experimental data did not show an essential di�eren
e between a zero and non-zero

value of R. As a result of this, the nominal �t shown therein was the one with R = 0 (for details see Se
tion

VI of [2℄). Moreover, these exponential fa
tors do not have the right analyti
al stru
ture in the whole


omplex plane and add an exponentially divergent behaviour for some 
omplex dire
tions at |q2| → ∞.

Likewise, this fun
tional dependen
y may not 
ome from a perturbative Lagrangian 
omputation like the

one worked out in this arti
le and will not be in
orporated to our diagrammati
 results.

7

By modi�ed we mean a phenomenologi
al approa
h proposed in Se
. II of [7℄ to in
lude the σ-meson

in the hadroni
 form-fa
tors.
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for the f0(980). However, the σ meson is a broad resonan
e and the e�e
t of its width is

non-negligible. It is not our intention to enter here in the dis
ussion of the σ nature but,

rather, to propose an improved parametrization of its e�e
t on the τ → νπππ de
ay that

in
orporates the features des
ribed in the introdu
tion. For this, we follow the su

essful

analysis of subleading 1/NC e�e
ts in s
alar ex
hanges in the η′ → ηππ pro
ess [23℄: after


onsidering the s
alar splitting in (3.16), we in
orporate the �dressed� σ propagator in a

similar way by performing the substitution

1

M2
σ − s

−→ 1

M2
σ − s − fσ(s) − iMσΓσ(s)

, (3.17)

with

f(s) = cσs
k ReB0(s,m

2
π,m

2
π) =

cσ s
k

16π2

[
2− ρπ(s) ln

ρπ(s) + 1

1− ρπ(s)

]
,

MσΓσ(s) = cσs
k ImB0(s,m

2
π,m

2
π) =

cσ ρP (s) s
k

16π
, (3.18)

in the fashion of Gounaris and Sakurai [26℄. We will use the parameters Mσ and cσ
tuned su
h that one re
overs the right position for the σ pole, Mpole

σ = 441+16
− 8 MeV,

Γpole
σ = 544+18

−25 MeV [24℄. The fun
tion,

B0(s,m
2
P ,m

2
P ) =

1

16π2

[
2− ρP (s) ln

ρP (s) + 1

ρP (s)− 1

]

=
1

16π2

[
2− ρP (s) ln

ρP (s) + 1

1− ρP (s)
+ iπρP (s)

]
, (3.19)

is the subtra
ted two�point Feynman integral (B0(0,m
2
P ,m

2
P ) = 0), with

ρP (s) ≡ λ(s,m2
P ,m

2
P )

1
2/q2 =

√
1− 4m2

P /s.

One of the 
ru
ial points of the parametrization [23℄ employed here is that it in
orpo-

rates the real part of the logarithm that 
omes along with the imaginary part −iMσΓσ(s)

on the basis of analyti
ity. In the 
ase of narrow-width resonan
es, these real logs are es-

sentially negligible and 
an be dropped. However, if their 
orresponding imaginary part is

large one naturally expe
t the appearan
e of equally large real logarithms. Moreover, any

attempt to mat
h NLO χPT at low-energies must in
orporate both the real and imaginary

parts of the logs. Even though our simple approa
h [23℄ 
an be further re�ned, it already


ontains some of the basi
 ingredients that makes this mat
hing possible. Other works that

in
orporate the real and imaginary parts of the logarithm in other observables 
an be found

in Refs. [27, 28℄.

The power behaviour k = 0 produ
es an unphysi
al bound state in the �rst Riemann

sheet very 
lose below the ππ threshold, whi
h unnaturally enhan
ed the amplitude in the

η′ → ηππ [23℄, leading in that work to a very small Sππ 
oupling cd = 9.9 MeV. This 
ase

seems to be 
learly disfavoured from the phenomenologi
al point of view and was dis
arded

in the analysis of Ref. [23℄. For k = 1, the amplitude produ
es just one pole and its 
orre
t

position

√
sσpole = [(441+16

− 8 ) − i(544+18
−25)/2] MeV [24℄ is re
overed for the parameter values
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Mσ = 806.4 MeV and cσ = 76.12. 8

Power behaviours with k ≥ 2 are unable to generate

the σ pole at the right position. For its 
losest position, the pole mass is slightly larger and

the pole width is roughly 100 MeV smaller. Likewise, some spurious poles are produ
ed far

from the physi
al energy range of the problem under study.

For the numeri
al inputs we will take the sk s
aling with k = 1 in Eq. (3.18) and the

values Mσ = 806.4 MeV and cσ = 76.12. In these expressions the 
onstants Mσ and cσ that

appear in the denominator are parameters set to agree with the 
entral value of the σ pole

position spoleσ = (Mpole
σ − iΓpole

σ /2)2 from Ref. [24℄.

Our estimate of the res
attering of the ππ system related to the isosinglet s
alar is

obviously model dependent, as we have introdu
ed an ad ho
 splitting and self-energy for

the s
alar multiplet. The splitting 
an be easily introdu
ed through the 
orresponding

terms in the Lagrangian, studied in Ref. [30℄. On the other hand, the resummation of the

one-loop self-energy is also justi�ed, even for the broad σ: higher order e�e
ts (multimeson


hannels) are 
ompletely negligible below 1 GeV and the one-loop amplitude seems to

provide the 
ru
ial information in our physi
al range. Notwithstanding, this ππ �nal state

intera
tion must be appropriately resummed in the neighbourhood of the resonan
e pole,

as noted in Refs. [31, 32℄. Alternatively one might in
orporate the S-wave res
attering via

unitarization pro
edures [23, 27℄ and related dispersion relations (see, e.g., the semileptoni


B de
ay analysis [33℄).

3.4.2 In
orporating the f0 meson width

One 
an take also into a

ount the f0(980) width in a similar way. Due the sin2 φS suppres-

sion in (3.16), the f0(980) produ
es a 
learly subdominant e�e
t with respe
t to the impa
t

of the broad σ. The important pie
e of the self-energy is its imaginary part, being the

real part of its 
orresponding logarithm almost negligible in 
omparison with the leading


ontribution M2
S − s. In the 
ase of the narrow f0 resonan
e, the lo
ation of its pole near

the KK threshold will modify the f0 propagator into the well-known Flatté form [34℄

1

M2
f0

− s
−→ 1

M2
f0

− s − iMf0Γf0(s)
, (3.20)

with

Mf0Γf0(s) =
cf0M

2
f0
ρK(s)

16π
, (3.21)

whi
h is indeed the near threshold expression of the self-energy at lowest order in the

non-relativisti
 expansion in powers of the kaon three-momentum |~pK | ∼ ρK(s) [35, 36℄.

