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resonanes to the τ → νπππ deay by means of a hiral invariant Lagrangian inorporating

these mesons. In partiular, we study the orresponding axial-vetor form-fators. The
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the meson form-fators are further improved by requiring appropriate QCD high-energy

onditions. We end up with a brief disussion on its implementation in the Tauola Monte

Carlo and the prospets for future analyses of Belle's data.
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1 Introdution

The aim of this letter is to provide a oherent desription of the impat of salar (JPC =

0++
) and tensor mesons (JPC = 2++

) in tau deays with three pions in the �nal state. The

four targets of this theoretial analysis are

• Chiral invariane and (partial) axial-vetor urrent onservation: the hiral

invariant Lagrangian framework onsidered in this letter ensures the right QCD sym-

metries and leads to a hadroni matrix element whih is transverse (∂µJ
µ
A = 0) in the

hiral limit mq → 0 and where longitudinal orretions ome naturally suppressed by

mq. In addition, as isospin is a subgroup of the hiral symmetry, our hiral invariant

Lagrangian approah yields the right relation between the π0π0π−
and π−π−π+

tau

deay form-fators, presribed by isospin symmetry [1℄, without any further require-

ment. Likewise, we will be always assuming the other symmetries of QCD, parity and

harge onjugation.

1

• Low-energy limit: the onstrution of a general hiral invariant Lagrangian that in-

ludes the hiral pseudo-Goldstones and the meson resonanes (1++
axial-vetor, 2++

tensor, et.) ensures the right low-energy struture and the possibility to math the

low-energy e�etive �eld theory (EFT) of QCD, Chiral Perturbation Theory (χPT).

• On-shell desription: previous works, in spite of negleting the previous priniples,

have performed a �ne work in desribing the deays through axial-vetor and tensor

resonanes when their intermediate momenta are near their mass shell [2, 3℄. Our

outome reprodues these previous results when the momentum k �owing through

the intermediate resonane propagator beomes on-shell, this is, when k2 ≈ M2
R (for

the orresponding k and MR). The hiral invariant Lagrangian ensures that the

previous properties are ful�lled also o�-shell (k2 6= M2
R).

• High-energy limit: by imposing high-energy onditions and demanding the be-

haviour presribed by QCD for the form-fators at short-distanes we will onstrain

the resonane parameters. Implementing these QCD priniples will make our theo-

retial determination phenomenologially preditive.

This resonane hiral theory (RχT) approah to the 3π tau deay was onsidered

in the past taking into aount the impat of the vetor and axial-vetor resonanes [4℄.

The orresponding urrent has been implemented into the Monte Carlo event generator

Tauola [5℄. The omparison with the unfolded distributions from the preliminary BaBar

Collaboration analysis [6℄ for the three-prong mode has demonstrated the mismath in the

low-energy part of the two-pion spetrum [5℄ and was assoiated with the lak of the salar

meson multiplet in the original RχT urrent [4℄. The salar resonane ontribution was later

added to the three pion urrent phenomenologially in Ref. [7℄. However, the orresponding

1

These assumptions also imply G-parity onservation, whih is a ombination of harge onjugation and

isospin symmetry.
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part does not obey isospin symmetry [1, 8℄ and, as a result, does not reprodue the proper

hiral low-energy behaviour (see the disussion in Se. 2 and App. A).

This letter fouses on the impat of the lowest salar (σ and f0(980)) resonanes and the

isosinglet tensor f2(1270), whih may be diretly produed from the W−
or generated via

an intermediate pion or an a1 state. Also we disuss the implementation of the assoiated

urrents into Tauola and present an estimate of tensor and salar ontributions to the three-

pion partial width. In Se. 2, one �nds the general formulae for the three-pion axial-vetor

form-fator (AFF): the Lorentz struture deomposition and the isospin relation between

π−π−π+
and π0π0π−

hannels. In order to avoid any possible double-ounting we have

separated the ontributions to the three-pion AFF in the following way: 1) previous 3π-

AFF omputations [4, 5℄ inorporate the diagrams inluding vetor resonane exhanges

and non-resonant ontributions from the O(p2) χPT Lagrangian [9℄; 2) Se. 3 provides the

ontribution to the 3π-AFF from diagrams with salar exhanges; 3) the ontribution due to

spin�2 resonane exhanges is disussed in Se. 4. Se. 5 is dediated to the implementation

in the Monte Carlo generator Tauola and some basi numerial results. We provide the

onlusions in Se. 6 and some tehnial details have been relegated to the Appendies.

2 Axial-vetor form-fator into three pions: general formulae

The matrix element of the tau-deay into the three pions is determined in terms of the

transverse form-fators F1, F2 and F3 and a longitudinal one FP :

〈 3π|d̄γµγ5u|0 〉 = H3π(q2, s1, s2)
µ

= i Pµν
T (q)

[
F1(s1, s2, q

2) (p1 − p3)ν + F2(s1, s2, q
2) (p2 − p3)µ

+ F3(s1, s2, q
2) (p1 − p2)µ

]
+ i qµ FP (s1, s2, q

2) , (2.1)

with q = p1 + p2 + p3, s1 = (p2 + p3)
2
, s2 = (p3 + p1)

2
and s3 = (p1 + p2)

2
, and PT (q)

µν =

gµν − qµqν/q2. The three transverse form-fators are linearly dependent and we will leave

only F1 and F2 as our basis. The longitudinal form-fator FP vanishes in the hiral limit and

is suppressed by m2
π/q

2
[4℄. Our formulae for the hadroni form-fators will be alulated

in the isospin limit. We will take mπ = (mπ0 +2mπ+)/3 and, in general, apply the relation

q2 = s1 + s2 + s3 − 3m2
π to express the form-fators in terms of the three independent

kinemati variables q2, s1, s2.

Bose symmetry implies that

F1(s1, s2, q
2) = F2(s2, s1, q

2) ,

FP (s1, s2, q
2) = FP (s2, s1, q

2) , (2.2)

and therefore there are only two independent form-fators, e.g., F1 and FP .

Isospin symmetry relates the matrix elements with π−π−π+
and π0π0π−

�nal states [1℄:

2

H−−+
µ (p1, p2, p3) = H00−

µ (p3, p2, p1) +H00−
µ (p3, p1, p2) . (2.3)

2

Isospin violation e�ets were found to be very suppressed in this deay, of the order of 0.4% and 10−3%,

respetively for the π−π−π+
and π0π0π−

hannels [10℄.
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Thus, the form-fators for π−π−π+
and π0π0π−

are related in the form

Fπ−π−π+

1 (s1, s2, q
2) = Fπ0π0π−

1 (s1, s3, q
2)−Fπ0π0π−

1 (s2, s3, q
2)−Fπ0π0π−

1 (s3, s2, q
2) , (2.4)

Fπ−π−π+

P (s1, s2, q
2) = Fπ0π0π−

P (s1, s3, q
2) + Fπ0π0π−

P (s2, s3, q
2) . (2.5)

It is also possible to revert this expressions and to express the π0π0π−
matrix element in

terms of the π−π−π+
(App. D) but for sake of simpliity, from now on, we will always refer

to the π0π0π−
form-fators and assume Eqs. (2.4) and (2.5) whenever the π−π−π+

one is

needed. The advantage of our hiral Lagrangian approah is that it implements by default

this isospin relation (and Bose symmetry, of ourse), as isospin is a subgroup of the hiral

group.

It is worth to stress that the π−π−π+
and π0π0π−

hadroni urrents are in general not

the same [8, 11, 12℄. The diagrams with intermediate vetor and axial-vetor resonanes

give the same F1(s1, s2, q
2) form-fator up to a global sign di�erene [4℄. However, on the

ontrary to the approah therein, tensor and salar resonanes generate ontributions to the

π−π−π+
and π0π0π−

hadroni urrents with a di�erent kinematial struture (determined

by Eqs. (2.4) and (2.5)). For further details on the isospin relation between hannels see

Refs. [1, 8, 11℄ and App. D. In the next Setions we will fous on the three-pion tree-

level prodution via intermediate salar and tensor resonanes, whih will be dressed with

appropriate widths when ompared to data. Apart from this, we will not inorporate other

one-loop ontributions like, e.g, the non-resonant triangular topologies with three internal

propagators (with the mesons KKK∗
, ππρ, et.) and the external pions and W onneted

at the verties.

3 The deay τ → πππντ through salar resonanes

We �rst onsider the three-pion prodution via an intermediate state with a salar S and a

pion. If isospin and C-parity are onserved then G-parity requires that the salar resonane

has isospin ful�lling (−1)I = +1 �i.e., even isospin�, whih in our ase implies I = 0.

