Pole structure and compositeness

J. A. Oller

Departamento de Física
Universidad de Murcia
Murcia, Spain

Hadron2017
U. Salamanca, September 27th, 2017

1Partially funded by MINECO (Spain) and EU, project FPA2016-77313-P
Outline

1. Basic set-up
2. Different perspective
3. QFT-like calculation
4. New equation for X
5. Relativistic case
6. Resonances
7. S-matrix transformations
8. Scattering amplitude
9. Conclusions
1. Basic set-up

Highly subjective presentation of the vast literature. My apologizes if you think that important works are missed

Starting point, basic set-up:

Bound state near a two-body threshold.

Non-Relativistic Dynamics

S. Weinberg, PR130,776(1963); PR137,B672(1964)

\[H = H_0 + V \]

Spectrum:

\[H|\psi_\alpha\rangle = E_\alpha|\psi_\alpha\rangle \quad \text{Continuum spectrum} \]
\[H|\psi_{B_i}\rangle = E_{B_i}|\psi_{B_i}\rangle \quad , \quad E_{B_i} < 0 \quad \text{Discrete Spectrum} \]

Bare spectrum:

\[H_0|\varphi_\alpha\rangle = E_\alpha|\varphi_\alpha\rangle \]
\[H_0|\varphi_n\rangle = E_n|\varphi_n\rangle \]
Elementariness: Z

Compositeness: X

\[
\langle \psi_B | \psi_B \rangle = 1 = \sum_n \left| \langle n | d \rangle \right|^2 + \int d\alpha \left| \langle \varphi_{\alpha} | d \rangle \right|^2
\]

\[
1 = Z + X
\]

\[
X = 1 - Z = \int d\alpha \frac{\left| \langle \varphi_{\alpha} | V | \psi_B \rangle \right|^2}{(E_{\alpha} - E_B)^2}
\]

Wave Function Renormalization: $Z^{1/2}$

There is only one “elementary” bare state around E_B

S. Weinberg,

PRC130,776(1963);PRC131,440(1963)

\[
\langle \varphi_0 | \psi_B \rangle = Z^{1/2}
\]
2. Different perspective

We focus our attention in the continuum spectrum
The continuum spectrum is common to H and H_0

Let two particles of types A and B

Creation, annihilation operators: $a_\alpha^\dagger a_\alpha, b_\beta^\dagger b_\beta$

Operator Numbers:

$$H_0 = \int dE_\alpha E_\alpha a_\alpha^\dagger a_\alpha + \int d\beta E_\beta b_\beta^\dagger b_\beta + \sum_n E_n |\varphi_n\rangle \langle \varphi_n|$$

$$N_D = \int d\alpha a_\alpha^\dagger a_\alpha + \int d\beta b_\beta^\dagger b_\beta$$

$$= \int d^3x \left[\psi_A^\dagger(x)\psi_A(x) + \psi_B^\dagger(x)\psi_B(x) \right]$$

$$[H_0, N_D] = 0 \rightarrow N_D(t) = N_D(0) = N_H(0)$$
New definition of X

$$X = \frac{1}{2} \langle \psi_B | N_D | \psi_B \rangle$$

Equivalence to the previous definition

$$|\psi_B\rangle = \int d\gamma C_\gamma |AB\gamma\rangle + \sum_n C_n |\varphi_n\rangle$$

$$X = \frac{1}{2} \langle \psi_B | N_D | \psi_B \rangle = \int d\gamma |C_\gamma|^2 .$$

Specially suitable when using perturbative EFT (e.g. ChPT) with nonperturbative techniques
3. QFT-like Calculation

This new definition is suitable for a QFT treatment

Dirac or Interacting Image

\[V \rightarrow Ve^{-\varepsilon|t|}, \quad \varepsilon \rightarrow 0^+ \]

\[|\psi_B\rangle = |\varphi_B(0)\rangle = UD(0, -\infty)|\varphi_B(-\infty)\rangle \]

\[|\psi_B\rangle = |\varphi_B(0)\rangle = UD(0, +\infty)|\varphi_B(+\infty)\rangle \]

\[X = \frac{1}{2} \langle \psi_B | N_D | \psi_B \rangle \]

