η -mesic nuclei

J. Mareš

Nuclear Physics Institute, Rez/Prague

+ N. Barnea, B. Bazak, A. Cieplý, E. Friedman, A. Gal, M. Schaefer PLB 725 (2013) 334; NPA 925 (2014) 126; PLB 747 (2015) 345, PLB 771 (2017) 297

η nuclei - status

- Haider, Liu (PLB 172 (1986) 257, PRC 34 (1986) 1845) moderate attractive ηN interaction with scattering length $a_{\eta N} \sim 0.27 + i0.22$ fm $\Rightarrow \exists$ of η nuclear bound states (starting ¹²C)
- Numerous studies since then yielding Rea_{ηN} from 0.2 fm to 1 fm chiral coupled channel models Rea_{ηN} < 0.3 fm;
 K matrix methods fitting πN and γN reaction data in the N*(1535) resonance region Rea_{ηN} ~ 1 fm → bound states already in He isotopes
- Strong final-state interaction have been noted in p- and d-initiated η production (COSY-ANKE, COSY-GEM, LNS-SPES2,3,4)
- ${}^{25}_{\eta}Mg$? (COSY-GEM, PRC 79 (2009) 012201(R)) $p + {}^{27}Al \rightarrow {}^{25}_{\eta}Mg + {}^{3}He; \qquad {}^{25}_{\eta}Mg \rightarrow (\pi^- + p) + X$ $B_{\eta} = 13.1 \pm 1.6$ MeV and $\Gamma_{\eta} = 10.2 \pm 3.0$ MeV.
- But NO decisive experimental evidence so far. (negative results for ³_ηHe (photoproduction on ³He - MAMI, PLB 709 (2012) 21; pd → η³He reaction - Xie, Liang, Oset, Moskal, Skurzok, Wilkin, PRC 95 (2017) 015202) and for ⁴_ηHe (dd →³ HeNπ - WASA@COSY PRC 87 (2013)035204; NPA 959 (2017) 102.)

ηN scattering amplitudes

- ηN amplitude for various models:
- Strong energy dependence of the scattering amplitudes !

line	$a_{\eta N}$ [fm]	model
dotted	0.46+i0.24	N. Kaiser, P.B. Siegel, W. Weise, PLB 362 (1995) 23
short-dashed	0.26+i0.25	T. Inoue, E. Oset, NPA 710 (2002) 354 (GR)
dot-dashed	0.96+i0.26	A.M. Green, S. Wycech, PRC 71 (2005) 014001 (GW)
long-dashed	0.38+i0.20	M. Mai, P.C. Bruns, UG. Meißner, PRD 86 (2012) 094033 (M2)
full	0.67+i0.20	A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334 (CS)

Faddeev (AGS) calculations of η NNN and η NNNN systems A. Fix, O. Kolesnikov, PLB 772 (2017) 663

Variational calculations

- in hypersherical basis
 - N. Barnea, E. Friedman, A. Gal, PLB 747 (2015) 345
- within Stochastic Variational Method (SVM)
 - N. Barnea, E. Friedman, A. Gal, NPA 968 (2017) 35;
 - N. Barnea, B. Bazak, E. Friedman, A. Gal, PLB 771 (2017) 297

η in few-body systems

interactions involved in variational calculations

- NN: Argonne AV4' potential, Minnesota MN potential
- η N: complex energy-dependent local potential derived from the full chiral coupled-channels model:

$$v_{\eta N}(E,r) = -\frac{4\pi}{2\mu_{\eta N}}b(E)\rho_{\Lambda}(r),$$

where
$$E = \sqrt{s} - \sqrt{s_{\text{th}}}$$
, $\rho_{\Lambda}(r) = (\frac{\Lambda}{2\sqrt{\pi}})^3 exp\left(-\frac{\Lambda^2 r^2}{4}\right)$

b(E) fitted to phase shifts δ derived from $F_{\eta N}(E)$ in GW and CS models; scale Λ inversely proportional to the $v_{\eta N}$ range

• π -less EFT at LO

nuclear dynamics generated from two NN + one NNN contact terms (CT); one ηN + one ηNN CT (CT(ηNN) = CT(NNN) or CT(ηNN) fitted to $B_{\eta}(\eta NN) = 0$; $v_{\eta N}$ = regulated contact term in π -less EFT