The hadroni matrix element for the transition from an axial-vetor urrent into an

isosinglet salar S and a pion has the general Lorentz struture [13℄

〈SI=0(k)π
−(p)|d̄γαγ5u|0 〉 = −2iPT (q)

αν pν Fa
Sπ(q

2; k2) + i qα Ha
Sπ(q

2; k2) , (3.1)

where q = k+p and the salar funtion Fa
Sπ(q

2) provides AFF into Sπ in the hiral limit, as

Ha
Sπ is suppressed by m2

π due to the partial onservation of the axial-vetor urrent. Here

the isosinglet salar SI=0 refers to the resonane without ss̄ omponent, SI=0 ∼ uū + dd̄,

whih we will relate with the lightest salar isosalar resonane, the f0(500) or σ. We

leave the disussion of the properness of this approah for a next Setion: here we will just

assume the large-NC framework [14�16℄ and the phenomenologial implementation will be

later worked out.

In Fig. 1, we show the three relevant diagrams that must be taken into aount in the

Sπ prodution at large NC (and analogously later in the prodution of a tensor resonane

T and a pion): a) the diret prodution W− → Sπ−
; b) the intermediate π−

prodution
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a) b) c)

A
S, TS, TS, T

Figure 1. Relevant diagrams for the hadroni tau deays into an isosinglet salar S and a pion

and its orresponding AFF (similar to those for the deay into a isosinglet tensor T and a pion).

Single straight lines stand for pions and the wavy line for the external axial-vetor soure (from an

inoming W−

).

W− → π− → Sπ−
; ) and the salar prodution through an intermediate axial-vetor

resonane, W− → a1 → Sπ−
.

3.1 The RχT Lagrangian for salar �elds

The resonane Lagrangian has the generi struture

LRχT = Lnon−R +
∑

R

LR +
∑

R,R′

LRR′ + ... (3.2)

whih respetively ontains operators without resonanes, operators with one resonane

�eld, terms with two resonane �elds, et. In the ase of the tau deay into three pions

through an intermediate salar prodution, the relevant hiral invariant Lagrangian onsists

of three parts:

• Operators with one resonane �eld [9℄:

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LS = cd〈Suµuµ 〉+ cm〈Sχ+ 〉 , (3.3)

• Operators with an axial-vetor and a salar �eld (whih provides the ASπ vertex in

diagram ) in Fig. 1) [13℄:

LAS = λAS
1 〈 {∇µS,A

µν}uν 〉 . (3.4)

Operators of the LAS Lagrangian that do not ontribute to the ASπ vertex are not

shown here [13℄.

• Operators without resonane �elds [9, 17, 18℄:

L(2)
non−R =

F 2

4
〈uµuµ + χ+ 〉 , (3.5)

This non-resonant O(p2) Lagrangian generates the W− → π−
transition vertex in

Fig. 1.a. It also provides an O(p2) ontribution without intermediate resonanes to

the πππ AFF whih was aounted in previous analyses [4℄. Thus, in order to avoid

double ounting, we will not onsider these non-resonant πππ AFF diagrams.
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For the axial-vetor �eld Aµν = Aa
µνλ

a/
√
2 we have used the antisymmetri tensor

representation [9, 19℄, with

Aµν =




0 a+1 0

a−1 0 0

0 0 0




µν

+ ... (3.6)

with the dots standing for the other axial-vetor resonanes of the multiplet, whih will not

be relevant in the present study. For the hiral tensors ontaining the light pseudosalars,

the masses and the external vetor and axial-vetor soure �elds we used [9, 20℄

U = u2 = exp{πaλa/F} , DµU = ∂µU − irµU + iUℓµ , uµ = iu†(DµU)u† ,

χ± = u†χu† ± uχ†u , fµν
± = uFµν

L u† ± u†Fµν
R u , ∇µ· = ∂µ ·+[Γµ, ·] ,

Γµ = 1
2

{
u†(∂µ − irµ)u+ u(∂µ − iℓµ)u

†} , (3.7)

with the salar-pseudosalar soure χ = 2B0diag(mu,md,ms)+ ... (the dots stand for terms

not relevant for this alulation) and Fµν
L and Fµν

R the �eld strength tensors of the left and

right soures, respetively ℓα and rα. If we are only interested in the W±
urrents one takes

ℓα = g√
2
(W+

α T+ + h.c.) and rα = 0, with T+ = Vud(λ
1 + iλ2)/2 + Vus(λ

4 + iλ5)/2. The πa

generially refer to the SU(3) hiral pseudo-Goldstones (a = 1...8). At large NC (and for

the non-strange urrent) this proess only ours for the isosinglet salar SI=0 ∼ uū + dd̄,

with no ss̄ strange quark omponent:

S =




SI=0√
2

0 0

0 SI=0√
2

0

0 0 0


 + ... (3.8)

where the dots stand for other resonanes in the multiplet not relevant for the present work.

3.2 AFF into Sπ−

Our hiral invariant Lagrangian leads to the AFF predition,

3

Fa
Sπ(q

2; k2) =
2cd
Fπ

+

√
2FAλ

AS
1

Fπ

q2

M2
A − q2

, (3.9)

Ha
Sπ(q

2; k2) =
4

Fπ

m2
π

q2(q2 −m2
π)

[
cd(qp) + cmq2

]
, (3.10)

with (qp) = (q2 +m2
π − k2)/2, being k2 = M2

S for an on-shell salar (later, when this salar

is onsidered o�-shell and deaying in two pions with momenta pi and pj it will take the

value k2 = (pi + pj)
2
). The cm operator ontributes through the s-hannel pion exhange

to the longitudinal form-fator in Eq. (3.10).

4

3

There was a typo in the sign of the FAλ
SA
1 term of Fa

Sπ in Table A.2, App. A in Ref. [13℄. It has been

orreted in Eq. (3.9). The same applies to the later high-energy onstraint (3.14) (the �nal onstrained

form-fator (3.15) remains nevertheless the same as in Ref. [13℄).

4

There is an indiret large-NC ontribution to these form-fators through the pion-wave funtion renor-

malization proportional to m2
π indued by the salar Lagrangian [21℄. This e�etively amounts to a replae-
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3.3 3π-AFF through an intermediate salar resonane

Considering not only the Sπ prodution but also the subsequent deay S → ππ one obtains

the orresponding ontribution to the πππ-AFF.

Using the Lagrangian in Eqs. (3.4)�(3.5), we obtain the ontribution from salar reso-

nane exhanges to the π0π0π−
AFFs de�ned in (2.1),

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
2

3
Fa
Sπ(q

2; s3)GSππ(s3) , (3.11)

Fπ0π0π−

P (s1, s2, q
2)

∣∣∣∣
S

= Ha
Sπ(q

2; s3)GSππ(s3) , (3.12)

with qpj = (m2
π + q2− sj)/2. The ASπ form-fator is the previous one in Eq. (3.9) whereas

propagation of the isosinglet S and its deay into ππ gives

GSππ(s3) =

√
2

F 2
π

1

M2
S − s3

[cd(s3 − 2m2
π) + 2cmm2

π] . (3.13)

Notie that we are giving the full result, inluding pion mass orretions produed by our

Lagrangian in Eqs. (3.4)�(3.5).

5

Requiring that the ontribution to the transverse omponent of the Πµν
AA(q) spetral

funtion vanishes implies that Fa
Sπ(q

2) −→ 0 for q2 → ∞ (see App. B), giving the on-

straint [13℄

FAλ
AS
1 =

√
2cd , (3.14)

and the form-fator predition

Fa
Sπ(q

2; s3) =
2cd
Fπ

M2
A

M2
A − q2

. (3.15)

This high-energy onstraint is similar to the asymptoti form-fator high-energy behaviour

presribed by Brodsky-Lepage quark-ounting rules [22℄, whih imply, for instane, that the

pion vetor form-fator vanishes like ∼ 1/q2 at in�nite momentum transfer [9, 22℄.

The subsequent deay of the salar into ππ is given by GSππ(s3) and would provide

the absorptive πππ ontribution to ImΠµν
AA. However, in the narrow-width limit for S, the

three-pion phase-spae integral yields a delta funtion δ(s3 − M2
S) that sets the s3 value

to M2
S . Thus, the integral is fatorized into the two-body integration of |Fa

Sπ(q
2)|2 over

the Sπ−
phase-spae and a onstant angular integration over the phase-spae of the two

ment of F by Fπ, as shown in (3.9) and (3.10). A similar thing happens in the other form-fators studied

in the next Setions, where this pion-wave funtion renormalization due to the salars [21℄ is taken into

aount in a similar way.

