Coherent $\pi^0\pi^0$ and $\pi^0\pi^0\pi^0$ photoproduction on deuteron at MAMI

HADRON Conference 2017 - Salamanca, Spain

Michael Günther

on behalf of the A2 Collaboration
University of Basel, Department of Physics

September 29th 2017
Outline

1 Motivation
 Strong hadronic interaction
 Known data
 Motivation

2 Experimental settings
 Data information

3 Event selection
 Preselection and reconstruction
 Pion identification
 Deuteron identification
 Checking the selection process

4 Preliminary results
 Coherent Cross Sections

5 Outlook and Conclusion
Fundamental forces

- Fundamental theories: Standard model and general relativity

- 4 fundamental interactions
 - gravity
 - electronic
 - weak
 - strong
Strong Hadronic Interaction

» Quarks in Nuclei bound by strong interaction

» Hadrons are formed either with $q\bar{q}$-pairs (meson) or with qqq-triplets (baryon)
 ▶ What about more complicated bound states?
 ▶ Exotic particles?
Access to exotic particles

- Exotic particles are still not completely verified
- $d^*(2380)$ is a much discussed candidate
- Reported observation by CELSIUS/WASA and WASA@COSY
- Coherent photoproduction of π^0-pairs is a possible production channel

- M. Bashkanov et al. (CELSIUS/WASA Collaboration) Phys. Rev. Lett. 102, 052301
Known quasifree $\pi^0\pi^0$ channel

$\gamma + d \rightarrow p(n) + \pi^0\pi^0$ is rather well explored

Figure: taken from M. Dieterle et all (Eur. Phys. J. A (2015) 51: 142)
Quasifree $\pi^0\pi^0\pi^0$ channel

- $\gamma + d \rightarrow p^{(n)} + \pi^0\pi^0\pi^0$ is mostly unknown
- Highly dominated by the $\eta \rightarrow \pi^0\pi^0\pi^0$ reaction
- No data has been published on isolated $\pi^0\pi^0\pi^0$ photoproduction off deuterium
Motivation

- $\pi^0\pi^0$ channel:
 - Possible access to $d^*(2380)$ di-baryon resonance

- $\pi^0\pi^0\pi^0$ channel:
 - First time analysis of this channel

- Help test and improve models for the strong hadronic interaction
MAMI electron accelerator
Cascade of racetrack Microtrons
Final stage: Harmonic Double Sided Microtron
Electron beam energy up to 1508 MeV
A2 - CB/TAPS

- Liquid deuterium target @A2 real photon experiment
- Glasgow Photon Tagger to identify photon energy
- Crystal Ball + TAPS - nearly 2π detector system
- Roughly 470 hours of data taking
Presort and Reconstruction of π^0

- **Final state**: $d + \pi^0\pi^0(\pi^0) \rightarrow d + \gamma\gamma + \gamma\gamma(+\gamma\gamma)$
- **First step**: Require 1 charged and 4 (6) uncharged particles
- **Reconstruction of the π^0s via χ^2-method from the 4(6) neutral particles

* π^0-decay probability into $\gamma\gamma = 98,823 \pm 0,034\%$
π^0 identification

- Kinematic cuts on coplanarity and invariant mass of π^0
- Identify η background
Deuteron identification

- Identification of deuterons is much more complicated
 - Highly dominated by quasi-free protons
 - Deuterons tend to get stuck in VETO/PID
- Kinematic cuts on Θ, missing mass, dE_E,ToF
Deuteron time of flight

![Graph showing Deuteron and Proton in TAPS]
Check with Missing Mass

$$\text{MissingMassDeuteron, } E_\gamma = 828 \text{ MeV} - 845 \text{ MeV}$$
Check with Missing Mass
Check with Missing Mass

\[\text{Missing Mass}_{\text{Deuteron}}, E_\gamma = 507 \text{ MeV} - 524 \text{ MeV} \]
Total coherent cross section - Preliminary

Coherent cross section of $3\pi^0$

$\gamma + d \rightarrow d + 3\pi^0$

σ_{tot} [μ barn]

E_W [MeV]

Motivation
Experimental settings
Event selection
Preliminary results
Outlook and Conclusion
Total coherent cross section - Preliminary

\[\sigma_{tot}(\pi^0 \pi^0 d) \]
π^0-pairs:

► Achieved a somewhat precise measurement of the π^0π^0-coherent channel on deuteron
► Found signs of an enhancement at the predicted d*(2380) resonance
► Need of further statistical/analytically investigations
► Take a look at other deuteron beamtimes from A2