η in few-body systems

Energy dependence of $v_{\eta N}(\sqrt{s})$

• A nucleons $+ \eta$ meson:

$$m{s} = (\sqrt{s_{ ext{th}}} - B_\eta - B_N)^2 - (ec{p_\eta} + ec{p_N})^2 \le s_{ ext{th}}$$

where $\sqrt{s_{ ext{th}}} = m_N + m_\eta$

- near threshold approximated by: $\sqrt{s} = \sqrt{s_{\text{th}}} + \delta\sqrt{s}, \quad \delta\sqrt{s} < 0!$ $\langle\delta\sqrt{s}\rangle = -\frac{B}{A} - \frac{A-1}{A}B_{\eta} - \xi_{N}\frac{A-1}{A}\langle T_{N:N}\rangle - \xi_{\eta}\left(\frac{A-1}{A}\right)^{2}\langle T_{\eta}\rangle,$ where B = total binding energy, $\xi_{N(\eta)} = m_{N(\eta)}/(m_{N} + m_{\eta}),$ $T_{\eta} = \eta$ kin. energy, $T_{N:N}$ = pairwise NN kin. energy
- $\langle \delta \sqrt{s} \rangle \Rightarrow$ selfconsistency

● Energy dependence ⇒ selfconsistency

The $\frac{4}{\eta}$ He g.s. energy $E + < \delta \sqrt{s} > + < H_N >$, for AV4 and GW potentials with $\Lambda = 4$ fm⁻¹

• Conversion widths Γ of η nuclear few-body systems perturbative estimate: $\Gamma = -2\langle \Psi_{gs} | \text{Im} V_{\eta N} | \Psi_{gs} \rangle$

Results:

• ηNN - unbound

• $\eta^3 \text{He}$

	NN int.	$\delta\sqrt{s_{\rm sc}}$	B_{η}	$\Gamma_{\rm gs}$
GW, $\Lambda = 2$	MN	-9.385	0.099	1.144
	AV4'	-11.478	-0.028	0.769
GW, $\Lambda = 4$	MN	-13.392	0.990	3.252
	AV4'	-14.881	0.686	2.438
CS, $\Lambda = 2$	MN	-8.388	-0.217	0.057
CS, $\Lambda = 4$	MN	-8.712	-0.161	0.227

 η in 3- and 4-body systems

• $\eta^4 He$

	NN int.	$\delta\sqrt{s_{ m sc}}$	B_{η}	$\Gamma_{\rm gs}$
GW, $\Lambda = 2$	MN	-19.477	0.96	1.975
	AV4'	-23.646	0.38	1.207
GW, $\Lambda = 4$	MN	-29.750	4.69	4.5
	AV4'	-32.411	3.51	3.615
CS, $\Lambda = 2$	MN	-16.704	-0.16	0.133
CS, $\Lambda = 4$	MN	-19.246	0.47	0.901

η in 3-, 4- and 6-body systems

• SVM for Minnesota NN model + GW and CS $\eta \textit{N}$ models; no Coulomb

calculated by M. Schaefer, preliminary (results from yesterday)!

A. Cieply, E. Friedman, A. Gal, J. Mares, PLB 725 (2013) 334, NPA 925 (2014) 126

• K.-G. equation:

$$\left[\omega_{\eta}^{2}+\vec{\nabla}^{2}-m_{\eta}^{2}-\Pi_{\eta}(\omega_{\eta},\rho)\right]\phi_{\eta}=0$$

complex energy $\omega_\eta = m_\eta - B_\eta - \mathrm{i} \Gamma_\eta/2$

•
$$\Pi_{\eta}(\omega_{\eta}, \rho) = 2\omega_{\eta}V_{\eta} = -4\pi \frac{\sqrt{s}}{E_{N}}F_{\eta N}(\sqrt{s}, \rho)\rho$$

• η in a nucleus \Rightarrow polarized (compressed) $\rho \longrightarrow \Pi_{\eta}(\rho)$ \Rightarrow selfconsistent solution Selfenergy operator

$$\Pi_{\eta}(\omega_{\eta}) = 2\,\omega_{\eta}\,V_{\eta} = -4\pi\frac{\sqrt{s}}{E_{N}}F_{\eta N}(\sqrt{s},\rho)\,\rho$$

- $F_{\eta N} = \eta N$ scattering amplitude with two-body argument: $\sqrt{s} (s = (\omega_{\eta} + E_N)^2 - (\vec{p}_{\eta} + \vec{p}_N)^2)$
- ηN c.m. frame $\rightarrow \eta$ -nucleus c.m. frame $\Rightarrow \vec{p}_{\eta} + \vec{p}_{N} \neq 0$ $\Rightarrow \sqrt{s} \approx m_{\eta} + m_{N} - B_{\eta} - B_{N} - \xi_{N} \frac{p_{N}^{2}}{2m_{N}} - \xi_{\eta} \frac{p_{\eta}^{2}}{2m_{\eta}} = E_{\text{th}} + \delta \sqrt{s},$ $\delta \sqrt{s} = B_{N} \frac{\rho}{\bar{\rho}} - \xi_{N} B_{\eta} \frac{\rho}{\rho_{0}} - \xi_{N} T_{N} (\frac{\rho}{\rho_{0}})^{2/3} + \xi_{\eta} \text{Re} V_{\eta} (\sqrt{s}, \rho)$
- ρ = nucl. medium density (RMF calculations)
- $V_{\eta}, B_{\eta} \Rightarrow$ self-consistent solution