5

The funtion GSππ(s3) is not the salar form-fator and, therefore, does not need to obey asymptoti

high-energy behaviour presribed by QCD [22℄. Notie that only on-shell hadron matrix elements are well-

de�ned and the o�-shell behaviour is ambiguous as it an be modi�ed through �eld rede�nitions in the

hadroni generating funtional [17, 18℄. GSππ(s3) just provides a) the on-shell deay S → ππ (through its

residue at s3 = M2
S) and b) the ontribution to the πππ AFF from topologies with an intermediate salar

�either on-shell or o�-shell�.
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pions produed by the salar. Therefore, in this limit, the large q2 behaviour of this three-

pion ontribution to the spetral funtion is ruled by the form-fator Fa
Sπ(q

2) in the way

ditated by Eq. (B.5) (up to a global onstant fator). We will use this theoretial large�NC

information and use it to onstrain our form-fator even if we will later model it in order

to inlude important subleading e�ets in 1/NC suh as the σ width.

6

The Sπ AFF is then ruled by the cd oupling in the limit m2
π ≪ q2. Even though

its preise experimental value is still unlear, more or less all analyses agree on a value

cd ∼ 30 MeV (see [23℄ and referenes therein).

3.4 Salar resonane widths

The lightest isosalar partile is the broad salar σ, with Mpole
σ = 441+16

− 8 MeV, Γpole
σ =

544+18
−25 MeV [24℄. It is thought to ontain mostly just u and d quark omponents, where the

two�pion hannel is its only kinematially allowed deay. On the other hand, as it follows

from its predominant deay intoKK̄, the next salar isosinglet, the f0(980), is onsidered to

have a large strange quark omponent, being its nπ deay modes are suppressed. However,

for sake of ompleteness we will inlude both isosalars into onsideration.

A �rst approah to the physial QCD ase is provided by the inlusion of a σ�f0(980)

splitting through the substitution [23, 25℄,

1

M2
S − s

−→ cos2 φS

M2
σ − s

+
sin2 φS

M2
f0

− s
, (3.16)

where φS is the salar mixing angle. For the σ− f0 mixing we will use the numerial value

φS = −8◦ [25℄.

Due to the sin2 φS suppression the f0(980) produes a learly subdominant e�et with

respet to the impat of the broad σ. However, the omparison of the modi�ed RχT

spetra [7℄

7

with the unfolded distributions [6℄ from the preliminary BaBar Collaboration

τ → ντπππ analysis has shown a statistially signi�ant mismath: the π+π−
experimental

spetral funtion is well reprodued up to 1 GeV exept for a small sharp bump onentrated

at 980 MeV whih di�ers from the f0-absent theoretial RχT expression by a few perent.

The inlusion of the f0 and its ourrene here via the σ−f0 mixing in Eq. (3.16) is expeted

to improve the phenomenologial desription of the data.

3.4.1 Inorporating the σ meson width

So far in previous Setions we have arried on a large-NC omputation where one had an

intermediate exhange of narrow-width salars. This approximation seems to be suitable

6

Phenomenologially, in order to study the a1 meson �nite size e�ets, Ref. [2℄ onsidered an additional

ad ho exponential suppression fator exp{−R2|~pπ− |2/2} in addition to the analogous GSππ(s3) funtions.

However, the �t to the experimental data did not show an essential di�erene between a zero and non-zero

value of R. As a result of this, the nominal �t shown therein was the one with R = 0 (for details see Setion

VI of [2℄). Moreover, these exponential fators do not have the right analytial struture in the whole

omplex plane and add an exponentially divergent behaviour for some omplex diretions at |q2| → ∞.

Likewise, this funtional dependeny may not ome from a perturbative Lagrangian omputation like the

one worked out in this artile and will not be inorporated to our diagrammati results.

7

By modi�ed we mean a phenomenologial approah proposed in Se. II of [7℄ to inlude the σ-meson

in the hadroni form-fators.
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for the f0(980). However, the σ meson is a broad resonane and the e�et of its width is

non-negligible. It is not our intention to enter here in the disussion of the σ nature but,

rather, to propose an improved parametrization of its e�et on the τ → νπππ deay that

inorporates the features desribed in the introdution. For this, we follow the suessful

analysis of subleading 1/NC e�ets in salar exhanges in the η′ → ηππ proess [23℄: after

onsidering the salar splitting in (3.16), we inorporate the �dressed� σ propagator in a

similar way by performing the substitution

1

M2
σ − s

−→ 1

M2
σ − s − fσ(s) − iMσΓσ(s)

, (3.17)

with

f(s) = cσs
k ReB0(s,m

2
π,m

2
π) =

cσ s
k

16π2

[
2− ρπ(s) ln

ρπ(s) + 1

1− ρπ(s)

]
,

MσΓσ(s) = cσs
k ImB0(s,m

2
π,m

2
π) =

cσ ρP (s) s
k

16π
, (3.18)

in the fashion of Gounaris and Sakurai [26℄. We will use the parameters Mσ and cσ
tuned suh that one reovers the right position for the σ pole, Mpole

σ = 441+16
− 8 MeV,

Γpole
σ = 544+18

−25 MeV [24℄. The funtion,

B0(s,m
2
P ,m

2
P ) =

1

16π2

[
2− ρP (s) ln

ρP (s) + 1

ρP (s)− 1

]

=
1

16π2

[
2− ρP (s) ln

ρP (s) + 1

1− ρP (s)
+ iπρP (s)

]
, (3.19)

is the subtrated two�point Feynman integral (B0(0,m
2
P ,m

2
P ) = 0), with

ρP (s) ≡ λ(s,m2
P ,m

2
P )

1
2/q2 =

√
1− 4m2

P /s.

One of the ruial points of the parametrization [23℄ employed here is that it inorpo-

rates the real part of the logarithm that omes along with the imaginary part −iMσΓσ(s)

on the basis of analytiity. In the ase of narrow-width resonanes, these real logs are es-

sentially negligible and an be dropped. However, if their orresponding imaginary part is

large one naturally expet the appearane of equally large real logarithms. Moreover, any

attempt to math NLO χPT at low-energies must inorporate both the real and imaginary

parts of the logs. Even though our simple approah [23℄ an be further re�ned, it already

ontains some of the basi ingredients that makes this mathing possible. Other works that

inorporate the real and imaginary parts of the logarithm in other observables an be found

in Refs. [27, 28℄.

The power behaviour k = 0 produes an unphysial bound state in the �rst Riemann

sheet very lose below the ππ threshold, whih unnaturally enhaned the amplitude in the

η′ → ηππ [23℄, leading in that work to a very small Sππ oupling cd = 9.9 MeV. This ase

seems to be learly disfavoured from the phenomenologial point of view and was disarded

in the analysis of Ref. [23℄. For k = 1, the amplitude produes just one pole and its orret

position

√
sσpole = [(441+16

− 8 ) − i(544+18
−25)/2] MeV [24℄ is reovered for the parameter values
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Mσ = 806.4 MeV and cσ = 76.12. 8

Power behaviours with k ≥ 2 are unable to generate

the σ pole at the right position. For its losest position, the pole mass is slightly larger and

the pole width is roughly 100 MeV smaller. Likewise, some spurious poles are produed far

from the physial energy range of the problem under study.

For the numerial inputs we will take the sk saling with k = 1 in Eq. (3.18) and the

values Mσ = 806.4 MeV and cσ = 76.12. In these expressions the onstants Mσ and cσ that

appear in the denominator are parameters set to agree with the entral value of the σ pole

position spoleσ = (Mpole
σ − iΓpole

σ /2)2 from Ref. [24℄.

Our estimate of the resattering of the ππ system related to the isosinglet salar is

obviously model dependent, as we have introdued an ad ho splitting and self-energy for

the salar multiplet. The splitting an be easily introdued through the orresponding

terms in the Lagrangian, studied in Ref. [30℄. On the other hand, the resummation of the

one-loop self-energy is also justi�ed, even for the broad σ: higher order e�ets (multimeson

hannels) are ompletely negligible below 1 GeV and the one-loop amplitude seems to

provide the ruial information in our physial range. Notwithstanding, this ππ �nal state

interation must be appropriately resummed in the neighbourhood of the resonane pole,

as noted in Refs. [31, 32℄. Alternatively one might inorporate the S-wave resattering via

unitarization proedures [23, 27℄ and related dispersion relations (see, e.g., the semileptoni

B deay analysis [33℄).

3.4.2 Inorporating the f0 meson width

One an take also into aount the f0(980) width in a similar way. Due the sin2 φS suppres-

sion in (3.16), the f0(980) produes a learly subdominant e�et with respet to the impat

of the broad σ. The important piee of the self-energy is its imaginary part, being the

real part of its orresponding logarithm almost negligible in omparison with the leading

ontribution M2
S − s. In the ase of the narrow f0 resonane, the loation of its pole near

the KK threshold will modify the f0 propagator into the well-known Flatté form [34℄

1

M2
f0

− s
−→ 1

M2
f0

− s − iMf0Γf0(s)
, (3.20)

with

Mf0Γf0(s) =
cf0M

2
f0
ρK(s)

16π
, (3.21)

whih is indeed the near threshold expression of the self-energy at lowest order in the

non-relativisti expansion in powers of the kaon three-momentum |~pK | ∼ ρK(s) [35, 36℄.