\[= \frac{1}{2} \langle \varphi_B(+\infty) | UD(+\infty, 0) N_D UD(0, -\infty) | \varphi_B(-\infty) \rangle \]

\[= \lim_{T \to \infty} \frac{1}{2T} \int_{-T/2}^{+T/2} dt \langle \varphi_B(+\infty) | UD(+\infty, t) N_D(t) UD(t, -\infty) | \varphi_B(-\infty) \rangle \]

\[UD(t, -\infty)|\varphi_B(-\infty)\rangle = e^{iH_0t} e^{-iE_Bt} UD(0, -\infty)|\varphi_B(-\infty)\rangle \]
Basic set-up Different perspective QFT-like calculation New equation for X Relativistic case Resonances S-matrix transformations

$\psi_A \rightarrow \psi_B$ $\psi_A \rightarrow \psi_B$

\[X_{\ell S} = \int \frac{d^3 k}{(2\pi)^3} \frac{g_{\ell S}^2(k^2)}{(k^2/2\mu - E_B)^2} \]

\[X = \sum_{\ell S} X_{\ell S} \]

$\ell = 0$: one has the Weinberg's equation for $1 - Z$

\[g(k) = \frac{1}{2\pi^2} \int_0^\infty k'^2 dk' V(k, k') \frac{1}{k'^2/2\mu - E_B} g(k') \]

\[g_{\ell S}(-k) = (-1)^\ell g_{\ell S}(k) \quad [T = V + VGT] \]
4. New equation for X

We rewrite symmetrically the integration in k for X

$$X = \left(\frac{\mu}{\pi} \right)^2 \int_{-\infty}^{+\infty} dk k^2 \frac{g^2(k^2)e^{i\varepsilon k}}{(k^2 - 2\mu E_B)^2}$$

Convergent factor $e^{i\varepsilon k}$, $\varepsilon \to 0^+$

Analogous to Dimensional Regularization

Notation: $\pm i\gamma = \sqrt{2\mu E_B}$

$$X = \frac{2i\mu^2}{\pi} \frac{\partial}{\partial k} \left[\frac{k^2 g^2(k^2)}{(k + i\gamma)^2} \right]_{k=i\gamma}$$

$$= \frac{\partial G}{\partial E_B} g^2(-\gamma^2) - \frac{\mu^2 \gamma}{\pi} \frac{\partial g^2(k^2)}{\partial k^2} \bigg|_{k=i\gamma}$$

$$G(E) = -\frac{i\mu}{2\pi} k(E) = \frac{\mu}{\pi^2} \int_0^\infty dk \frac{k^2 e^{i\varepsilon k}}{2\mu E_B - k^2}$$
The 1st term is model independent
Already a well known contribution Hyodo, Jido, Hosaka PRC85, 015201 (2012)

The 2nd term is the new one.
E.g. it takes into account that $g_{\ell S}(k^2) \propto k^{2\ell}$ for $k \to 0$
Aceti, Oset, PRD86, 014012 (2012)

The 2nd term depends on V

\[
g(k) = \frac{1}{2\pi^2} \int_0^\infty k'^2 dk' V(k, k') \frac{1}{k'^2/2\mu - E_B} g(k')
\]
5. Relativistic case

The attention is focused on the wave function renormalization Z

There is a lack of a general framework

Partial results are available:

$0 \leq Z \leq 1$: Lee model Vaughn, Aaron, Amado PRC124,1258(1961); Yukawa type interactions Salam, Nuovo Cim.25,224(1962); Lurié, Macfarlane, PR136,B816(1964)

$Z=0$ equivalence between 4-Fermi theories and Yukawa theories

Issue: In the relativistic case we can also have multiparticle states. E.g. $\pi\pi$, 4π, . . . , being all of them present in the spectrum of H_0

Nonetheless:

$$[H_0, N_D] = 0$$
Non-Relativistic formalism:

\[|\psi_B\rangle = \int d\gamma C_{\gamma} |AB\rangle + \sum_n C_n |\varphi_n\rangle \]

Relativistic formalism:

\[|\psi_B\rangle = \int d\gamma C_{\gamma} |AB\rangle + \int d\eta D_{\eta} |AAB\rangle + \int d\mu \delta_{\mu} |ABB\rangle + \ldots \]

\[+ \int d\eta_{\nu} F_{\nu} |CD\rangle + \ldots + \sum_n C_n |\varphi_n\rangle + \sum_n \int d\alpha C_{n\alpha} |A_{\alpha}\varphi_n\rangle + \ldots \]