As the self-energy is only relevant for s ≈ M2
f0
, one does not need to 
onsider di�erent

cf0s
k
s
alings for the loop 
orre
tions as we did for the σ meson and the di�erent values

8

These are the 
orresponding 
entral values. Errors are not dis
ussed in this arti
le. A more detailed

numeri
al analysis is postponed for a future work. Nonetheless, one may observe that alternative σ pole

determinations like, e.g.,

√

sσ
pole

= [(457+14
−13) − i(558+22

− 14)/2] MeV [29℄, yield similar 
entral value deter-

minations Mσ = 804.1 MeV and cσ = 70.96. This variation gives a preliminary estimate of the expe
ted

un
ertainties in these quantities.
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of k amount just for di�eren
es at higher order in the non-relativisti
 expansion in ρK(s).

For spolef0
= (Mpole

f0
− iΓpole

f0
/2)2 = (990 − i70/2)2 MeV

2
[37℄

9

this implies the parameters

Mf0 = 1024 MeV and cf0 = 17.7. In spite of the fa
t that we have used the average

kaon mass mK = 496 MeV, the latter result is not very sensitive to the pre
ise position

of the KK threshold, with Mf0 and cf0 
hanging by ±0.5% and ±7%, respe
tively, when

mK is varied between the 
harged and neutral kaon mass values. By far the largest e�e
t

would be the un
ertainty in the f0 mass and width with errors of ±20 MeV and ±30 MeV,

respe
tively [37℄.

Therefore, for the numeri
al inputs we will take Mf0 = 1024 MeV and cf0 = 17.7. 10

4 The de
ay τ → πππντ through tensor resonan
es

In this se
tion we fo
us on tau de
ay into three pions through an intermediate tensor

resonan
e (JPC = 2++
) in the 
as
ade de
ay τ → ντ π

− T (→ ππ). Our study reprodu
es

the predi
tion for the tau de
ay into a tensor resonan
e and a 
hiral pseudo-Goldstone [3℄

and expands then for the 
ase of the o�-shell tensor resonan
e.

G-parity 
onservation implies that for the non-strange axial-ve
tor 
urrent (with G =

−1) the tensor resonan
e produ
ed in 
ombination with a pion must have G = (−1)I = +1

and, hen
e, even isospin. As a 
onsequen
e of this, it must be an isosinglet in the 
ase of

qq̄ multiplets (T = f2(1270), f2(1430), f
′
2(1525), f2(1565)...). In this arti
le we study the

impa
t of the lightest tensor, f2(1270), whi
h dominantly de
ays into ππ [37℄. The f ′
2(1525)

mainly goes into KK and has a negligible de
ay into ππ [37℄. The resonan
es f2(1430) and

f2(1565) and their de
ay into ππ still need further 
on�rmation [37℄. f2(1640) and heavier

tensor isosinglets are not allowed by the tau de
ay phase-spa
e.

4.1 The RχT Lagrangian for tensor �elds

The relevant part of the 
hiral invariant Lagrangian for the pion-tensor produ
tion (Fig 1)


onsists in this 
ase of

• Operators with one resonan
e �eld [9, 38℄,

11

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LT = gT 〈Tµν{uµ, uν} 〉 . (4.1)

• Operators with an axial-ve
tor and a tensor �eld (whi
h provides the ATπ vertex in

diagram 
) in Fig. 1),

LATπ = λAT
1 〈 {Tµν , A

να}hµα 〉+ λAT
2 〈 {Aαβ ,∇αT µβ}uµ 〉 , (4.2)

9

We take the 
entral PDG values here.

10

We remind that the parameter Mf0 is not the pole mass Mpole

f0
.

11

There are two more operators for LT in Ref. [38℄ allowed by 
hiral symmetry but they 
ontain the

tra
e Tα
α [38℄: ∆LT |

o�-shell

= 〈Tα
α (βuµuµ + γχ+) 〉. Sin
e they are proportional to the equations of motion

of the tensor, whi
h on-shell require it to be transverse (∇αTαβ = 0) and tra
eless (Tα
α = 0), they 
an be

removed through meson �eld rede�nitions and we will not dis
uss them in the present work.
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b)a)

Figure 2. New diagrams due to the short-distan
e O(p4) operators LSD
1,2,3. For a more detailed

explanation, see the text. The verti
es from L(4)
non−R (L(2)

non−R) are represented by squares (
ir
les).

The straight lines are pions and the wavy ones 
orrespond to the in
oming W−

.

with hαµ = ∇αuµ +∇µuα [9℄. Only the independent operators from LAT that 
on-

tribute to the ATπ vertex are shown here. We 
onstru
t here the general 
hiral

invariant operators at lowest order in derivatives, O(p2), that may 
ontribute to the

ATπ vertex.

12

• Operators without resonan
e �elds [38℄: in addition to (3.5) we have

L(4)
non−R = LSD

1 〈uµuµ 〉2 + LSD
2 〈uµuν 〉 〈uµuν 〉 + LSD

3 〈 (uµuµ)2 〉 , (4.3)

with [38℄

LSD
2 = 2LSD

1 = −LSD
3

2
= − g2T

M2
T

. (4.4)

The appearan
e of L(4)
non−R was explained in [38℄: in order to reprodu
e the 
orre
t

short-distan
e behaviour for the forward ππ s
attering �pres
ribed by the Froissart

bound [39℄� one must add non-resonant O(p4) terms with appropriate LSD
1,2,3. As a


onsequen
e this, new non-resonant diagrams generated by LSD
1,2,3 (Fig. 2) have to

be in
luded in the 
al
ulation of the 3π-AFF. Additional details from Ref. [38℄ are

provided in App. A. This problem did not appear in the s
alar and ve
tor resonan
e


ase [9℄, i.e. the introdu
tion of the s
alar and ve
tor resonan
e intera
tion, LS and

LV [4℄, did not spoil the high-energy behaviour of the forward pion s
attering and no

additional O(p4) terms were required [9℄.