As the self-energy is only relevant for s ≈ M2
f0
, one does not need to onsider di�erent

cf0s
k
salings for the loop orretions as we did for the σ meson and the di�erent values

8

These are the orresponding entral values. Errors are not disussed in this artile. A more detailed

numerial analysis is postponed for a future work. Nonetheless, one may observe that alternative σ pole

determinations like, e.g.,

√

sσ
pole

= [(457+14
−13) − i(558+22

− 14)/2] MeV [29℄, yield similar entral value deter-

minations Mσ = 804.1 MeV and cσ = 70.96. This variation gives a preliminary estimate of the expeted

unertainties in these quantities.
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of k amount just for di�erenes at higher order in the non-relativisti expansion in ρK(s).

For spolef0
= (Mpole

f0
− iΓpole

f0
/2)2 = (990 − i70/2)2 MeV

2
[37℄

9

this implies the parameters

Mf0 = 1024 MeV and cf0 = 17.7. In spite of the fat that we have used the average

kaon mass mK = 496 MeV, the latter result is not very sensitive to the preise position

of the KK threshold, with Mf0 and cf0 hanging by ±0.5% and ±7%, respetively, when

mK is varied between the harged and neutral kaon mass values. By far the largest e�et

would be the unertainty in the f0 mass and width with errors of ±20 MeV and ±30 MeV,

respetively [37℄.

Therefore, for the numerial inputs we will take Mf0 = 1024 MeV and cf0 = 17.7. 10

4 The deay τ → πππντ through tensor resonanes

In this setion we fous on tau deay into three pions through an intermediate tensor

resonane (JPC = 2++
) in the asade deay τ → ντ π

− T (→ ππ). Our study reprodues

the predition for the tau deay into a tensor resonane and a hiral pseudo-Goldstone [3℄

and expands then for the ase of the o�-shell tensor resonane.

G-parity onservation implies that for the non-strange axial-vetor urrent (with G =

−1) the tensor resonane produed in ombination with a pion must have G = (−1)I = +1

and, hene, even isospin. As a onsequene of this, it must be an isosinglet in the ase of

qq̄ multiplets (T = f2(1270), f2(1430), f
′
2(1525), f2(1565)...). In this artile we study the

impat of the lightest tensor, f2(1270), whih dominantly deays into ππ [37℄. The f ′
2(1525)

mainly goes into KK and has a negligible deay into ππ [37℄. The resonanes f2(1430) and

f2(1565) and their deay into ππ still need further on�rmation [37℄. f2(1640) and heavier

tensor isosinglets are not allowed by the tau deay phase-spae.

4.1 The RχT Lagrangian for tensor �elds

The relevant part of the hiral invariant Lagrangian for the pion-tensor prodution (Fig 1)

onsists in this ase of

• Operators with one resonane �eld [9, 38℄,

11

LA =
FA

2
√
2
〈Aµνf

µν
− 〉 ,

LT = gT 〈Tµν{uµ, uν} 〉 . (4.1)

• Operators with an axial-vetor and a tensor �eld (whih provides the ATπ vertex in

diagram ) in Fig. 1),

LATπ = λAT
1 〈 {Tµν , A

να}hµα 〉+ λAT
2 〈 {Aαβ ,∇αT µβ}uµ 〉 , (4.2)

9

We take the entral PDG values here.

10

We remind that the parameter Mf0 is not the pole mass Mpole

f0
.

11

There are two more operators for LT in Ref. [38℄ allowed by hiral symmetry but they ontain the

trae Tα
α [38℄: ∆LT |

o�-shell

= 〈Tα
α (βuµuµ + γχ+) 〉. Sine they are proportional to the equations of motion

of the tensor, whih on-shell require it to be transverse (∇αTαβ = 0) and traeless (Tα
α = 0), they an be

removed through meson �eld rede�nitions and we will not disuss them in the present work.
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b)a)

Figure 2. New diagrams due to the short-distane O(p4) operators LSD
1,2,3. For a more detailed

explanation, see the text. The verties from L(4)
non−R (L(2)

non−R) are represented by squares (irles).

The straight lines are pions and the wavy ones orrespond to the inoming W−

.

with hαµ = ∇αuµ +∇µuα [9℄. Only the independent operators from LAT that on-

tribute to the ATπ vertex are shown here. We onstrut here the general hiral

invariant operators at lowest order in derivatives, O(p2), that may ontribute to the

ATπ vertex.

12

• Operators without resonane �elds [38℄: in addition to (3.5) we have

L(4)
non−R = LSD

1 〈uµuµ 〉2 + LSD
2 〈uµuν 〉 〈uµuν 〉 + LSD

3 〈 (uµuµ)2 〉 , (4.3)

with [38℄

LSD
2 = 2LSD

1 = −LSD
3

2
= − g2T

M2
T

. (4.4)

The appearane of L(4)
non−R was explained in [38℄: in order to reprodue the orret

short-distane behaviour for the forward ππ sattering �presribed by the Froissart

bound [39℄� one must add non-resonant O(p4) terms with appropriate LSD
1,2,3. As a

onsequene this, new non-resonant diagrams generated by LSD
1,2,3 (Fig. 2) have to

be inluded in the alulation of the 3π-AFF. Additional details from Ref. [38℄ are

provided in App. A. This problem did not appear in the salar and vetor resonane

ase [9℄, i.e. the introdution of the salar and vetor resonane interation, LS and

LV [4℄, did not spoil the high-energy behaviour of the forward pion sattering and no

additional O(p4) terms were required [9℄.

We will assume the ideal mixing in the tensor nonet Tµν = T a
µνλ

a/
√
2 and that the

f2(1270) resonane is the pure uū+ dd̄ omponent:

T µν =




fµν
2√
2

0 0

0
fµν
2√
2

0

0 0 0




+ ... (4.5)

12

There are also two more ATπ operators allowed by symmetry but they ontain the trae Tα
α or the

ontration ∇αTαβ : ∆LATπ |
o�-shell

= βATπ〈 {Aαβ ,∇
αT µ

µ}u
β 〉 + γATπ〈 {Aαβ,∇µT

µα}uβ 〉. They do not

propagate the tensor meson and an be removed from the generating funtional through appropriate �eld

rede�nitions.
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4.2 AFF into Tπ−

The general possible struture for the hadroni matrix element into a tensor and a pion is

given by three independent form-fators [3℄, whih an be arranged in the form

〈 f2(k, ǫ)π−(p3)| d̄γαγ5u |0 〉 = ǫ∗µνH
α, µν
Tπ (4.6)

= i ǫ∗µν
[
PT (q)

αρ pν3
(
gµρ Fa

Tπ(q
2; k2) + p3 ρp

µ
3 Ga

Tπ(q
2; k2)

)
+ pµ3p

ν
3q

αHa
Tπ(q

2; k2)
]
,

with q = p3 + k and ǫµν the polarization of the outgoing tensor [3, 38℄. Due to the partial

onservation of the axial-vetor urrent, the Ha
Tπ(q

2; k2) form-fator is suppressed by m2
π.

Here the tensor resonane has been assumed to be the asymptoti �nal state with

polarizations ful�lling the on-shell onstraints [38℄

ǫµν = ǫνµ , kµǫµν = 0 , gµνǫµν = 0 . (4.7)

We used the ompleteness relation [38, 40℄

P(k)µν,αβ =
∑

ǫ

ǫµνǫ
∗
αβ =

1

2

(
P (k)µαP (k)νβ + P (k)ναP (k)µβ

)
− 1

3
P (k)µνP (k)αβ (4.8)

with P (k)µν = PT (k)
µν |k2=M2

T
= gµν − kµkν/M

2
T .

The hadroni Lagrangian from Eqs. (4.1) and (4.2) leads to the determination

Fa
Tπ(q

2; k2) = −8gT
Fπ

+
4
√
2FAλ

AT
1

Fπ

(qp3)

M2
A − q2

− 2
√
2FAλ

AT
2

Fπ

(qk)

M2
A − q2

,

Ga
Tπ(q

2; k2) = −4
√
2FAλ

AT
1

Fπ

1

M2
A − q2

− 2
√
2FAλ

AT
2

Fπ

1

M2
A − q2

,

Ha
Tπ(q

2; k2) = 0 , (4.9)

with (qp3) = (q2 + m2
π − k2)/2 and (qk) = (q2 −m2

π + k2). Even though k2 = M2
T when

the tensor resonane is on-shell we have kept the o�-shell momentum dependene stemming

from our RχT Lagrangian. The m2
π hiral suppressed form-fator Ha

Tπ(q
2) is exatly zero

in our approah as we are onsidering a resonane Lagrangian with the lowest number

of derivatives (this is, two derivatives, O(p2)) and the Lorentz struture orresponding to

Ha
Tπ(q

2; k2) arries three powers of external momenta.