We provide a new criterion for elementariness of a relativistic bound state

Number operator for each species of particle

\[N^A_D = \int d\alpha a^{\dagger}_{\alpha} a_{\alpha} \]

\[\langle \psi_B | N^A_D |\psi_B\rangle = \int d\alpha |C_{\gamma}|^2 + 2 \int d\eta |D_{\eta}|^2 + \int d\mu |\delta_{\mu}|^2 + \ldots \]
Criterion for an elementary stable particle

\[\langle N_D^A \rangle \equiv \langle \psi_B | N_D^A | \psi_B \rangle \ll 1 \]

For relativistic systems we also have to discard that

\[\langle N_D^E \rangle \equiv \langle \psi_B | N_D^E | \psi_B \rangle > 1 \]

\(N_D^E \) is the total number operator of bare elementary states.
Criterion for an elementary stable particle

\[\langle N_D^A \rangle \equiv \langle \psi_B | N_D^A | \psi_B \rangle \ll 1 \]

We can calculate this expectation value within QFT too

\[V \to Ve^{-\varepsilon |t|} \]

\[|\psi_B\rangle = |\varphi_B(0)\rangle = U_D(0, -\infty)|\varphi_B(-\infty)\rangle \]

\[|\psi_B\rangle = |\varphi_B(0)\rangle = U_D(0, +\infty)|\varphi_B(+\infty)\rangle \]

\[\langle N_D^A \rangle = \langle \psi_B | N_D^A | \psi_B \rangle \]

\[= \langle \varphi_B(+\infty) | U_D(+\infty, 0) N_D^A U_D(0, -\infty) | \varphi_B(-\infty) \rangle \]

\[= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} dt \langle \varphi_B(+\infty) | U_D(+\infty, t) N_D^A(t) U_D(t, -\infty) | \varphi_B(-\infty) \rangle \]

\[U_D(t, -\infty)|\varphi_B(-\infty)\rangle = e^{iH_0 t} e^{-iE_B t} U_D(0, -\infty)|\varphi_B(-\infty)\rangle \]
Technicalities

In general there are many more diagrams now apart from those in the NR case.

One cannot apply the trick associated with the convergent factor in the same way.

Other consequences:

If

\[\sum_i \langle N_{Di}^A \rangle = 2 + m \geq 2 \]

The multiparticle components with \(2 + m\) and more particles are important.

Other similar *exclusive* conditional conclusions can be also established.

- In the case in which we are close to a two-body threshold \((AB)\) we come back to the NR case for evaluating \(X_{AB}\).
• If *there are good reasons* for dominance of two-body channels

\[X_{AB} = \frac{1}{2} \left(\langle N_D^A \rangle + \langle N_D^B \rangle \right) \approx \int d\gamma |C_\gamma|^2 \]
6. Resonances. NR case

Bogdanova, Hale, Markushin, PRC44,1289(1991);

Spectral density of the bare state $|\psi_0\rangle : \omega(E)$

$$|\psi_0\rangle = \int dk c_0(k)|k\rangle$$

$$\omega(E) = 4\pi \mu k|c_0(E)|^2 \theta(E)$$

$$\int_0^\infty dE \omega(E) = \begin{cases}
1 & \text{No bound states} \\
1 - Z & \text{With bound states}
\end{cases}$$

How to implement it? **Select** the resonant region around threshold

$$W = \int_{E_-}^{E_+} dE \omega(E)$$

Conceptually, it is not **fully** settled as a quantitative estimate of compositeness for resonances
It provides a nice smooth transition from the clear bound states and narrow resonances.

