XVII International Conference on Hadron Spectroscopy and Structure 27 September 2017, Salamanca

Hadronic transitions in bottomonium at BELLE

Elisa Guido - INFN Torino (on behalf of the Belle Collaboration)

Hadronic transitions

Last decade has been a fertile era for bottomonium spectroscopy: many missing states and exotica •

Hadronic transitions

- Last decade has been a fertile era for bottomonium spectroscopy: many missing states and exotica
- Important informations on bottomonium given also by the study of transitions between its states
- These transitions can be predicted by effective potential models, rather well established in the case of the dominant radiative transitions
- Instead, BRs not well predicted in particular in the 2-body hadronic transitions (η , π^0)
- In quarkonia below threshold, should be explained by QCDME (analogy with the QED multiple expansion) in terms of momentum of the emitted gluons
- Gluons emitted in pairs, either E1 (no spin-flipping) or M1 (spin-flipping)
- Expectations:
 - suppression of spin-flipping transitions (i.e. mS—> η nS wrt mS—> $\pi^+\pi^-$ nS, and mS—> $\pi^+\pi^-$ nP wrt mS—> $\pi^+\pi^-$ nS)
 - further suppression of isospin-violating transitions
 (i.e. mS—>π⁰ nS wrt others)

Transitior	ſ	CLEO	Year	BABAR	Year	Belle	Year
Υ(4S) —>ηΥ(1S)		-		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Ƴ(3S) —>ηƳ((1S)	<1.8 (*)	2008	<1.0 (*)	2011	-	
Ƴ(2S) —>ηƳ(1S)		2.1 ^{+0.7} -0.6±0.3	2008	2.39±0.31±0.14	2011	3.57±0.25±0.21	2013
Ƴ(4S) —>ηh _b (1P)		-		-		21.8±1.1±1.8	2015
BABAR Coll. PRD 78 (2008) 112002 CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 092003 Belle Coll. PRL 115 (2015) 142001 Belle Coll. arXiv:1707.04973 (accepted by PRD)						[in unit (*) all ULs are a	ts of 10-4] t 90% CL

Transition	CLEO	Year	BABAR	Year	Belle	Year
Ƴ(4S) —>ηƳ(1S)	-		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Ƴ(3S) —>ηƳ(1S)	<1.8 (*)	200	>2 times lar [B(Y(4S)→π ⁺ π ⁻	ger than Y(1S))	dipion transitic = (0.81±0.06)	0n! 10 ⁻⁴]
Ƴ(2S) —>ηƳ(1S)	2.1+0.7-0.6±0.3	2008	→ no spin-fl effects	ipping s 5 next t	suppression, c o threshold?	due to
Υ(4S) —>ηh _b (1P)					21.8±1.1±1.8	2015

[in units of 10-4]

(*) all ULs are at 90% CL

BABAR Coll. PRD 78 (2008) 112002 Belle Coll. arXiv:1707.04973 (accepted by PRD)

Transition	CLEO	Year	BABAR	Year	Belle	Year
Ƴ(4S) —>ηƳ(1S)			1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Ƴ(3S) —>ηƳ(1S)	<1.8 (*)	2008	<1.0			
Υ(2S) —>ηΥ(1S)	2.1+0.7-0.6±0.3	2008	2.39±0.31±0.14	2011	3.57±0.25±0.21	2013
Υ(4S) —>ηh _b (1P)	~2	times	smaller than tl	heoretica	al prediction!	2015

CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 092003 Belle Coll. PRL 115 (2015) 142001 [in units of 10⁻⁴] (*) all ULs are at 90% CL

Transition	CLEO	Year	BABAR	Year	Belle	Year
Ƴ(4S) —>ηƳ(1S)	-		1.96±0.26±0.09	2008	1.70±0.23±0.08	2017
Ƴ(3S) —>ηƳ(1S)	<1.8 (*)	2008	<1.0 (*)	2011	-	
Υ(2S) —>ηΥ Tens	3.57±0.25±0.21	2013				
Ƴ(4S) —>ηh _b (but BRs not	well	predicted	J ,	21.8±1.1±1.8	2015

[in units of 10⁻⁴] (*) all ULs are at 90% CL

CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 092003

Transition	CLEO	Year	BABAR	Year	Belle	Year		
Ƴ(4S) —>ηƳ(1S)			1.96±0.26±0.09	2008	1.70±0.23±0.08	2017		
Ƴ(3S) —>ηƳ(1S)	the larg	est no	n-BB transition	from th	e Y(4S)!			
Ƴ(2S) —>ηƳ(1S)	2.1	In agreement with prediction Guo et al. PRL 105 (2010) 162001						
Ƴ(4S) —>ηh _b (1P)	-		-		21.8±1.1±1.8	2015		

[in units of 10⁻⁴] (*) all ULs are at 90% CL

Belle Coll. PRL 115 (2015) 142001

η transitions from Y(5S)

• Dipion transitions from $\Upsilon(5S)$ enhanced due to the Z_b 's...