If one imposes a vanishing behaviour for the ontribution of the Tπ absorptive ut

to the axial-vetor orrelator at q2 → ∞ one �nds that the form-fators vanish at large

momentum transfer like Fa
Tπ(q

2;M2
T )

q2→∞−→ O(1/q2) and Ga
Tπ(q

2;M2
T )

q2→∞−→ O(1/q4) or

faster (see App. B for details). Demanding this to the previous RχT form-fators Fa
Tπ

and Ga
Tπ yields, respetively, the onstraints (taking into aount k2 = M2

T for the on-shell

resonane),

4
√
2gT + 2FAλ

AT
1 − FAλ

AT
2 = 0 , 2λAT

1 + λAT
2 = 0 . (4.10)

This leads to the resonane oupling relations

FAλ
AT
2 = −2FAλ

AT
1 = 2

√
2gT (4.11)
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and the form-fators

Fa
Tπ(q

2; k2) = −8gT
Fπ

M2
A

M2
A − q2

,

Ga
Tπ(q

2; k2) = 0 . (4.12)

This result agrees with that in Ref. [3℄ near the axial-vetor resonane. Furthermore,

in the hiral limit, if one requires the same fall-o� for the form-fators therein one has an

agreement in the full energy range. Additional details an be found in App. C.2.

4.3 3π AFF through an intermediate tensor resonane

The three possible deay mehanisms involving the tensor resonane are drawn in Fig. 1.

We present here some useful intermediate results.

The π0π0π−
prodution with the neutral pions mediated by a tensor resonane is

provided by three ingredients:

• The transition W−µ(q) → f2(k)
∗π0(p3) taking into aount the three diagrams is

given by

〈 f∗
2 (k, ǫ)π

−(p3)|d̄γµγ5u|0 〉 = ǫ∗αβH
µ, αβ
Tπ (4.13)

=
−4

√
2 i

Fπ
pα3 ǫ

⋆αβ
[√

2gT

(
gβµ − qβqµ

q2 −m2
π

)

−FA

[
λAT
1 (qp3gβµ − qβp3µ) − 1

2λ
AT
2 (qkgβµ − qβkµ)

]

M2
A − q2

]
.

After imposing the high-energy onstraints (4.11), this expression gets greatly simpli-

�ed into

Hµ, αβ
Tπ =

−8 igT
Fπ

pα3

[ M2
A

M2
A − q2

PT (q)
βµ − m2

πqβqµ

q2(q2 −m2
π)

]
. (4.14)

We remark that we have not used the on-shell onditions in Eqs. (4.13) and (4.14)

above.

• The tensor propagator [38℄:

∆T (k)
µν,αβ =

iP(k)µν,αβ

M2
T − k2

. (4.15)

• The deay amplitude M(f∗
2 (k) → π0(p1)π

0(p2)) = ǫαβΓαβ is given by

Γαβ =
−i

√
2gT

F 2
π

[
kαkβ −∆pα ∆pβ

]
, (4.16)

with ∆pρ = pρ1 − pρ2 and k2 = s3. No on-shell ondition has been assumed in the

expression above. The term kαkβ beomes zero when ontrated with the ǫαβ polar-

ization of an external on-shell tensor resonane.
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The π0π0π−
AFF is then given by

Hµ = Hµ

(0) + HTπ(k, p3)
µ, αβ ∆T (k)αβ,ρσ Γ(p1, p2)

ρσ
(4.17)

= Hµ
(0) + Hµ

(1) +
Hµ

(2)

M2
T − s3

.

The �rst term, Hµ

(0), omes from the non-resonant diagrams in Fig. 2 generated by the

short-distane terms LSD
1,2,3 in Eqs. (4.3) and (4.4). The seond and third ones, Hµ

(1) and

Hµ
(2), respetively, are produed by the diagrams with tensor resonane exhanges (Fig. 1).

Hµ
(1) omes from the kαkβ term in the Γ[T (k)αβ → π0(p1)π

0(p2)] vertex funtion and does

not ontribute to the on-shell deay T → π0π0
. For sake of this, the ontribution with Hµ

(1)

does not propagate the tensor resonane and has no pole at s3 = M2
T . The ontribution to

the three-pion AFF from the remaining part of the Tπ0π0
vertex is enoded in Hµ

(2).

The value of these two types of ontributions are

Hµ
(0) =

8
√
2ig2T

3F 3
πM

2
T

PT (q)
µν
[
(s3 − s2 + 2s1 − 4m2

π)(p1 − p3)ν

+(s3 − s1 + 2s2 − 4m2
π)(p2 − p3)ν

]
(4.18)

− 8
√
2ig2Tm

2
π

F 3
πM

2
T q

2(q2 −m2
π)

qµ
(
s1s2 −m2

πq
2 −m4

π

)

Hµ

(1) =
8
√
2ig2T

F 3
πM

2
T

m2
π

q2(q2 −m2
π)

qµ
[
(kq)(kp3)−

s3
3

(
(qp3) +

2(kq)(kp3)

M2
T

)]
(4.19)

− 8igT

F 3
πM

2
T

M2
A

(M2
A − q2)

PT (q)
µνkν

[√
2gT

((
1− 2s3

3M2
T

)
(kp3) +

s3
3

)

+(FAλ
AT
1 +

√
2gT )

q2(kp3)

M2
A

(
2s3

3M2
T

− 1

)
+ (FAλ

AT
2 − 2

√
2gT )

q2s3

6M2
A

]
,

Hµ
(2) a1−pole = − 8igT

F 3
π

FA

M2
A − q2

PT (q)
µν

[(
λAT
1 M2

A −
(
λAT
1 +

λAT
2

2

)
(kq)

)
(q∆p)∆pν

+

(
λAT
1 M2

A(∆p)2(kp3 +M2
T )

3M2
T

+

(
λAT
1 +

λAT
2

2

)(
(q∆p)2 − (∆p)2M2

A

3

))
kν
]
,(4.20)

Hµ
(2) a1 no−pole = − 2

√
2igT

F 3
π

PT (q)
µν

[
− 2

√
2(FAλ

AT
1 +

√
2gT )

(
(q∆p)∆pν +

(kp3)(∆p)2

3M2
T

kν

)

+
√
2(FAλ

AT
2 − 2

√
2gT )

(∆p)2

3
kν

]

− 8
√
2ig2Tm

2
π

F 3
πq

2(q2 −m2
π)

qµ
[
(q∆p)2 +

(∆p)2

3M2
T

(
kq kp3 − qp3M

2
T

) ]
, (4.21)
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with (∆p)2 = 4m2
π−s3, (kq) = (q2+s3−m2

π)/2 and (k∆p) = 0. From these, one an derive

a series of dependent salars: (kp3) = (qk) − s3 = (q2 − s3 −m2
π)/2, (qp3) = q2 − (qk) =

(q2 − s3 +m2
π)/2, (q∆p) = (p3∆p) = (s2 − s1)/2 and the relation s1,2 = kp3 + 2m2

π ∓ q∆p.

For onveniene we have split Hµ

(2) into its parts with and without the a1 pole. We also

used the relation (qp3)k
µ − (qk)pµ3 = q2PT (q)

µνkν .

We now ombine Hµ
(0), H

µ
(1) and Hµ

(2) and rewrite their sum in terms of the Lorentz

deomposition (2.1). This provides the ontribution to the π0π0π−
AFFs in (2.1) derived

from tensor resonane exhanges:

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

1, (0) (s1, s2, q
2) + Fπ0π0π−

1, (RSD)(s1, s2, q
2) (4.22)

− 4

9F 3
π

gT

M2
T

(FAλ
AT
2 − 2

√
2gT )

M2
A − q2

×
[
s3q

2

+
M2

T

M2
T − s3

(
3(q∆p)2 − 9(qk)(q∆p) − q2(∆p)2

) ]

− 8

3F 3
π

gT

M2
T

(FAλ
AT
1 +

√
2gT )

M2
A − q2

×
[
q2(kp3)

(
2s3

3M2
T

− 1

)

+
M2

T

M2
T − s3

(
(q∆p)2 + 3(q∆p)(qp3) +

q2(kp3)(∆p)2

3M2
T

)]

Fπ0π0π−

P (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

P, (0) (s1, s2, q
2) (4.23)

+
8
√
2g2Tm

2
π

3M2
TF

3
πq

2(m2
π − q2)

×
[
(qp3)s3 + (kq)(kp3)

(
2s3

M2
T

− 3

)

+
M2

T

M2
T − s3

(
3(q∆p)2 +

(
(kq)(kp3)

M2
T

− (qp3)

)
(∆p)2

)]
,

with

Fπ0π0π−

1, (0) (s1, s2, q
2) =

8
√
2g2T

3F 3
πM

2
T

(2s1 − s2 + s3 − 4m2
π) , (4.24)

Fπ0π0π−

P, (0) (s1, s2, q
2) = − 8

√
2g2Tm

2
π

F 3
πM

2
T q

2(q2 −m2
π)

(
s1s2 −m2

πq
2 −m4

π

)
, (4.25)

Fπ0π0π−

1, (RSD)(s1, s2, q
2) = −8

√
2

3F 3
π

g2T
M2

T

M2
A

M2
A − q2

[
(kp3) +

s3
3

(
1− 2(kp3)

M2
T

)

− M2
T

M2
T − s3

(
3(q∆p) +

(∆p)2

3
+

(kp3)(∆p)2

3M2
T

)]
, (4.26)

where the ontributions Fπ0π0π−

1, (0) and Fπ0π0π−

P, (0) ome from the Hµ
(0) part of the matrix

element Hµ
.