We will assume the ideal mixing in the tensor nonet Tµν = T a
µνλ

a/
√
2 and that the

f2(1270) resonan
e is the pure uū+ dd̄ 
omponent:

T µν =




fµν
2√
2

0 0

0
fµν
2√
2

0

0 0 0




+ ... (4.5)

12

There are also two more ATπ operators allowed by symmetry but they 
ontain the tra
e Tα
α or the


ontra
tion ∇αTαβ : ∆LATπ |
o�-shell

= βATπ〈 {Aαβ ,∇
αT µ

µ}u
β 〉 + γATπ〈 {Aαβ,∇µT

µα}uβ 〉. They do not

propagate the tensor meson and 
an be removed from the generating fun
tional through appropriate �eld

rede�nitions.
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4.2 AFF into Tπ−

The general possible stru
ture for the hadroni
 matrix element into a tensor and a pion is

given by three independent form-fa
tors [3℄, whi
h 
an be arranged in the form

〈 f2(k, ǫ)π−(p3)| d̄γαγ5u |0 〉 = ǫ∗µνH
α, µν
Tπ (4.6)

= i ǫ∗µν
[
PT (q)

αρ pν3
(
gµρ Fa

Tπ(q
2; k2) + p3 ρp

µ
3 Ga

Tπ(q
2; k2)

)
+ pµ3p

ν
3q

αHa
Tπ(q

2; k2)
]
,

with q = p3 + k and ǫµν the polarization of the outgoing tensor [3, 38℄. Due to the partial


onservation of the axial-ve
tor 
urrent, the Ha
Tπ(q

2; k2) form-fa
tor is suppressed by m2
π.

Here the tensor resonan
e has been assumed to be the asymptoti
 �nal state with

polarizations ful�lling the on-shell 
onstraints [38℄

ǫµν = ǫνµ , kµǫµν = 0 , gµνǫµν = 0 . (4.7)

We used the 
ompleteness relation [38, 40℄

P(k)µν,αβ =
∑

ǫ

ǫµνǫ
∗
αβ =

1

2

(
P (k)µαP (k)νβ + P (k)ναP (k)µβ

)
− 1

3
P (k)µνP (k)αβ (4.8)

with P (k)µν = PT (k)
µν |k2=M2

T
= gµν − kµkν/M

2
T .

The hadroni
 Lagrangian from Eqs. (4.1) and (4.2) leads to the determination

Fa
Tπ(q

2; k2) = −8gT
Fπ

+
4
√
2FAλ

AT
1

Fπ

(qp3)

M2
A − q2

− 2
√
2FAλ

AT
2

Fπ

(qk)

M2
A − q2

,

Ga
Tπ(q

2; k2) = −4
√
2FAλ

AT
1

Fπ

1

M2
A − q2

− 2
√
2FAλ

AT
2

Fπ

1

M2
A − q2

,

Ha
Tπ(q

2; k2) = 0 , (4.9)

with (qp3) = (q2 + m2
π − k2)/2 and (qk) = (q2 −m2

π + k2). Even though k2 = M2
T when

the tensor resonan
e is on-shell we have kept the o�-shell momentum dependen
e stemming

from our RχT Lagrangian. The m2
π 
hiral suppressed form-fa
tor Ha

Tπ(q
2) is exa
tly zero

in our approa
h as we are 
onsidering a resonan
e Lagrangian with the lowest number

of derivatives (this is, two derivatives, O(p2)) and the Lorentz stru
ture 
orresponding to

Ha
Tπ(q

2; k2) 
arries three powers of external momenta.

If one imposes a vanishing behaviour for the 
ontribution of the Tπ absorptive 
ut

to the axial-ve
tor 
orrelator at q2 → ∞ one �nds that the form-fa
tors vanish at large

momentum transfer like Fa
Tπ(q

2;M2
T )

q2→∞−→ O(1/q2) and Ga
Tπ(q

2;M2
T )

q2→∞−→ O(1/q4) or

faster (see App. B for details). Demanding this to the previous RχT form-fa
tors Fa
Tπ

and Ga
Tπ yields, respe
tively, the 
onstraints (taking into a

ount k2 = M2

T for the on-shell

resonan
e),

4
√
2gT + 2FAλ

AT
1 − FAλ

AT
2 = 0 , 2λAT

1 + λAT
2 = 0 . (4.10)

This leads to the resonan
e 
oupling relations

FAλ
AT
2 = −2FAλ

AT
1 = 2

√
2gT (4.11)
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and the form-fa
tors

Fa
Tπ(q

2; k2) = −8gT
Fπ

M2
A

M2
A − q2

,

Ga
Tπ(q

2; k2) = 0 . (4.12)

This result agrees with that in Ref. [3℄ near the axial-ve
tor resonan
e. Furthermore,

in the 
hiral limit, if one requires the same fall-o� for the form-fa
tors therein one has an

agreement in the full energy range. Additional details 
an be found in App. C.2.

4.3 3π AFF through an intermediate tensor resonan
e

The three possible de
ay me
hanisms involving the tensor resonan
e are drawn in Fig. 1.

We present here some useful intermediate results.

The π0π0π−
produ
tion with the neutral pions mediated by a tensor resonan
e is

provided by three ingredients:

• The transition W−µ(q) → f2(k)
∗π0(p3) taking into a

ount the three diagrams is

given by

〈 f∗
2 (k, ǫ)π

−(p3)|d̄γµγ5u|0 〉 = ǫ∗αβH
µ, αβ
Tπ (4.13)

=
−4

√
2 i

Fπ
pα3 ǫ

⋆αβ
[√

2gT

(
gβµ − qβqµ

q2 −m2
π

)

−FA

[
λAT
1 (qp3gβµ − qβp3µ) − 1

2λ
AT
2 (qkgβµ − qβkµ)

]

M2
A − q2

]
.

After imposing the high-energy 
onstraints (4.11), this expression gets greatly simpli-

�ed into

Hµ, αβ
Tπ =

−8 igT
Fπ

pα3

[ M2
A

M2
A − q2

PT (q)
βµ − m2

πqβqµ

q2(q2 −m2
π)

]
. (4.14)

We remark that we have not used the on-shell 
onditions in Eqs. (4.13) and (4.14)

above.

• The tensor propagator [38℄:

∆T (k)
µν,αβ =

iP(k)µν,αβ

M2
T − k2

. (4.15)

• The de
ay amplitude M(f∗
2 (k) → π0(p1)π

0(p2)) = ǫαβΓαβ is given by

Γαβ =
−i

√
2gT

F 2
π

[
kαkβ −∆pα ∆pβ

]
, (4.16)

with ∆pρ = pρ1 − pρ2 and k2 = s3. No on-shell 
ondition has been assumed in the

expression above. The term kαkβ be
omes zero when 
ontra
ted with the ǫαβ polar-

ization of an external on-shell tensor resonan
e.
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The π0π0π−
AFF is then given by

Hµ = Hµ

(0) + HTπ(k, p3)
µ, αβ ∆T (k)αβ,ρσ Γ(p1, p2)

ρσ
(4.17)

= Hµ
(0) + Hµ

(1) +
Hµ

(2)

M2
T − s3

.

The �rst term, Hµ

(0), 
omes from the non-resonant diagrams in Fig. 2 generated by the

short-distan
e terms LSD
1,2,3 in Eqs. (4.3) and (4.4). The se
ond and third ones, Hµ

(1) and

Hµ
(2), respe
tively, are produ
ed by the diagrams with tensor resonan
e ex
hanges (Fig. 1).