Transition	Belle	Year
Υ(5S) —>ππΥ(1S)	5.3±0.6	2008
Ƴ(5S) —>ππƳ(2S)	7.8±1.3	2008
Υ(5S) —>ππh _b (1P)	3.5 ^{+1.0} -1.3	2012
Υ(5S) —>ππh _b (2P)	5.7+1.7-2.1	2012

Belle Coll. PRL 100 (2008) 112001 Belle Coll. PRL 108 (2012) 032001

[in units of 10-3]

η transitions from Y(5S)

• Dipion transitions from $\Upsilon(5S)$ enhanced due to the Z_b 's...

Belle Coll. preliminary @DIS2014

			I	Belle Coll. PRL 108	(2012) 032001
Transition	Belle	Year	[in units of 10 ⁻³]	(*) ULs an	re at 90% CL
Υ(5S) —>ππΥ(1S)	5.3±0.6	2008	Transition	Belle	Year
Ƴ(5S) —>ππƳ(2S)	7.8±1.3	2008	Ƴ(5S) —>ηƳ(1S)	0.73±0.16±0.8	2012 (prel.)
Υ(5S) —>ππh _b (1P)	3.5+1.0-1.3	2012	Υ(5S) —>ηΥ(2S)	2.1±0.7±0.3	2014 (prel.)
Υ(5S) —>ππh _b (2P)	5.7+1.7-2.1	2012	Ƴ(5S) —>ηh _b (1P)	<3.3 (*)	2014 (prel.)
•but η transitions are	NOT suppr	essed!	Ƴ(5S) —>ηh _b (2P)	<3.7 (*)	2014 (prel.)
• Observation of Υ(5S) - Belle Coll. prelim	->ηΥ(1D)! inary @LaTh	uile2012	Υ(5S) —>ηΥ(1D)	2.8±0.7±0.4	2014 (prel.)

HADRON17, 27 September 2017, Salamanca

Belle Coll. PRL 100 (2008) 112001

E. Guido

10

η transitions from Y(5S)

• η reconstructed in $\eta \rightarrow \gamma \gamma$, look at the missing mass spectrum, after combinatorial background subtraction

• Now finalizing the result on the branching fractions (to be published soon)

NEW!

Investigations on the Y(1D) triplet

- Not resolving the $\Upsilon(1D)$ triplet (resolution ~mass splitting)
- Signal in MM($\gamma\gamma$): 3 Crystal Ball functions, with free relative fractions f_1 , f_3 that are precisely predicted in: Wang et al. PRD 94 (2016) 094039
- m_2 fixed to world average, ΔM_{ij} fixed to different values between 3 and 15 MeV/c² (reasonable according to calculations and observations)
- Values returned by the fit in any of these configurations are compatible with 0
- 90% CL ULs on f_1 , f_3 as a function of ΔM_{12} and ΔM_{23}
- *f*₁ favored value excluded in 3 regions where
 10< ΔM₁₂ <13 MeV/c²

$$\mathcal{F}_{1D} = \frac{N_{1D}}{1 + f_1 + f_3} \cdot \left[\mathcal{C}_2(m_2) + f_1\mathcal{C}_1(m_1) + f_3\mathcal{C}_3(m_3)\right]$$

$$f_{1} = \frac{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{1})]}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{2})]} = 0.68$$

and
$$f_{3} = \frac{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{3})]}{\mathcal{B}[\Upsilon(5S) \to \eta\Upsilon(1D_{2})]} = 0.13.$$

$Y(4S) \longrightarrow \eta Y(1S)$

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ and $\pi^0 \rightarrow \gamma\gamma$, $\Upsilon(1S) \rightarrow \mu^+ \mu^-$
- Fit to $\Delta M_{\eta} = M(\pi \pi \gamma \gamma \mu \mu) M(\mu \mu) M(\pi \pi \gamma \gamma)$
- Confirmation of the enhancement with respect to dipion transition

$$\mathcal{R} = \frac{\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))}{\mathcal{B}(\Upsilon(4S) \to \pi^+ \pi^- \Upsilon(1S))}$$