All the results here refer to the π0π0π−
AFF. Isospin symmetry [1, 8, 11℄ relates them

to the π−π−π+
form-fators, whih an be obtained by mean of the relations (2.5).
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The expression of the form-fators get greatly simpli�ed after applying the high-energy

onstraints extrated from the analysis of the Tπ AFF in Eq. (4.11):

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

= Fπ0π0π−

1, (0) (s1, s2, q
2) + Fπ0π0π−

1, (RSD)(s1, s2, q
2) , (4.27)

while these resonane short-distane onditions do not a�et the longitudinal form-fator

FP (s1, s2, q
2)

∣∣∣∣
T

, whih remains the same as in (4.23).

The omparison between CLEO's results and ours for the amplitude and the related

AFF is given in App. C.1. From that, we onlude that the two parametrizations oinide

near the resonane energy regions (s3 ≃ M2
T , q

2 ≃ M2
A). However, for an arbitrary o�-shell

momentum we have a more general momentum struture whih ensures the right low energy

behaviour and the transversality of the matrix element in the hiral limit, allowing a proper

mathing with χPT.

4.4 Tensor resonane width

In order to inlude the e�et of the tensor width, we modify the tensor resonane propagator

in the form

1

M2
T − s

−→ 1

M2
f2

− s− iMf2Γf2(s)
, (4.28)

with the spin�2 energy-dependent Breit-Wigner width used in CLEO's analysis [2℄,

Γf2(s) = Γf2
0

s2

M4
f2

ρπ(s)
5

ρπ(M
2
f2
) 5

. (4.29)

For the numerial estimation in the next Setion we will take the PDG entral value Γf2
0 =

186.7 MeV for the f2(1270) total deay width [37℄.

The tensor ontribution to the AFF depends on the gT oupling, whih is related to

the on-shell deay width into two pseudo-Goldstones [38℄:

Γf2→ππ =
g2TM

3
f2
ρπ(M

2
f2
) 5

40πF 4
π

. (4.30)

Using the PDG entral values, Γexp
f2→ππ = 157.2 MeV, Mf2 = 1275.5 MeV, mπ = 139.57 MeV

and Fπ = 92.2 MeV, one obtains

gT ≃ 28MeV , (4.31)

whih agrees with the estimation in [38℄.

5 Implementation in Tauola: numerial results

In the previous setions we desribed the set of the three pion form fator ontributions

related with the tensor and salar intermediate resonanes and alulated on the base of the
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Figure 3. Three pion q2 spetrum dΓπ0π0π−

/dq2 (left) and the ratio of the MC and the analytial

q2 spetrum (right).

RχT Lagrangians. In this setion we present a �rst numerial estimate with the updated

version of the Monte Carlo (MC) event generator Tauola [41℄. It inorporates the new

salar and tensor ontributions to the AFF omputed in this artile, provided in (3.11) and

(4.22), respetively.

13

First, we ompare the analytial and Tauola distributions for the deay width (dΓπππ/dq2)

and repeat the tests on numerial stability of the MC, as in Se. 4 of Ref. [5℄

14

For further

details see this referene. The omparison is presented in Fig. 3. We present here only

dΓπ0π0π−

/dq2 spetrum. A similar result has been obtained for the π−π−π+
mode.

In addition we have ompared the two- and three-meson invariant mass distributions

for our theoretial result and the experimental data. For the π−π−π+
hannel, we used

preliminary BaBar data [6℄ (Fig. 4, top panels). Due to our lak of aess to the π0π0π−

data, they have been 'emulated' on the basis of the results in Ref. [2℄: Tauola was run with

CLEO's AFF from App.A.1 of [2℄ and nominal �t parameters spei�ed therein in Table

III.

15

The omparison of our parametrization to this `emulation' of CLEO data is shown

in Fig. 4, bottom panel.

To produe the theoretial distributions the tensor and salar resonane parameters

were �xed to their value spei�ed in Ses. 3.4 and 4.4 whereas the vetor and axial-vetor

parameters were �xed to their �t values in [7℄. All parameters are summarized in Table 1.

These plots are an illustration of our model, whih demonstrates that even without

�tting the model qualitatively reprodues the experimental spetra. No large unwanted

deviation from data ours, being these values an appropriate starting point for a more

detailed study. The tuning of our model parameters and the �tting to the data will be done

in a future work [42℄.

13

The MC Tauola implementation of these hannels was ross-heked with a Mathematia ode, whih

an be provided on demand.

14

We use the same samples and integration proedure as in [5℄. The MC result here orresponds to a

number of events Nev. = 6 · 106.
15

We thank J. Zaremba for providing the orresponding unnormalized CLEO distributions.
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Mρ Mρ′ Γρ′ Ma1 Mσ Mf2 Γf2 Fπ

0.772 1.35 0.448 1.10 0.8064 1.275 0.185 0.0922

FV FA βρ gT cd cσ Mf0 cf0
0.168 0.131 −0.32 0.028 0.026 76.12 1.024 17.7

Table 1. Numerial values of the parameters used to produe the theoretial spetra in 4. All the

parameters are in GeV units exept for cσ and cf0 , whih are dimensionless.
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Figure 4. Top: omparison between the BaBar data and our theoretial predition for the π−π−π+

deay mode. Bottom: omparison between the CLEO 'emulated' data (for details the text) and

our predition for the π0π0π−

deay mode.

6 Conlusions

In this artile we have omputed the ontribution of salar and tensor resonanes to the τ →
πππντ deay axial-vetor form-fators. We have made use of a hiral invariant Lagrangian

inluding the relevant axial-vetor, salar and tensor resonanes together with the hiral

(pseudo) Goldstones.

As a onsequene of this, the hiral symmetry is automatially inorporated in our

result. This ensures the proper low-energy mathing with χPT and that the urrents

for π0π0π−
and π−π−π+

hannels are related as presribed by isospin symmetry [1, 8℄.

In addition, the tensor resonane ontribution to the axial-vetor urrent is transverse in

the hiral limit, improving previous desriptions [3℄. A similar thing applies to the salar

ontributions. Chiral symmetry also guaranties the proper low-energy mathing with χPT,
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�xing some issues in former parametrizations [2℄ (see App. C.1).

In addition, the tensor and salar resonane ontributions to the tau deay are further

re�ned by demanding the appropriate asymptoti high-energy QCD behaviour for meson

form-fators presribed by the quark-ounting rules [22℄. As desribed in Ses. 3.3, 4.2 and

App. B, these large�NC short distane onditions onstrain the resonane parameters of

the Tπ and Sπ AFFs, whih are essentially determined in terms of the gT and cd ouplings,

respetively, and the resonane masses.

We would like to note that in this artile we have onsidered for the �rst time the axial-

vetor�tensor interation within the Resonane Chiral Theory approah, extending the work

of Eker and Zauner on tensors [38℄. We plan to inlude vetor�tensor interations in a

similar way in a future paper [43℄ dediated to the study of the e+e− → a2π proess.

We have ompared our outome for the πππ AFF with former parametrizations with

CLEO [2℄ and Castro-Muñoz [3℄. While we oinide on the resonane region, our result

inorporates an appropriate low and high-energy behaviour, improving these works in the

latter regimes. As we plan to inorporate these new results in the Tauola generator, whih

generates events from the three pion threshold up to roughly the tau mass, it is important

to handle as best as possible the various energy ranges (low, resonant and high). Some �rst

simulations with the Tauola Monte Carlo have been provided in Se. 5. A more thorough

numerial analysis is postponed for a future work [42℄.