Free space amplitudes \rightarrow in-medium amplitudes

Pauli correlations ← WRW method
 T. Wass, M. Rho, W. Weise, NPA 617 (1997) 449.

$$\begin{aligned} F_{\eta N}(\sqrt{s},\rho) &= \frac{F_{\eta N}(\sqrt{s})}{1+\xi(\rho)(\sqrt{s}/E_N)F_{\eta N}(\sqrt{s})\rho} \ ,\\ \xi(\rho) &= \frac{9\pi}{4\rho_t^2}I(\kappa), \quad I(\kappa) = 4\int_0^\infty \frac{dt}{t}\exp(i\kappa t)j_1^2(t), \quad \kappa = \frac{1}{\rho_f}\sqrt{2m_\eta(B_\eta + i\Gamma/2)}. \end{aligned}$$

- Chiral coupled-channels model A. Cieply, J. Smejkal, NPA 919 (2013) 334. multi-channel L.-Sch. equation:
 - $$\begin{split} F &= V + VGF, \quad \text{F, V in separable form,} \\ G_n(\sqrt{s};\rho) &= -4\pi \int_{\Omega_n(\rho)} \frac{d^3\vec{p}}{(2\pi)^3} \frac{g_n^2(\rho)}{k_n^2 p^2 \Pi_n(\sqrt{s},\vec{p};\rho) + i0} \end{split}$$

 $\Omega_n(\rho) \rightarrow \text{intermediate } N \text{ energy is above Fermi level (Pauli blocking)}$ $\Pi \rightarrow \text{hadron self-energies in } G (+SE \text{ option})$

 \Rightarrow self-consistency

chiral CS model (A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334)

dotted curve: free-space, dot-dashed: Pauli blocked, full: Pauli blocked + hadron selfenergies

 Nuclear medium reduces the ηN attraction at threshold, the amplitude becomes smaller when going subthreshold

Energy shift

Energy dependence of $V_{\eta N}(\sqrt{s}) \leftarrow$ due to $N^*(1535)$

• In-medium (subthreshold) energy shift:

 $\delta\sqrt{s} = -B_N \frac{\rho}{\bar{\rho}} - \xi_N B_\eta \frac{\rho}{\rho_0} - \xi_N T_N (\frac{\rho}{\rho_0})^{2/3} + \xi_\eta \operatorname{Re} V_\eta(\sqrt{s},\rho)$

• B_η , V_η , $ho \Rightarrow$ selfconsistent solution \rightarrow

40 - 60 MeV energy shift at ρ_0 – larger than shift by B_η (GR) or by 30 MeV (Haider, Liu)

η nuclear states

• Sensitivity to the energy shift:

selfconsistent $\delta\sqrt{s}$ reduces both 1s B_{η} and Γ_{η}

• GR widths too large to resolve η bound states !

• Model dependence:

• Larger Re $a_{\eta N}$ gives larger B_{η} vs. no relation between Im $a_{\eta N}$ and Γ_{η}

• Predictions of GW and CS models:

all states in selected nuclei are shown; both models give small widths

η nuclear bound states:

• Large energy shift and rapid decrease of the ηN amplitudes below threshold \Rightarrow relatively small binding energies and widths of the calculated η nuclear bound states

 $\begin{array}{l} \eta \text{d} \text{ unbound in considered models} \\ \frac{3}{\eta} \text{He bound state} \leftarrow \text{Re}a_{\eta N} \approx 1 \text{ fm} \\ \frac{4}{\eta} \text{He bound state} \leftarrow \text{Re}a_{\eta N} \geq 0.7 \text{ fm} \\ \frac{12}{\eta} \text{C} \text{ bound state} \leftarrow \text{Re}a_{\eta N} \geq 0.5 \text{ fm} \end{array}$

- Additional width contribution not considered in this work due to $\eta N \rightarrow \pi \pi N$ and $\eta NN \rightarrow NN \Rightarrow$ estimated to add few MeV
- Subthreshold behavior of $F_{\eta N}$ is crucial to decide whether η nuclear states exist, in which nuclei, and if their widths are small enough to be resolved in experiment.

Thank you

Nir Barnea, Aleš Cieplý, Eli Friedman, Avraham Gal and Martin Schaefer!