Measurement	Result	PDG value [17]	ΔM_{η}
$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(1S))$	$(8.2 \pm 0.5 \ \pm 0.4) \ imes 10^{-5}$	$(8.1 \pm 0.6) \times 10^{-5}$	
$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S))$	$(7.9 \pm 1.0 \pm 0.4)$ $ imes 10^{-5}$	$(8.6 \pm 1.3) \times 10^{-5}$	
$\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))$	$(1.70 \pm 0.23 \pm 0.08) imes 10^{-4}$	$(1.96 \pm 0.28) \ imes 10^{-4}$	
\mathcal{R}	$2.07 \pm 0.30 \pm 0.11$	2.41 ± 0.42	
Measurement	Result	Expected value [12]	
$\sigma_{ m ISR}(\Upsilon(2S))$	$(17.36 \pm 0.19 \pm 0.69) \; \mathrm{pb}$	(17.1 ± 0.3) pb	
$\sigma_{ m ISR}(\Upsilon(3S))$	$(28.9 \pm 0.5 \pm 1.3)$ pb	(28.6 ± 0.5) pb	

$Y(1D) \longrightarrow \eta Y(1S)$

- With the same approach and a similar event selection, we look for $\Upsilon(1D) \rightarrow \eta \Upsilon(1S)$
- Predicted to be enhanced with respect to the transition $\Upsilon(1D) \rightarrow \pi^+\pi^-\Upsilon(1S)$ by the axial anomaly in QCD **Voloshin PLB 562 (2003) 68**

- $\Upsilon(1D)$ possibly produced via doubleradiative transitions from $\Upsilon(4S)$ through $\chi_{bJ}(2P)$ states
- $$\begin{split} & \mathcal{B}(\Upsilon(4S) \to \gamma \gamma \Upsilon(1D)) \times \\ & \times \mathcal{B}(\Upsilon(1D) \to \eta \Upsilon(1S)) < 2.3 \times 10^{-5} \end{split}$$

- Measurement of dipion transitions also provided
- Fit to: $\Delta M = M(\pi \pi \mu \mu) M(\mu \mu)$

Belle Coll. arXiv:1707.04973 (accepted by PRD)

- Measurement of dipion transitions also provided
- Fit to: $\Delta M = M(\pi \pi \mu \mu) M(\mu \mu)$

Belle Coll. arXiv:1707.04973 (accepted by PRD)

_					
Measurement		Result	PDG value [17]		
	$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(1S))$	$(8.2\pm 0.5\ \pm 0.4)\ imes 10^{-5}$	$(8.1 \pm 0.6) imes 10^{-5}$		
_	$\mathcal{B}(\Upsilon(4S) \to \pi^+\pi^-\Upsilon(2S))$	$(7.9 \pm 1.0 \ \pm 0.4) \ imes 10^{-5}$	$(8.6 \pm 1.3) \times 10^{-5}$		
	$\mathcal{B}(\Upsilon(4S) \to \eta \Upsilon(1S))$	$(1.70 \pm 0.23 \pm 0.08) imes 10^{-4}$	$(1.96 \pm 0.28) \times 10^{-4}$		
_	\mathcal{R}	$2.07 \pm 0.30 \pm 0.11$	2.41 ± 0.42		
	Measurement	Result	Expected value [12]		
	$\sigma_{ m ISR}(\Upsilon(2S))$	$(17.36 \pm 0.19 \pm 0.69) \; \mathrm{pb}$	(17.1 ± 0.3) pb		
_	$\sigma_{ m ISR}(\Upsilon(3S))$	$(28.9 \pm 0.5 \pm 1.3)$ pb	(28.6 ± 0.5) pb		

uncertainty on $\Gamma(\Upsilon(2S,3S) \rightarrow e^+e^-)$

Benayoun et al. Mod.Phys.Lett. A 14 (1999) 2605

- Distributions of $M(\pi^+\pi^-)$ and $\cos \vartheta_{hel}(\pi^+)$ for the signal components unfolded from the data using the *sPlot* technique, for all the transitions (see backup)
- Major interest comes from $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ dipion invariant mass

• Behaviour not seen in previous data at the $\Upsilon(4S)$:

HADRON17, 27 September 2017, Salamanca

- Distributions of $M(\pi^+\pi^-)$ and $\cos \vartheta_{hel}(\pi^+)$ for the signal components unfolded from the data using the *sPlot* technique, for all the transitions (see backup)
- Major interest comes from $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ dipion invariant mass

- Distributions of $M(\pi^+\pi^-)$ and $\cos \vartheta_{hel}(\pi^+)$ for the signal components unfolded from the data using the *sPlot* technique, for all the transitions (see backup)
- Major interest comes from $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ dipion invariant mass

Belle Coll. arXiv:1707.04973 (accepted by PRD)