Hµ
(1) 
omes from the kαkβ term in the Γ[T (k)αβ → π0(p1)π

0(p2)] vertex fun
tion and does

not 
ontribute to the on-shell de
ay T → π0π0
. For sake of this, the 
ontribution with Hµ

(1)

does not propagate the tensor resonan
e and has no pole at s3 = M2
T . The 
ontribution to

the three-pion AFF from the remaining part of the Tπ0π0
vertex is en
oded in Hµ

(2).

The value of these two types of 
ontributions are

Hµ
(0) =

8
√
2ig2T

3F 3
πM

2
T

PT (q)
µν
[
(s3 − s2 + 2s1 − 4m2

π)(p1 − p3)ν

+(s3 − s1 + 2s2 − 4m2
π)(p2 − p3)ν

]
(4.18)

− 8
√
2ig2Tm

2
π

F 3
πM

2
T q

2(q2 −m2
π)

qµ
(
s1s2 −m2

πq
2 −m4

π

)

Hµ

(1) =
8
√
2ig2T

F 3
πM

2
T

m2
π

q2(q2 −m2
π)

qµ
[
(kq)(kp3)−

s3
3

(
(qp3) +

2(kq)(kp3)

M2
T

)]
(4.19)

− 8igT

F 3
πM

2
T

M2
A

(M2
A − q2)

PT (q)
µνkν

[√
2gT

((
1− 2s3

3M2
T

)
(kp3) +

s3
3

)

+(FAλ
AT
1 +

√
2gT )

q2(kp3)

M2
A

(
2s3

3M2
T

− 1

)
+ (FAλ

AT
2 − 2

√
2gT )

q2s3

6M2
A

]
,

Hµ
(2) a1−pole = − 8igT

F 3
π

FA

M2
A − q2

PT (q)
µν

[(
λAT
1 M2

A −
(
λAT
1 +

λAT
2

2

)
(kq)

)
(q∆p)∆pν

+

(
λAT
1 M2

A(∆p)2(kp3 +M2
T )

3M2
T

+

(
λAT
1 +

λAT
2

2

)(
(q∆p)2 − (∆p)2M2

A

3

))
kν
]
,(4.20)

Hµ
(2) a1 no−pole = − 2

√
2igT

F 3
π

PT (q)
µν

[
− 2

√
2(FAλ

AT
1 +

√
2gT )

(
(q∆p)∆pν +

(kp3)(∆p)2

3M2
T

kν

)

+
√
2(FAλ

AT
2 − 2

√
2gT )

(∆p)2

3
kν

]

− 8
√
2ig2Tm

2
π

F 3
πq

2(q2 −m2
π)

qµ
[
(q∆p)2 +

(∆p)2

3M2
T

(
kq kp3 − qp3M

2
T

) ]
, (4.21)
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with (∆p)2 = 4m2
π−s3, (kq) = (q2+s3−m2

π)/2 and (k∆p) = 0. From these, one 
an derive

a series of dependent s
alars: (kp3) = (qk) − s3 = (q2 − s3 −m2
π)/2, (qp3) = q2 − (qk) =

(q2 − s3 +m2
π)/2, (q∆p) = (p3∆p) = (s2 − s1)/2 and the relation s1,2 = kp3 + 2m2

π ∓ q∆p.

For 
onvenien
e we have split Hµ

(2) into its parts with and without the a1 pole. We also

used the relation (qp3)k
µ − (qk)pµ3 = q2PT (q)

µνkν .

We now 
ombine Hµ
(0), H

µ
(1) and Hµ

(2) and rewrite their sum in terms of the Lorentz

de
omposition (2.1). This provides the 
ontribution to the π0π0π−
AFFs in (2.1) derived

from tensor resonan
e ex
hanges:

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

1, (0) (s1, s2, q
2) + Fπ0π0π−

1, (RSD)(s1, s2, q
2) (4.22)

− 4

9F 3
π

gT

M2
T

(FAλ
AT
2 − 2

√
2gT )

M2
A − q2

×
[
s3q

2

+
M2

T

M2
T − s3

(
3(q∆p)2 − 9(qk)(q∆p) − q2(∆p)2

) ]

− 8

3F 3
π

gT

M2
T

(FAλ
AT
1 +

√
2gT )

M2
A − q2

×
[
q2(kp3)

(
2s3

3M2
T

− 1

)

+
M2

T

M2
T − s3

(
(q∆p)2 + 3(q∆p)(qp3) +

q2(kp3)(∆p)2

3M2
T

)]

Fπ0π0π−

P (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

P, (0) (s1, s2, q
2) (4.23)

+
8
√
2g2Tm

2
π

3M2
TF

3
πq

2(m2
π − q2)

×
[
(qp3)s3 + (kq)(kp3)

(
2s3

M2
T

− 3

)

+
M2

T

M2
T − s3

(
3(q∆p)2 +

(
(kq)(kp3)

M2
T

− (qp3)

)
(∆p)2

)]
,

with

Fπ0π0π−

1, (0) (s1, s2, q
2) =

8
√
2g2T

3F 3
πM

2
T

(2s1 − s2 + s3 − 4m2
π) , (4.24)

Fπ0π0π−

P, (0) (s1, s2, q
2) = − 8

√
2g2Tm

2
π

F 3
πM

2
T q

2(q2 −m2
π)

(
s1s2 −m2

πq
2 −m4

π

)
, (4.25)

Fπ0π0π−

1, (RSD)(s1, s2, q
2) = −8

√
2

3F 3
π

g2T
M2

T

M2
A

M2
A − q2

[
(kp3) +

s3
3

(
1− 2(kp3)

M2
T

)

− M2
T

M2
T − s3

(
3(q∆p) +

(∆p)2

3
+

(kp3)(∆p)2

3M2
T

)]
, (4.26)

where the 
ontributions Fπ0π0π−

1, (0) and Fπ0π0π−

P, (0) 
ome from the Hµ
(0) part of the matrix

element Hµ
.

All the results here refer to the π0π0π−
AFF. Isospin symmetry [1, 8, 11℄ relates them

to the π−π−π+
form-fa
tors, whi
h 
an be obtained by mean of the relations (2.5).
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The expression of the form-fa
tors get greatly simpli�ed after applying the high-energy


onstraints extra
ted from the analysis of the Tπ AFF in Eq. (4.11):

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

1, (0) (s1, s2, q
2) + Fπ0π0π−

1, (RSD)(s1, s2, q
2) , (4.27)

while these resonan
e short-distan
e 
onditions do not a�e
t the longitudinal form-fa
tor

FP (s1, s2, q
2)

∣∣∣∣
T

, whi
h remains the same as in (4.23).