π^0-triplets:

► First measurement of isolated π^0π^0π^0 photoproduction off deuterons
► Results look quite promising
► Still early level of analysis
Event selection - Invariant mass cut

The figure shows a two-dimensional distribution of the invariant mass of \(\pi^0 \) versus the energy \(E_\gamma \) in MeV. The x-axis represents the energy \(E_\gamma \) ranging from 400 to 1400 MeV, and the y-axis represents the invariant mass of \(\pi^0 \) ranging from 80 to 200 MeV. The color scale indicates the distribution of events with a logarithmic color map ranging from 1 to \(10^2 \). The cuts are indicated by red lines on the plot.
Event selection - Invariant mass cut

Inv Mass [MeV]

Counts [a.u.]

= 400 MeV - 483 MeV

= 483 MeV - 566 MeV

= 566 MeV - 649 MeV

= 649 MeV - 733 MeV

= 733 MeV - 816 MeV

= 816 MeV - 899 MeV

= 899 MeV - 982 MeV

= 982 MeV - 1066 MeV

= 1066 MeV - 1149 MeV

= 1149 MeV - 1232 MeV

= 1232 MeV - 1315 MeV

= 1315 MeV - 1399 MeV
Check with Missing Mass

\[p_{\text{missing}} = p_{\text{beam}} + p_{\text{target}} - p_{\pi^0} \]

\[m_{\text{missing}}^{\text{old}} = \sqrt{E^2 - (\vec{p}_{\text{missing}})^2} \]

\[m_{\text{missing}}^{\text{new}} = \frac{(p_{\text{beam}} - p_{\pi^0})^2}{2(E_{\pi^0} - E_{\text{beam}})} \]
Check with Missing Mass

![Graph showing the relationship between missing mass and new missing mass. The x-axis represents the old missing mass [MeV], ranging from -100 to 400 MeV. The y-axis represents the new missing mass [MeV], ranging from -100 to 400 MeV. The color scale on the right indicates the number of events, with colors ranging from purple (low) to red (high).]
Event selection - Coplanarity cut

CopCut

\(E_\gamma \text{ MeV} \)

\(\phi \text{ between } d \text{ and } \pi^- \text{ Meson} \)

\(0 \)

\(50 \)

\(100 \)

\(150 \)

\(200 \)

\(250 \)

\(300 \)

\(350 \)

\(400 \)

\(600 \)

\(800 \)

\(1000 \)

\(1200 \)

\(1400 \)

\(10^2 \)

\(10 \)

\(1 \)
Event selection - Coplanarity cut
Event selection - Coplanarity cut

Coplanarity stopped deuteron

<table>
<thead>
<tr>
<th>cop_stopped_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean x</td>
</tr>
<tr>
<td>Mean y</td>
</tr>
<tr>
<td>RMS x</td>
</tr>
<tr>
<td>RMS y</td>
</tr>
</tbody>
</table>

\(\gamma E \)
Event selection - Theta information cut

The plot shows a 2D distribution of events in the E_γ-d theta plane, with color-coded intensity levels indicating the number of events. The cuts are applied to select events based on the theta information.

- The x-axis represents the energy E_γ in MeV.
- The y-axis represents the angle between d and π-Meson (θ).
- The intensity levels are color-coded from blue (low intensity) to red (high intensity), with a logarithmic scale.

The cuts are applied to separate event selections, with a focus on the BtBCut as indicated in the graph.
Event selection - Theta cut

- For each energy range (400 MeV - 483 MeV, 483 MeV - 566 MeV, 566 MeV - 649 MeV, etc.), there are multiple plots showing the distribution of counts for BackToBack_Calc. Each plot represents a specific energy range and shows the counts in a.u. for different values of BackToBack_Calc. The energy ranges are as follows:
 - 400 MeV - 483 MeV
 - 483 MeV - 566 MeV
 - 566 MeV - 649 MeV
 - 649 MeV - 733 MeV
 - 733 MeV - 816 MeV
 - 816 MeV - 899 MeV
 - 899 MeV - 982 MeV
 - 982 MeV - 1066 MeV
 - 1066 MeV - 1149 MeV
 - 1149 MeV - 1232 MeV
 - 1232 MeV - 1315 MeV
 - 1315 MeV - 1399 MeV

- The plots are likely used to analyze the efficiency and angular distribution of events across different energy ranges, which is crucial for understanding the behavior of particles in high-energy physics experiments.
Event selection - Theta cut

\[\theta \text{ difference stopped } d \]