It has a clear connection with the pole-counting rule of Morgan NPA543,632(1992), with the presence of nearby CDD poles Kang, Oller, EPJC77,399(2017).
7. Operator-number interpretation

In my developments a resonance follows by analytical continuation from the physical axis

- Let \(|\psi^+_\alpha\rangle \) be a two-body in-state

\[
|\psi^+_\alpha\rangle = U_D(0, -\infty) |\varphi_\alpha\rangle \\
= |\varphi_\alpha\rangle + \int d\gamma \frac{T_{\gamma\alpha}(E + i\varepsilon)}{E - E_\gamma + i\varepsilon} |\varphi_\gamma\rangle + \sum_n \frac{T_{n\alpha}(E)}{E - E_n} |\varphi_n\rangle
\]

S. Weinberg, QFT, Vol.1

\[
\langle\psi^+_\alpha| \int d\gamma a_\gamma^\dagger a_\gamma + \int d\eta b_\eta^\dagger b_\eta |\psi^+_\alpha\rangle = 2 \langle\varphi_\alpha|\varphi_\alpha\rangle \quad \text{Fine!}
\]

There are cancellations because of unitarity
Problem: This expectation value cannot be analytically continued to the resonance pole

\[
\langle \psi_\alpha^+ \rangle = \langle \varphi_\alpha \rangle + \int d\gamma \frac{T_{\gamma\alpha}(E - i\varepsilon)}{E - i\varepsilon - E_\gamma} \langle \varphi_\gamma \rangle + \sum_n \frac{T_{n\alpha}(E - i\varepsilon)}{E - i\varepsilon - E_n} \langle \varphi_n \rangle
\]

\[T(E \pm i\varepsilon)^\dagger = T(E \mp i\varepsilon)\]

The analytical continuation to \(E = M_R - i\Gamma/2 \) remains in the 1st or physical Riemann Sheet (RS)
No resonance pole there
The analytical continuation must be done as in the calculation of the S-matrix:

out state $|\psi_{\alpha}^-\rangle$, $E - i\epsilon$

$$
\langle \psi_{\alpha}^- | N_D^A + N_D^B | \psi_{\alpha}^+ \rangle
$$

$$
\langle \psi_{\alpha}^- | = \langle \varphi_{\alpha} | + \int d\gamma \frac{T_{\gamma\alpha}(E + i\epsilon)}{E + i\epsilon - E_{\gamma}} \langle \varphi_{\gamma} | + \sum_n \frac{T_{n\alpha}(E + i\epsilon)}{E + i\epsilon - E_n} \langle \varphi_n |
$$

When crossing the real positive energy axis

$$
T(E + i\epsilon) \rightarrow T^{II}(E - i\epsilon)
$$

The resonance pole is now reached both for the ket and the bra.
8. QFT-like calculation

Dirac or Interacting Image

\[V \rightarrow V e^{-\varepsilon |t|} \]

\[|\psi_R^+\rangle = U_D(0, -\infty) |\varphi_R^+\rangle \]

\[\langle \psi_R^- | = \langle \varphi_R^- | U_D(+\infty, 0) \]

\[X = \frac{1}{2} \langle \psi_R^- | N_D |\psi_R^+\rangle \]

\[= \frac{1}{2} \langle \varphi_R^- | U_D(+\infty, 0) N_D U_D(0, -\infty) |\varphi_R^+\rangle \]

\[= \lim_{T \to \infty} \frac{1}{2T} \int_{-T/2}^{+T/2} dt \langle \varphi_R^- | U_D(+\infty, t) N_D(t) U_D(t, -\infty) |\varphi_R^+\rangle \]

\[U_D(t, -\infty) |\varphi_R^+\rangle = e^{iH_0 t} e^{-iH t} |\psi_R^+\rangle = e^{-(IM_R + \frac{\Gamma}{2}) t} e^{iH_0 t} U_D(0, -\infty) |\varphi_R^+\rangle \]

\[\langle \varphi_R^- | U_D(+\infty, t) = \langle \psi_R^- | e^{iH t} e^{-iH_0 t} = \langle \varphi_R^- | U_D(+\infty, 0) e^{-iH_0 t} e^{(IM_R + \frac{\Gamma}{2}) t} \]

\[\langle \psi_R^- | e^{iH t} e^{-iH_0 t} = \langle \varphi_R^- | U_D(+\infty, 0) e^{-iH_0 t} e^{(IM_R + \frac{\Gamma}{2}) t} \]
2nd Riemann Sheet: $E_R = \kappa^2/2\mu$

\[
X_{\ell S} = \int \frac{d^3k}{(2\pi)^3} \frac{g_{\ell S}^2(k^2)}{(k^2/2\mu - E_R)^2} + \frac{i\mu^2}{\pi\kappa} \frac{\partial}{\partial k} \left[k g_{\ell S}^2(k^2) \right]_{k=\kappa}
\]