- Behaviour not seen in previous data at the $\Upsilon(4S)$ and very similar to what observed at the $\Upsilon(5S)$
- <u>Recently predicted by theory:</u>

Chen et al. PRD 95 (2017) 034022

- An amplitude model including a resonant $f_0(980)$ contribution is preferred by data (2.8 σ)
- Addition of f₂(1270) does not improve the description

Conclusions

- Hadronic transitions are a key ingredient in understanding bottomonium and QCD description of matter
- Belle has recently given a solid contribution, with many achievements in the topic:
 - Observation of $\Upsilon(4S) \longrightarrow \eta h_b(1P)$
 - Observation of $\Upsilon(5S) \longrightarrow \eta \Upsilon(1D)$
 - Confirmation of the enhancement of $\Upsilon(4S) \longrightarrow \eta \Upsilon(1S)$ with respect to $\Upsilon(4S) \longrightarrow \pi^+\pi^-\Upsilon(1S)$
 - Measurement of / search for other η transitions
 - Precise measurement of $\Upsilon(4S)$ dipion transitions and first indication for a resonant contribution in $\Upsilon(4S) \longrightarrow \pi^+\pi^-\Upsilon(1S)$
- And many more results are likely to come in the future with Belle2 (see <u>U.Tamponi</u>'s talk in Exotic states and candidates on <u>Friday morning</u>)

The BELLE experiment

- Operated at KEKB asymmetric e⁺e⁻ collider, run at the energies of the different Υ resonances (below and above BB threshold)
- Collected the largest data samples at almost all of these energies (the only exception being Υ(3S))

The BELLE detector

- Tracking : SVD+CDC *
- Particle Identification: CDC+ACC+TOF *
- Calorimetry: (CsI(Tl) crystal) *

Hadronic transitions: exp vs. theory

HADRON17, 27 September 2017, Salamanca

24

Hadronic transitions: exp vs. theory

HADRON17, 27 September 2017, Salamanca

Hadronic transitions: exp vs. theory

Transition	CLEO	Year	BABAR	Year	Belle	Year
Ƴ(3S) —>πºh _b (1P)	-		7.4±2.2±1.4	2011b	-	
Υ(2S) —>πºΥ(1S)	<1.8	2008	-		<0.41	2013

CLEO Coll. PRL 101 (2008) 192001 BABAR Coll. PRD 84 (2011) 112007 Belle Coll. PRD 87, 011104(R) (2013)

Calculations of ΔM_{ij}

Liu et al. EPJC 72 (2012) 1981

	$\Upsilon(1^{3}D_{2})$	$\Upsilon(1^{3}D_{1})$	$\Upsilon(1^3D_3)$
BB	0	13.077	10.995
$ B^*B $	40.776	11.968	27.296
$ B^*B^* $	42.213	57.205	45.513
$ B_s B_s $	0	1.817	2.088
$ B_s^*B_s $	6.763	1.703	5.272
$ B_{s}^{*}B_{s}^{*} $	7.941	11.023	7.531
δM	97.692	96.793	98.696
M_0	10242.3	10234.9	10248.0
M_{th}	10144.6	10138.1	10149.3
$ M_{ex} $	10164.5		
$P_{b\bar{b}}$	0.870	0.872	0.869

FIG. 1: The $b\bar{b}$ mass spectrum as predicted by the relativized quark model [11].

Y(4S) analysis: Dipion transitions

Y(4S) analysis: Dipion transitions

E. Guido

HADRON17, 27 September 2017, Salamanca

Y(4S) analysis: Systematic uncertainties

	$\Upsilon(2S) \rightarrow$	$\Upsilon(3S) \rightarrow$		$\Upsilon(4S) \rightarrow$	
Source	$\pi^+\pi^-\Upsilon(1S)$	$\pi^+\pi^-\Upsilon(1S)$	$\pi^+\pi^-\Upsilon(1S)$	$\pi^+\pi^-\Upsilon(2S)$	$\eta\Upsilon(1S)$
Number of $\Upsilon(4S)$	1.4	1.4	1.4	1.4	1.4
Secondary BRs	2.5	2.7	2.0	2.0	$2.0 \oplus \underline{1.2}$
Tracking	1.4	1.4	1.4	1.4	1.4
μ -identification	1.1	1.1	1.1	1.1	1.1
Signal extraction	1.9	2.7	$\underline{2.7}$	2.7	$\underline{2.8}$
Acceptance	1.0	1.0	<u>3.1</u>	3.3	-
π^0 reconstruction	-	-	-	-	$\underline{1.4}$
Total	4.0	4.5	5.1	5.2	4.5