The 
omparison between CLEO's results and ours for the amplitude and the related

AFF is given in App. C.1. From that, we 
on
lude that the two parametrizations 
oin
ide

near the resonan
e energy regions (s3 ≃ M2
T , q

2 ≃ M2
A). However, for an arbitrary o�-shell

momentum we have a more general momentum stru
ture whi
h ensures the right low energy

behaviour and the transversality of the matrix element in the 
hiral limit, allowing a proper

mat
hing with χPT.

4.4 Tensor resonan
e width

In order to in
lude the e�e
t of the tensor width, we modify the tensor resonan
e propagator

in the form

1

M2
T − s

−→ 1

M2
f2

− s− iMf2Γf2(s)
, (4.28)

with the spin�2 energy-dependent Breit-Wigner width used in CLEO's analysis [2℄,

Γf2(s) = Γf2
0

s2

M4
f2

ρπ(s)
5

ρπ(M
2
f2
) 5

. (4.29)

For the numeri
al estimation in the next Se
tion we will take the PDG 
entral value Γf2
0 =

186.7 MeV for the f2(1270) total de
ay width [37℄.

The tensor 
ontribution to the AFF depends on the gT 
oupling, whi
h is related to

the on-shell de
ay width into two pseudo-Goldstones [38℄:

Γf2→ππ =
g2TM

3
f2
ρπ(M

2
f2
) 5

40πF 4
π

. (4.30)

Using the PDG 
entral values, Γexp
f2→ππ = 157.2 MeV, Mf2 = 1275.5 MeV, mπ = 139.57 MeV

and Fπ = 92.2 MeV, one obtains

gT ≃ 28MeV , (4.31)

whi
h agrees with the estimation in [38℄.

5 Implementation in Tauola: numeri
al results

In the previous se
tions we des
ribed the set of the three pion form fa
tor 
ontributions

related with the tensor and s
alar intermediate resonan
es and 
al
ulated on the base of the
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Figure 3. Three pion q2 spe
trum dΓπ0π0π−

/dq2 (left) and the ratio of the MC and the analyti
al

q2 spe
trum (right).

RχT Lagrangians. In this se
tion we present a �rst numeri
al estimate with the updated

version of the Monte Carlo (MC) event generator Tauola [41℄. It in
orporates the new

s
alar and tensor 
ontributions to the AFF 
omputed in this arti
le, provided in (3.11) and

(4.22), respe
tively.

13

First, we 
ompare the analyti
al and Tauola distributions for the de
ay width (dΓπππ/dq2)

and repeat the tests on numeri
al stability of the MC, as in Se
. 4 of Ref. [5℄

14

For further

details see this referen
e. The 
omparison is presented in Fig. 3. We present here only

dΓπ0π0π−

/dq2 spe
trum. A similar result has been obtained for the π−π−π+
mode.

In addition we have 
ompared the two- and three-meson invariant mass distributions

for our theoreti
al result and the experimental data. For the π−π−π+

hannel, we used

preliminary BaBar data [6℄ (Fig. 4, top panels). Due to our la
k of a

ess to the π0π0π−

data, they have been 'emulated' on the basis of the results in Ref. [2℄: Tauola was run with

CLEO's AFF from App.A.1 of [2℄ and nominal �t parameters spe
i�ed therein in Table

III.

15

The 
omparison of our parametrization to this `emulation' of CLEO data is shown

in Fig. 4, bottom panel.

To produ
e the theoreti
al distributions the tensor and s
alar resonan
e parameters

were �xed to their value spe
i�ed in Se
s. 3.4 and 4.4 whereas the ve
tor and axial-ve
tor

parameters were �xed to their �t values in [7℄. All parameters are summarized in Table 1.

These plots are an illustration of our model, whi
h demonstrates that even without

�tting the model qualitatively reprodu
es the experimental spe
tra. No large unwanted

deviation from data o

urs, being these values an appropriate starting point for a more

detailed study. The tuning of our model parameters and the �tting to the data will be done

in a future work [42℄.

13

The MC Tauola implementation of these 
hannels was 
ross-
he
ked with a Mathemati
a 
ode, whi
h


an be provided on demand.

14

We use the same samples and integration pro
edure as in [5℄. The MC result here 
orresponds to a

number of events Nev. = 6 · 106.
15

We thank J. Zaremba for providing the 
orresponding unnormalized CLEO distributions.

� 18 �



Mρ Mρ′ Γρ′ Ma1 Mσ Mf2 Γf2 Fπ

0.772 1.35 0.448 1.10 0.8064 1.275 0.185 0.0922

FV FA βρ gT cd cσ Mf0 cf0
0.168 0.131 −0.32 0.028 0.026 76.12 1.024 17.7

Table 1. Numeri
al values of the parameters used to produ
e the theoreti
al spe
tra in 4. All the

parameters are in GeV units ex
ept for cσ and cf0 , whi
h are dimensionless.
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Figure 4. Top: 
omparison between the BaBar data and our theoreti
al predi
tion for the π−π−π+

de
ay mode. Bottom: 
omparison between the CLEO 'emulated' data (for details the text) and

our predi
tion for the π0π0π−

de
ay mode.

6 Con
lusions

In this arti
le we have 
omputed the 
ontribution of s
alar and tensor resonan
es to the τ →
πππντ de
ay axial-ve
tor form-fa
tors. We have made use of a 
hiral invariant Lagrangian

in
luding the relevant axial-ve
tor, s
alar and tensor resonan
es together with the 
hiral

(pseudo) Goldstones.

As a 
onsequen
e of this, the 
hiral symmetry is automati
ally in
orporated in our

result. This ensures the proper low-energy mat
hing with χPT and that the 
urrents

for π0π0π−
and π−π−π+


hannels are related as pres
ribed by isospin symmetry [1, 8℄.

In addition, the tensor resonan
e 
ontribution to the axial-ve
tor 
urrent is transverse in

the 
hiral limit, improving previous des
riptions [3℄. A similar thing applies to the s
alar


ontributions. Chiral symmetry also guaranties the proper low-energy mat
hing with χPT,
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�xing some issues in former parametrizations [2℄ (see App. C.1).

In addition, the tensor and s
alar resonan
e 
ontributions to the tau de
ay are further

re�ned by demanding the appropriate asymptoti
 high-energy QCD behaviour for meson

form-fa
tors pres
ribed by the quark-
ounting rules [22℄. As des
ribed in Se
s. 3.3, 4.2 and

App. B, these large�NC short distan
e 
onditions 
onstrain the resonan
e parameters of

the Tπ and Sπ AFFs, whi
h are essentially determined in terms of the gT and cd 
ouplings,

respe
tively, and the resonan
e masses.