To onlude: we would like to remind that the forthoming projet Belle-II [45℄ has a

broad program devoted to τ -physis. By 2022, they expet to reord a 50 times lager data

sample than the Belle experiment. It will give us an opportunity to measure both π−π−π+

and π0π0π−
deays and study their intermediate prodution mehanisms like, e.g., the tiny

ontribution from the f2π
−
hannel. This will allow us to test our hadroni model and the

isospin symmetry relation between π−π−π+
and π0π0π−

form fators.
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A Axial-vetor form-fator into 3π in χPT

In this Appendix, we will fous on the non-hirally suppressed form-fator F1. At tree-level,

χPT gives the low-energy expansion up to O(p4) [8℄ 16

Fπ0π0π−

1 (s1, s2, q
2) =

2
√
2

3Fπ

(
1 +

4(2L1 + L3)

F 2
π

(s3 − 2m2
π)

+
4L2

F 2
π

(s2 − 2s1 + 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

+
2L9q

2

F 2
π

)
, (A.1)

16

The relations between SU(2) and SU(3) hiral ouplings (respetively, ℓ̄i and Li) an be found in

Se. 11 of Ref. [18℄.
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with q2 = (p1 + p2 + p3)
2
and s1 = (p2 + p3)

2
, et. Notie the kinematial onstraint

s1 + s2 + s3 = q2 + 3m2
π.

At O(p2) the π0π0π−
and π−π−π+

hannels are related through isospin in the simple

form

Fπ0π0π−

1 (s1, s2, q
2) = −Fπ−π−π+

1 (s1, s2, q
2) =

2
√
2

3F
. (A.2)

Nonetheless, resonane ontributions will show up at O(p4) and higher [9, 19, 38℄, in general

spoiling this relation.

In the ase when there are only vetor ontributions to the LECs one �nds [9℄,

L2

∣∣∣∣
V

= 2L1

∣∣∣∣
V

= −L3

3

∣∣∣∣
V

=
G2

V

4M2
V

, L9

∣∣∣∣
V

=
FV GV

2M2
V

, (A.3)

with the remaining O(p4) LECs being zero. Thus, one has the O(p4) ontribution [44℄

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
V

= −Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
V

=
2
√
2

3F

(
8L1(3s2 − 2q2)

F 2 +
2L9q

2

F 2

) ∣∣∣∣
V

.

(A.4)

The situation is di�erent in the ase when there are only salar ontributions to the

O(p4) LECs [9℄:

L1

∣∣∣∣
S

=
c̃2d

2M2
S1

− c2d
6M2

S

, L2

∣∣∣∣
S

= L9

∣∣∣∣
S

= 0 , L3

∣∣∣∣
S

=
c2d

2M2
S

,

L4

∣∣∣∣
S

=
c̃dc̃m

M2
S1

− cdcm

3M2
S

, L5

∣∣∣∣
S

=
cdcm

M2
S

. (A.5)

Taking this into aount one obtains the O(p4) ontribution

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
2
√
2

3Fπ

(
4(2L1 + L3)

F 2
π

(s3 − 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

)∣∣∣∣
S

,

Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
S

= −2
√
2

3Fπ

(
4(2L1 + L3)

F 2
π

(2s1 − s2 − 2m2
π) +

4(2L4 + L5)m
2
π

F 2
π

)∣∣∣∣
S

.

(A.6)

Exept for the speial point s1 = (q2 +3m2
π)/3, the F1 funtions of the two deay hannels

have a di�erent kinematial dependene and one annot simply assume Fπ0π0π−

1 (s1, s2, q
2) =

−Fπ−π−π+

1 (s1, s2, q
2). This preise expression (A.6) an be diretly obtained from the low-

energy limit of Eq. (3.11),

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
S

=
4
√
2

3F 3
π

1

M2
S

[c2d(s3 − 2m2
π) + 2cdcmm2

π] , (A.7)

where in the large NC limit the otet and singlet salar ouplings are related in the form

c̃d = cd/
√
3 and c̃m = cm/

√
3, and L1|S and L4|S turn zero [9℄.
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Taking only the tensor resonane ontribution, the O(p4) ontributions to the form-

fators beome

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

=
2
√
2

3Fπ

(
4L3

F 2
π

(s3 − 2m2
π)

)∣∣∣∣
T

,

Fπ−π−π+

1 (s1, s2, q
2)

∣∣∣∣
T

= −2
√
2

3Fπ

(
4L3

F 2
π

(2s1 − s2 − 2m2
π)

)∣∣∣∣
T

, (A.8)

with the O(p4) hiral low-energy onstants [38℄,

L1

∣∣∣∣
T

= L2

∣∣∣∣
T

= 0 , L3

∣∣∣∣
T

=
g2T
3M2

T

, (A.9)

and zero for all the remaining LECs. As it happened in the salar resonane ase, the

relation Fπ0π0π−

1 (s1, s2, q
2) = −Fπ−π−π+

1 (s1, s2, q
2) is generally not true, only being ful-

�lled at the speial kinematial point s1 = (q2 +3m2
π)/3. The result (A.8) an be obtained

diretly from the determination (4.22): the O(p4) term in the low-energy expansion of our

tensor-exhange predition is given by the diagrams a and b in Fig. 1 (with their subsequent

T → ππ deay),

Fπ0π0π−

1, (RSD)(s1, s2, q
2) =

8
√
2g2T

9F 3
πM

2
T

(
−6s1 + 3s2 − 2s3 + 10m2

π

)
, (A.10)

and those in Fig. 2,

Fπ0π0π−

1, (0) (s1, s2, q
2) =

8
√
2g2T

3F 3
πM

2
T

(
2s1 − s2 + s3 − 4m2

π

)
. (A.11)

The remaining ontributions to F1(s1, s2, q
2) are zero at O(p4). Therefore the total ontri-

bution at that hiral order is

Fπ0π0π−

1 (s1, s2, q
2)

∣∣∣∣
T

=
8
√
2g2T

9F 3
πM

2
T

(
s3 − 2m2

π

)
. (A.12)

Mathing the expression (A.12) and Eq. (A.1) one reovers for L1,2,3

∣∣∣∣
T

the relations (A.9)

from Ref. [38℄.

B Optial theorem and axial-vetor form-fators

The orrelator of two axial-vetor urrents Jα
A = d̄γαγ5u ,

ΠAA(q)
µν ≡ i

∫
d4x eiqx〈 0|T{Jµ

A(x)J
ν
A(0)

† }|0 〉 , (B.1)

is desribed by two Lorentz salar funtions, the transverse and longitudinal orrelators,

ΠT (q
2) and ΠL(q

2), respetively:

ΠAA(q)
µν = −q2PT (q)

µν ΠT (q
2) + q2PL(q)

µνΠL(q
2) . (B.2)
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The onservation of the axial-vetor urrent in the hiral limit implies that ΠL(q
2) is sup-

pressed by the up and down quark mass ombination (mu +md), this is, by m2
π.

The axial-vetor form-fators for the prodution of a generi state X and its orre-

sponding hadroni matrix element,

Hα = 〈X| d̄γαγ5u |0 〉 , (B.3)

determines the ontribution to the spetral funtions of ΠT,L from that absorptive ut

through the optial theorem. For a two-partile intermediate state X with masses m1 and

m2 one has

ImΠT (t)

∣∣∣∣
cutX

= −
(
λ(t,m2

1,m
2
2)

1
2

48πt2

)
∑

helicities

HαPT (q)
αβH∗

β ,

ImΠL(t)

∣∣∣∣
cutX

=

(
λ(t,m2

1,m
2
2)

1
2

16πt2

)
∑

helicities

HαPL(q)
αβH∗

β , (B.4)

with t = q2, PL(q)
αβ = qαqβ/q2, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and the

summation referring to the heliities of the two-partile intermediate state X.

Perturbative QCD tells that the full spetral funtion goes to a onstant at high energies

and thus, the ontribution from eah (in�nitely many) hadroni intermediate states vanishes

for q2 → ∞ [13℄. This agrees with Brodsky-Lepage's quark-ounting rules for asymptoti

behaviour of hadroni form-fator in the ultraviolet [22℄.

B.1 Sπ AFF

The SI=0 π
−
absorptive ut ontributes to the axial-vetor orrelator in the form [13℄

ImΠT (t)

∣∣∣∣
Sπ

=
λ(t,M2

S ,m
2
π)

3
2 θ(t− tth)

48πt3
|Fa

Sπ(t)|2 , (B.5)

ImΠL(t)

∣∣∣∣
Sπ

=
λ(t,M2

S ,m
2
π)

1
2 θ(t− tth)

16πt
|Ha

Sπ(t)|2 , (B.6)

with t = q2 and tth = (MSI=0
+ mπ)

2
. In the hiral limit the phase-spae fator turns

λ(t,M2
S , 0)

3
2 /t3 = (1−M2

S/t)
3
.