<table>
<thead>
<tr>
<th>BackToBack_Calc3</th>
<th>Entries</th>
<th>88119</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean x</td>
<td>566.6</td>
<td></td>
</tr>
<tr>
<td>Mean y</td>
<td>182.8</td>
<td></td>
</tr>
<tr>
<td>RMS x</td>
<td>136.6</td>
<td></td>
</tr>
<tr>
<td>RMS y</td>
<td>20.95</td>
<td></td>
</tr>
</tbody>
</table>
ToF With Cuts - MC

ToF_TAPS_MC_WithCut

<table>
<thead>
<tr>
<th>ToF_TAPS_MC_WithCut</th>
<th>Entries</th>
<th>326601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean x</td>
<td></td>
<td>8.53</td>
</tr>
<tr>
<td>Mean y</td>
<td></td>
<td>201.1</td>
</tr>
<tr>
<td>RMS x</td>
<td></td>
<td>2.108</td>
</tr>
<tr>
<td>RMS y</td>
<td></td>
<td>116.4</td>
</tr>
</tbody>
</table>
ToF with Cuts - Data

TOF_TAPS_3

<table>
<thead>
<tr>
<th>TOF_TAPS_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean x</td>
</tr>
<tr>
<td>Mean y</td>
</tr>
<tr>
<td>RMS x</td>
</tr>
<tr>
<td>RMS y</td>
</tr>
</tbody>
</table>

![Graph showing ToF with Cuts - Data](image)
Event selection - Missing Mass cut

MMDeut_cut

γ-Energy in MeV

Missing Mass in MeV (gauged on Deuteron)
Event selection - Missing Mass cut
Conclusion and Outlook

- A reasonable match with the coherent $\pi^0\pi^0$ model.
- Statistical and/or analytically problems in regions below 2450 W or above 2800 W.
- For the $\pi^0\pi^0\pi^0$ channel, still more data available (Dec + Feb).
CS Beamtime separated

![Graphs showing total cross section vs. energy for different periods: May 2009, February 2009, December 2007, and all combined.]
CS Beamtime separated - W

Total CS May_09

Total CS Feb_09

Total CS Dec_07
Total Efficiency

Global Detector Efficiency May_09

Global Detector Efficiency Feb_09

Global Detector Efficiency Dec_07
ToF With Cuts - Data

TOF_TAPS_3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mean x</th>
<th>Mean y</th>
<th>RMS x</th>
<th>RMS y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>776658</td>
<td>5.845</td>
<td>1.791</td>
<td>119</td>
</tr>
</tbody>
</table>

![Graph showing the distribution of data points with energy (E) and time of flight (ToF) axes. The graph includes a color legend indicating different energy bins.]
ToF With Cuts - Data

TOF_TAPS_WithCut

Entries: 4620729
Mean x: 9.138
Mean y: 170.4
RMS x: 2.493
RMS y: 120.1
Beamtime overview

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>beam time hours</td>
<td>140</td>
<td>141</td>
<td>190</td>
</tr>
<tr>
<td>electron energy</td>
<td>1508.4 MeV</td>
<td>1508.4 MeV</td>
<td>1557.5 MeV</td>
</tr>
<tr>
<td>electron current</td>
<td>10 nA</td>
<td>5 nA</td>
<td>4.5 nA</td>
</tr>
<tr>
<td>tagged photon energy</td>
<td>410 - 1401 MeV</td>
<td>413 - 1401 MeV</td>
<td>423 - 1447 MeV</td>
</tr>
<tr>
<td>collimator</td>
<td>4 mm</td>
<td>4 mm</td>
<td>4 mm</td>
</tr>
<tr>
<td>radiator</td>
<td>10 μm Cu</td>
<td>10 μm Cu</td>
<td>Møller foil</td>
</tr>
<tr>
<td>target</td>
<td>LD_2</td>
<td>LD_2</td>
<td>LD_2</td>
</tr>
<tr>
<td>target length [cm]</td>
<td>4.72</td>
<td>4.72</td>
<td>3.02</td>
</tr>
<tr>
<td>CB Energy Sum Trigger</td>
<td>> 300 MeV</td>
<td>> 300 MeV</td>
<td>> 300 MeV</td>
</tr>
<tr>
<td>multiplicity trigger</td>
<td>M2+</td>
<td>M3+</td>
<td>M2+</td>
</tr>
</tbody>
</table>