We would like to note that in this arti
le we have 
onsidered for the �rst time the axial-

ve
tor�tensor intera
tion within the Resonan
e Chiral Theory approa
h, extending the work

of E
ker and Zauner on tensors [38℄. We plan to in
lude ve
tor�tensor intera
tions in a

similar way in a future paper [43℄ dedi
ated to the study of the e+e− → a2π pro
ess.

We have 
ompared our out
ome for the πππ AFF with former parametrizations with

CLEO [2℄ and Castro-Muñoz [3℄. While we 
oin
ide on the resonan
e region, our result

in
orporates an appropriate low and high-energy behaviour, improving these works in the

latter regimes. As we plan to in
orporate these new results in the Tauola generator, whi
h

generates events from the three pion threshold up to roughly the tau mass, it is important

to handle as best as possible the various energy ranges (low, resonant and high). Some �rst

simulations with the Tauola Monte Carlo have been provided in Se
. 5. A more thorough

numeri
al analysis is postponed for a future work [42℄.

To 
on
lude: we would like to remind that the forth
oming proje
t Belle-II [45℄ has a

broad program devoted to τ -physi
s. By 2022, they expe
t to re
ord a 50 times lager data

sample than the Belle experiment. It will give us an opportunity to measure both π−π−π+

and π0π0π−
de
ays and study their intermediate produ
tion me
hanisms like, e.g., the tiny


ontribution from the f2π
−

hannel. This will allow us to test our hadroni
 model and the

isospin symmetry relation between π−π−π+
and π0π0π−

form fa
tors.
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A Axial-ve
tor form-fa
tor into 3π in χPT

In this Appendix, we will fo
us on the non-
hirally suppressed form-fa
tor F1. At tree-level,

χPT gives the low-energy expansion up to O(p4) [8℄ 16

Fπ0π0π−

1 (s1, s2, q
2) =

2
√
2

3Fπ

(
1 +

4(2L1 + L3)

F 2
π

(s3 − 2m2
π)

+
4L2

F 2
π

(s2 − 2s1 + 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

+
2L9q

2

F 2
π

)
, (A.1)

16

The relations between SU(2) and SU(3) 
hiral 
ouplings (respe
tively, ℓ̄i and Li) 
an be found in

Se
. 11 of Ref. [18℄.
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with q2 = (p1 + p2 + p3)
2
and s1 = (p2 + p3)

2
, et
. Noti
e the kinemati
al 
onstraint

s1 + s2 + s3 = q2 + 3m2
π.

At O(p2) the π0π0π−
and π−π−π+


hannels are related through isospin in the simple

form

Fπ0π0π−

1 (s1, s2, q
2) = −Fπ−π−π+

1 (s1, s2, q
2) =

2
√
2

3F
. (A.2)

Nonetheless, resonan
e 
ontributions will show up at O(p4) and higher [9, 19, 38℄, in general

spoiling this relation.

In the 
ase when there are only ve
tor 
ontributions to the LECs one �nds [9℄,

L2

∣∣∣∣
V

= 2L1

∣∣∣∣
V

= −L3

3

∣∣∣∣
V

=
G2

V

4M2
V

, L9

∣∣∣∣
V

=
FV GV

2M2
V

, (A.3)

with the remaining O(p4) LECs being zero. Thus, one has the O(p4) 
ontribution [44℄

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
V

= −Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
V

=
2
√
2

3F

(
8L1(3s2 − 2q2)

F 2 +
2L9q

2

F 2

) ∣∣∣∣
V

.

(A.4)

The situation is di�erent in the 
ase when there are only s
alar 
ontributions to the

O(p4) LECs [9℄:

L1

∣∣∣∣
S

=
c̃2d

2M2
S1

− c2d
6M2

S

, L2

∣∣∣∣
S

= L9

∣∣∣∣
S

= 0 , L3

∣∣∣∣
S

=
c2d

2M2
S

,

L4

∣∣∣∣
S

=
c̃dc̃m

M2
S1

− cdcm

3M2
S

, L5

∣∣∣∣
S

=
cdcm

M2
S

. (A.5)

Taking this into a

ount one obtains the O(p4) 
ontribution

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
2
√
2

3Fπ

(
4(2L1 + L3)

F 2
π

(s3 − 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

)∣∣∣∣
S

,

Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
S

= −2
√
2

3Fπ

(
4(2L1 + L3)

F 2
π

(2s1 − s2 − 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

)∣∣∣∣
S

.

(A.6)

Ex
ept for the spe
ial point s1 = (q2 +3m2
π)/3, the F1 fun
tions of the two de
ay 
hannels

have a di�erent kinemati
al dependen
e and one 
annot simply assume Fπ0π0π−

1 (s1, s2, q
2) =

−Fπ−π−π+

1 (s1, s2, q
2). This pre
ise expression (A.6) 
an be dire
tly obtained from the low-

energy limit of Eq. (3.11),

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
4
√
2

3F 3
π

1

M2
S

[c2d(s3 − 2m2
π) + 2cdcmm2

π] , (A.7)

where in the large NC limit the o
tet and singlet s
alar 
ouplings are related in the form

c̃d = cd/
√
3 and c̃m = cm/

√
3, and L1|S and L4|S turn zero [9℄.
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Taking only the tensor resonan
e 
ontribution, the O(p4) 
ontributions to the form-

fa
tors be
ome

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

=
2
√
2

3Fπ

(
4L3

F 2
π

(s3 − 2m2
π)

)∣∣∣∣
T

,

Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
T

= −2
√
2

3Fπ

(
4L3

F 2
π

(2s1 − s2 − 2m2
π)

)∣∣∣∣
T

, (A.8)

with the O(p4) 
hiral low-energy 
onstants [38℄,

L1

∣∣∣∣
T

= L2

∣∣∣∣
T

= 0 , L3

∣∣∣∣
T

=
g2T
3M2

T

, (A.9)

and zero for all the remaining LECs. As it happened in the s
alar resonan
e 
ase, the

relation Fπ0π0π−

1 (s1, s2, q
2) = −Fπ−π−π+

1 (s1, s2, q
2) is generally not true, only being ful-

�lled at the spe
ial kinemati
al point s1 = (q2 +3m2
π)/3. The result (A.8) 
an be obtained

dire
tly from the determination (4.22): the O(p4) term in the low-energy expansion of our

tensor-ex
hange predi
tion is given by the diagrams a and b in Fig. 1 (with their subsequent

T → ππ de
ay),

Fπ0π0π−

1, (RSD)(s1, s2, q
2) =

8
√
2g2T

9F 3
πM

2
T

(
−6s1 + 3s2 − 2s3 + 10m2

π

)
, (A.10)

and those in Fig. 2,

Fπ0π0π−

1, (0) (s1, s2, q
2) =

8
√
2g2T

3F 3
πM

2
T

(
2s1 − s2 + s3 − 4m2

π

)
. (A.11)

The remaining 
ontributions to F1(s1, s2, q
2) are zero at O(p4). Therefore the total 
ontri-

bution at that 
hiral order is

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

=
8
√
2g2T

9F 3
πM

2
T

(
s3 − 2m2

π

)
. (A.12)

Mat
hing the expression (A.12) and Eq. (A.1) one re
overs for L1,2,3

∣∣∣∣
T

the relations (A.9)

from Ref. [38℄.