Requiring that the ontribution to the transverse spetral funtion vanishes at in�nite

momentum transfer implies the (minimal) asymptoti behaviour

Fa
Sπ(t)

t→∞−→ O
(
1

t

)
. (B.7)

B.2 Tπ AFF

The Tπ−
ut ontributes to the transverse spetral funtion. The orresponding expressions

are rather lengthy but in the hiral limit they beome

ImΠT (t)

∣∣∣∣
Tπ

=
θ(t−M2

T )

192π

(
1− M2

T

t

)3 [
t

M2
T

|Fa
Tπ(t)|2 +

t2

6M4
T

∣∣∣G̃a
Tπ(t)

∣∣∣
2
]
, (B.8)
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with

G̃a
Tπ(t) =

t

2

(
1− M2

T

t

)2

Ga
Tπ(t) −

(
1 +

M2
T

t

)
Fa
Tπ(t) , (B.9)

with the phase-spae fator in the hiral limit λ(t,M2
T ,m

2
π)

mπ→0−→ (1 − M2
T /t)

2
. For the

algebra of Lorentz ontrations, we made use of the ompleteness relation [38℄

∑

ǫ

ǫµνǫ
∗
αβ =

1

2
(PµαPνβ + PναPµβ) − 1

3
PµνPαβ , with Pµν = gµν −

kµkν

M2
f2

.

(B.10)

Requiring that the ontribution to the spetral funtion vanishes at in�nite momentum

transfer implies the (minimal) asymptoti behaviour

Fa
Tπ(t)

t→∞−→ O
(
1

t

)
,

G̃a
Tπ(t)

t→∞−→ O
(
1

t2

)
, (B.11)

whih implies

Ga
Tπ(t)

t→∞−→ O
(

1

t2

)
. (B.12)

The ontribution to the longitudinal spetral funtion from the Tπ−
ut is given by

ImΠL(t)

∣∣∣∣
Tπ

=
λ(t,M2

T ,m
2
π)

5
2

384πM4
T t

|Ha
Tπ(t)|2 . (B.13)

The longitudinal form-fator Ha
Tπ is hirally suppressed by m2

π and must have a minimal

asymptoti fall o�,

Ha
Tπ(t)

t→∞−→ O
(
m2

π

t3

)
. (B.14)

C Comparison with other prodution analyses

C.1 Comparison with CLEO [2℄

We now ompare our expression for the hadroni urrent (4.17) with the orresponding

theoretial expression used by CLEO for the f2 prodution (Eq. (A3) in Ref. [2℄). In the

hiral limit the latter is

Hµ = − i β5M
2
T

(M2
A − q2) (M2

T − s3)
FR5

PT (q)
µν

[
(q∆p)∆pν +

(∆p)2

3s3
(qk) kν

]
,

(C.1)

where the a1 and f2 widths in the denominators in Ref. [2℄ have been dropped to provide

a more transparent omparison with our expressions. Likewise, we set the axial-vetor
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radius R5 = 0 and set the momentum dependent funtion to the value FR5
= 1 in the

parametrization onsidered by CLEO to inorporate �nite a1 size e�ets [2℄. We have also

used PT (q)
µνqν = 0 to simplify the expression therein. Notie that in CLEO's notation

Hµ = jµ5 .

Our result reprodues that in Ref. [2℄ if one keeps just the ontribution Hµ
(2) a1−pole (4.20)

�with the axial-vetor and tensor resonane poles, respetively in q2 = M2
A and s3 = M2

T �,

and then sets the high energy ondition (4.10). Thus, taking just the �rst two lines of

Eq. (4.20) with the latter ondition (the non-singular term with (M2
T −s3) is dropped), one

reovers the orresponding expression in Eq. (A.3) from [2℄, with the identi�ation

β5 =
8gTFAλ

AT
1 M2

A

M2
TF

3
π

.

The form-fators F1 and FP derived from Ref. [2℄ an be rewritten as

17

Fπ0π0π−

1 (s1, s2, q
2) =

β5FR5

9
(
M2

A − q2
) M2

T(
M2

T − s3
)
[
5s1 − 4s2 + s3 +

2m2
π

s3

(
m2

π − q2 − 2s3
)]

,

Fπ0π0π−

P (s1, s2, q
2) = 0 . (C.2)

This expression agrees with our determination in Eq. (4.26): in our ase, after inorporating

the high-energy onstraints, one �nds that Fπ0π0π−

1 (s1, s2, q
2) ≈ Fπ0π0π−

1,RSD (s1, s2, q
2) for

s3 ≈ M2
T , showing the struture in (C.2).

One an see that the parametrization (C.2) has a subthreshold singularity at s3 = 0,

absent in the low-energy χPT predition [8℄ (see App. A). Moreover, in the hiral limit

(mπ → 0), the omparison of Eqs. (C.2) and (A.1) shows that the oupling L9 must reeive

a non-zero ontribution aused by the tensor resonane. However, in the hiral limit L9 is

the only O(p4) oupling that appears in the pion vetor form-fator at tree-level, i.e. it an

never get ontributions from spin�2 resonane exhanges.

To onlude: the CLEO parametrization for the tensor resonane ontribution to AFF

agrees with the RχT desription only near the resonane energy region and does not repro-

due the low-energy behaviour predited by χPT.

We also ompare our results for the salar ontributions to the AFF with the orre-

sponding CLEO results (Eq. (3) of [2℄). Expressing CLEO result in terms of the form-fator

onvention in (2.1) one obtains

Fπ0π0π−

1 (s1, s2, q
2) = Fπ0π0π−

2 (sλ2
, s1, q

2) =
2βS
3

M2
A

MA − q2
M2

S

M2
S − s23

, (C.3)

where we have dropped the widths in the denominators for the omparison and βS is β6 or

β7 depending on whether we refer to S = σ or S = f0(980), respetively. In our ase, after

applying the high-energy onstraints, we got the Sπ form-fator (3.15) and the three-pion

AFF,

Fπ0π0π−

1 (s1, s2, q
2) = Fπ0π0π−

2 (s2, s1, q
2) =

4
√
2cd

3F 3
π

M2
A

MA − q2
(cd(s3 − 2m2

π) + 2cmm2
π)

MS − s23
.

(C.4)

17

Note that here we use the form-fator onvention given by Eq. (2.1).
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This result is later re�ned by inorporating the σ−f0(980) mixing through the replaement

in (3.16). Comparing CLEO's expression and ours, we arrive to the onlusion that the

CLEO parametrization for the salar ontribution to AFF only agrees with the RχT results

near the salar resonane region s3 ≈ M2
S , where the numerator of (C.4) is approximately

onstant.

C.2 Comparison with Castro and Muñoz [3℄

Analysis [3℄ expresses the even intrinsi-parity part of the AFF into a tensor T (k, ǫ) and a

pseudo-Goldstone P (p) in terms of three independent form-fators κ and b± (see Eq. (2) in

Ref. [3℄). They are related to the form-fators in this work through

κ = −iFa
TP , b+ = − i

2
Ga
TP , b− =

i

q2

(
Fa
TP +

(
(qp)− 1

2
q2
)
Ga
TP +Ha

TP

)
. (C.5)

Ref. [3℄ �nds b+ = 0, as in our result in Eq. (4.12). In addition, in the hiral

limit, requiring these form-fators to fall-o� at high energies as κ(q2)
q2→∞−→ O(1/q2) and

b−(q
2)

q2→∞−→ O(1/q4), the relation between the predition of [3℄ and ours is given (e.g., for

the f2π
−
prodution) by

8gT
Fπ

= −fa1 gf2a1π
Ma1

,
8gT
Fπ

= −Fπ gf2ππ . (C.6)

D Tauola's notation for form fators

In the Tauola notation the three-pion hadroni urrent is written:

〈 3π|d̄γµγ5u|0 〉 = H3π(q2, s1, s2)
µ

=
i

Fπ
Pµν
T (q)

[
FTauola

1 (q2, s1, s2) (p2 − p3)ν + FTauola

2 (q2, s1, s2) (p1 − p3)ν
]

+
i qµ
Fπ

FTauola

4 (q2, s1, s2) . (D.1)

Therefore, the Tauola form-fators [5℄ are related with our onvention in Eq. (2.1) through

F1(q
2, s1, s2)

Tauola = Fπ F2(s1, s2, q
2),

F2(q
2, s1, s2)

Tauola = Fπ F1(s1, s2, q
2),

F4(q
2, s1, s2)

Tauola = Fπ FP (s1, s2, q
2), (D.2)

with the isospin relations

FTauola

1 (q2, s1, s2)
−−+ = FTauola

1 (q2, s3, s2)
00− −FTauola

1 (q2, s3, s1)
00− −FTauola

1 (q2, s1, s3)
00− ,

FTauola

4 (q2, s1, s2)
−−+ = FTauola

4 (q2, s1, s3)
00− + FTauola

P (q2, s2, s3)
00− . (D.3)
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