B Opti
al theorem and axial-ve
tor form-fa
tors

The 
orrelator of two axial-ve
tor 
urrents Jα
A = d̄γαγ5u ,

ΠAA(q)
µν ≡ i

∫
d4x eiqx〈 0|T{Jµ

A(x)J
ν
A(0)

† }|0 〉 , (B.1)

is des
ribed by two Lorentz s
alar fun
tions, the transverse and longitudinal 
orrelators,

ΠT (q
2) and ΠL(q

2), respe
tively:

ΠAA(q)
µν = −q2PT (q)

µν ΠT (q
2) + q2PL(q)

µνΠL(q
2) . (B.2)
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The 
onservation of the axial-ve
tor 
urrent in the 
hiral limit implies that ΠL(q
2) is sup-

pressed by the up and down quark mass 
ombination (mu +md), this is, by m2
π.

The axial-ve
tor form-fa
tors for the produ
tion of a generi
 state X and its 
orre-

sponding hadroni
 matrix element,

Hα = 〈X| d̄γαγ5u |0 〉 , (B.3)

determines the 
ontribution to the spe
tral fun
tions of ΠT,L from that absorptive 
ut

through the opti
al theorem. For a two-parti
le intermediate state X with masses m1 and

m2 one has

ImΠT (t)

∣∣∣∣
cutX

= −
(
λ(t,m2

1,m
2
2)

1
2

48πt2

)
∑

helicities

HαPT (q)
αβH∗

β ,

ImΠL(t)

∣∣∣∣
cutX

=

(
λ(t,m2

1,m
2
2)

1
2

16πt2

)
∑

helicities

HαPL(q)
αβH∗

β , (B.4)

with t = q2, PL(q)
αβ = qαqβ/q2, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and the

summation referring to the heli
ities of the two-parti
le intermediate state X.

Perturbative QCD tells that the full spe
tral fun
tion goes to a 
onstant at high energies

and thus, the 
ontribution from ea
h (in�nitely many) hadroni
 intermediate states vanishes

for q2 → ∞ [13℄. This agrees with Brodsky-Lepage's quark-
ounting rules for asymptoti


behaviour of hadroni
 form-fa
tor in the ultraviolet [22℄.

B.1 Sπ AFF

The SI=0 π
−
absorptive 
ut 
ontributes to the axial-ve
tor 
orrelator in the form [13℄

ImΠT (t)

∣∣∣∣
Sπ

=
λ(t,M2

S ,m
2
π)

3
2 θ(t− tth)

48πt3
|Fa

Sπ(t)|2 , (B.5)

ImΠL(t)

∣∣∣∣
Sπ

=
λ(t,M2

S ,m
2
π)

1
2 θ(t− tth)

16πt
|Ha

Sπ(t)|2 , (B.6)

with t = q2 and tth = (MSI=0
+ mπ)

2
. In the 
hiral limit the phase-spa
e fa
tor turns

λ(t,M2
S , 0)

3
2 /t3 = (1−M2

S/t)
3
.

Requiring that the 
ontribution to the transverse spe
tral fun
tion vanishes at in�nite

momentum transfer implies the (minimal) asymptoti
 behaviour

Fa
Sπ(t)

t→∞−→ O
(
1

t

)
. (B.7)

B.2 Tπ AFF

The Tπ−

ut 
ontributes to the transverse spe
tral fun
tion. The 
orresponding expressions

are rather lengthy but in the 
hiral limit they be
ome

ImΠT (t)

∣∣∣∣
Tπ

=
θ(t−M2

T )

192π

(
1− M2

T

t

)3 [
t

M2
T

|Fa
Tπ(t)|2 +

t2

6M4
T

∣∣∣G̃a
Tπ(t)

∣∣∣
2
]
, (B.8)
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with

G̃a
Tπ(t) =

t

2

(
1− M2

T

t

)2

Ga
Tπ(t) −

(
1 +

M2
T

t

)
Fa
Tπ(t) , (B.9)

with the phase-spa
e fa
tor in the 
hiral limit λ(t,M2
T ,m

2
π)

mπ→0−→ (1 − M2
T /t)

2
. For the

algebra of Lorentz 
ontra
tions, we made use of the 
ompleteness relation [38℄

∑

ǫ

ǫµνǫ
∗
αβ =

1

2
(PµαPνβ + PναPµβ) − 1

3
PµνPαβ , with Pµν = gµν −

kµkν

M2
f2

.

(B.10)

Requiring that the 
ontribution to the spe
tral fun
tion vanishes at in�nite momentum

transfer implies the (minimal) asymptoti
 behaviour

Fa
Tπ(t)

t→∞−→ O
(
1

t

)
,

G̃a
Tπ(t)

t→∞−→ O
(
1

t2

)
, (B.11)

whi
h implies

Ga
Tπ(t)

t→∞−→ O
(

1

t2

)
. (B.12)

The 
ontribution to the longitudinal spe
tral fun
tion from the Tπ−

ut is given by

ImΠL(t)

∣∣∣∣
Tπ

=
λ(t,M2

T ,m
2
π)

5
2

384πM4
T t

|Ha
Tπ(t)|2 . (B.13)

The longitudinal form-fa
tor Ha
Tπ is 
hirally suppressed by m2

π and must have a minimal

asymptoti
 fall o�,

Ha
Tπ(t)

t→∞−→ O
(
m2

π

t3

)
. (B.14)

C Comparison with other produ
tion analyses

C.1 Comparison with CLEO [2℄

We now 
ompare our expression for the hadroni
 
urrent (4.17) with the 
orresponding

theoreti
al expression used by CLEO for the f2 produ
tion (Eq. (A3) in Ref. [2℄). In the


hiral limit the latter is

Hµ = − i β5M
2
T

(M2
A − q2) (M2

T − s3)
FR5

PT (q)
µν

[
(q∆p)∆pν +

(∆p)2

3s3
(qk) kν

]
,

(C.1)

where the a1 and f2 widths in the denominators in Ref. [2℄ have been dropped to provide

a more transparent 
omparison with our expressions. Likewise, we set the axial-ve
tor
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radius R5 = 0 and set the momentum dependent fun
tion to the value FR5
= 1 in the

parametrization 
onsidered by CLEO to in
orporate �nite a1 size e�e
ts [2℄. We have also

used PT (q)
µνqν = 0 to simplify the expression therein. Noti
e that in CLEO's notation

Hµ = jµ5 .

Our result reprodu
es that in Ref. [2℄ if one keeps just the 
ontribution Hµ
(2) a1−pole (4.20)

�with the axial-ve
tor and tensor resonan
e poles, respe
tively in q2 = M2
A and s3 = M2

T �,

and then sets the high energy 
ondition (4.10). Thus, taking just the �rst two lines of

Eq. (4.20) with the latter 
ondition (the non-singular term with (M2
T −s3) is dropped), one

re
overs the 
orresponding expression in Eq. (A.3) from [2℄, with the identi�
ation

β5 =
8gTFAλ

AT
1 M2

A

M2
TF

3
π

.

The form-fa
tors F1 and FP derived from Ref. [2℄ 
an be rewritten as

17

Fπ0π0π−

1 (s1, s2, q
2) =

β5FR5

9
(
M2

A − q2
) M2

T(
M2

T − s3
)
[
5s1 − 4s2 + s3 +

2m2
π

s3

(
m2

π − q2 − 2s3
)]

,

Fπ0π0π−

P (s1, s2, q
2) = 0 . (C.2)

This expression agrees with our determination in Eq. (4.26): in our 
ase, after in
orporating

the high-energy 
onstraints, one �nds that Fπ0π0π−

1 (s1, s2, q
2) ≈ Fπ0π0π−

1,RSD (s1, s2, q
2) for

s3 ≈ M2
T , showing the stru
ture in (C.2).

One 
an see that the parametrization (C.2) has a subthreshold singularity at s3 = 0,

absent in the low-energy χPT predi
tion [8℄ (see App. A). Moreover, in the 
hiral limit

(mπ → 0), the 
omparison of Eqs. (C.2) and (A.1) shows that the 
oupling L9 must re
eive

a non-zero 
ontribution 
aused by the tensor resonan
e. However, in the 
hiral limit L9 is

the only O(p4) 
oupling that appears in the pion ve
tor form-fa
tor at tree-level, i.e. it 
an

never get 
ontributions from spin�2 resonan
e ex
hanges.

To 
on
lude: the CLEO parametrization for the tensor resonan
e 
ontribution to AFF

agrees with the RχT des
ription only near the resonan
e energy region and does not repro-

du
e the low-energy behaviour predi
ted by χPT.

We also 
ompare our results for the s
alar 
ontributions to the AFF with the 
orre-

sponding CLEO results (Eq. (3) of [2℄). Expressing CLEO result in terms of the form-fa
tor


onvention in (2.1) one obtains

Fπ0π0π−

1 (s1, s2, q
2) = Fπ0π0π−

2 (sλ2
, s1, q

2) =
2βS
3

M2
A

MA − q2
M2

S

M2
S − s23

, (C.3)

where we have dropped the widths in the denominators for the 
omparison and βS is β6 or

β7 depending on whether we refer to S = σ or S = f0(980), respe
tively. In our 
ase, after

applying the high-energy 
onstraints, we got the Sπ form-fa
tor (3.15) and the three-pion

AFF,

Fπ0π0π−

1 (s1, s2, q
2) = Fπ0π0π−

2 (s2, s1, q
2) =

4
√
2cd

3F 3
π

M2
A

MA − q2
(cd(s3 − 2m2

π) + 2cmm2
π)

MS − s23
.

(C.4)

17

Note that here we use the form-fa
tor 
onvention given by Eq. (2.1).
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This result is later re�ned by in
orporating the σ−f0(980) mixing through the repla
ement

in (3.16). Comparing CLEO's expression and ours, we arrive to the 
on
lusion that the

CLEO parametrization for the s
alar 
ontribution to AFF only agrees with the RχT results

near the s
alar resonan
e region s3 ≈ M2
S , where the numerator of (C.4) is approximately


onstant.

C.2 Comparison with Castro and Muñoz [3℄

Analysis [3℄ expresses the even intrinsi
-parity part of the AFF into a tensor T (k, ǫ) and a

pseudo-Goldstone P (p) in terms of three independent form-fa
tors κ and b± (see Eq. (2) in

Ref. [3℄). They are related to the form-fa
tors in this work through

κ = −iFa
TP , b+ = − i

2
Ga
TP , b− =

i

q2

(
Fa
TP +

(
(qp)− 1

2
q2
)
Ga
TP +Ha

TP

)
. (C.5)

Ref. [3℄ �nds b+ = 0, as in our result in Eq. (4.12). In addition, in the 
hiral

limit, requiring these form-fa
tors to fall-o� at high energies as κ(q2)
q2→∞−→ O(1/q2) and

b−(q
2)

q2→∞−→ O(1/q4), the relation between the predi
tion of [3℄ and ours is given (e.g., for

the f2π
−
produ
tion) by

8gT
Fπ

= −fa1 gf2a1π
Ma1

,
8gT
Fπ

= −Fπ gf2ππ . (C.6)

D Tauola's notation for form fa
tors

In the Tauola notation the three-pion hadroni
 
urrent is written:

〈 3π|d̄γµγ5u|0 〉 = H3π(q2, s1, s2)
µ

=
i

Fπ
Pµν
T (q)

[
FTauola

1 (q2, s1, s2) (p2 − p3)ν + FTauola

2 (q2, s1, s2) (p1 − p3)ν
]

+
i qµ
Fπ

FTauola

4 (q2, s1, s2) . (D.1)

Therefore, the Tauola form-fa
tors [5℄ are related with our 
onvention in Eq. (2.1) through

F1(q
2, s1, s2)

Tauola = Fπ F2(s1, s2, q
2),

F2(q
2, s1, s2)

Tauola = Fπ F1(s1, s2, q
2),

F4(q
2, s1, s2)

Tauola = Fπ FP (s1, s2, q
2), (D.2)

with the isospin relations

FTauola

1 (q2, s1, s2)
−−+ = FTauola

1 (q2, s3, s2)
00− −FTauola

1 (q2, s3, s1)
00− −FTauola

1 (q2, s1, s3)
00− ,

FTauola

4 (q2, s1, s2)
−−+ = FTauola

4 (q2, s1, s3)
00− + FTauola

P (q2, s2, s3)
00− . (D.3)
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