\[
X = \sum_{\ell S} X_{\ell S}
\]

\[
g(k) = \frac{\mu}{\pi^2} \int_0^{\infty} dk' k'^2 V(k, k') g(k') \frac{1}{k'^2 - \kappa^2}
\]

\[
+ \frac{i\mu\pi V(k, \kappa)}{1 - i\mu\pi V(\kappa, \kappa)} \frac{\mu}{\pi^2} \int_0^{\infty} dk' k'^2 V(\kappa, k') g(k') \frac{1}{k'^2 - \kappa^2}
\]

\[
g_{\ell S}(-k) = (-1)^\ell g_{\ell S}(k)
\]
9. New equation for X

We include the **convergent factor** for the 2nd RS calculation:

$$X = \frac{\mu^2}{\pi^2} \int_{-\infty}^{+\infty} dk k^2 \frac{g^2(k^2) e^{-i\varepsilon k}}{(k^2 - \kappa^2)^2} + \frac{i\mu^2}{\pi \kappa} \frac{\partial}{\partial k} \left[k g^2(k^2) \right]_{k=\kappa}$$

$$X = \frac{i\mu^2}{2\pi \kappa} \frac{\partial}{\partial k} \left[k g^2(k^2) \right]_{k=\kappa}$$

$$= -\frac{\partial G^{II}}{\partial E_R} g^2(\kappa^2) + \frac{i\mu^2}{2\pi} \frac{\partial}{\partial k} g^2(k^2) \bigg|_{k=\kappa}$$

The novel contribution is the red one

It depends on $V(k, k')$

$$X = \frac{\mu^2}{\pi^2} \int_0^{+\infty} dk k^2 \sqrt{k^2 + i\varepsilon} \frac{g^2(k^2)}{(k^2 - \kappa^2)^2}$$

Wave function squared:
- **resonance Gamow state**
For an energy-independent potential $X = 1$

$$V(k, k') = f(k^2)f(k'^2)V$$

In ordinary QM resonances are composite

X is in general complex for a resonance

E.g. for $V = V(E)$

$$g(k^2) = V^\frac{1}{2}f(k^2) \left[\frac{\partial (V \tilde{G}^{\Pi})}{\partial E_R} \right]^{-1}$$

$$X = \left[\frac{\partial (V \tilde{G}^{\Pi})}{\partial E_R} \right]^{-1} \frac{-1}{(2\pi)^2} \int_0^\infty dk k^2 \frac{V f(k^2)^2}{(E_R - k^2/2\mu)^2}$$

$$= \left[\frac{\partial (V \tilde{G}^{\Pi})}{\partial E_R} \right]^{-1} \left\{ V \frac{\partial \tilde{G}^{\Pi}}{\partial E_R} + \tilde{G}^{\Pi}(E_R) \frac{\partial V(E_R)}{\partial E_R} \right\}$$
10. Redefinition of “phases”

in-, out-states:

\(\eta(E) \) is a complex function with RHC: \(\eta(E^*) = \eta(E)^* \)

\[
\begin{align*}
|\psi^+_\alpha\rangle & \quad \longrightarrow \quad e^{\eta(E_\alpha^{} + i\varepsilon)} |\psi^+_\alpha\rangle \\
\langle \psi^-_\alpha | & \quad \longrightarrow \quad \langle \psi^-_\alpha | e^{\eta(E_\alpha^{} - i\varepsilon)^*} \\
& \quad = \quad \langle \psi^-_\alpha | e^{\eta(E_\alpha^{} + i\varepsilon)}
\end{align*}
\]

Analytical continuation \(E_\alpha \rightarrow E_R = M_R - i\Gamma/2 \)

\[
\eta(E_\alpha^{} + i\varepsilon) \rightarrow \eta^{\Pi}(E_\alpha^{} - i\varepsilon) \rightarrow \eta^{\Pi}(M_R - i\Gamma/2)
\]

An specific fact of resonances; no analogue for bound states.
These phase factors make X_{AB} be positive definite.
There could be dependence on the channel, $\eta_{AB}(E)$

$$g^2_{AB}(k^2) \to g^2_{AB}(k^2) e^{2\eta^\Pi_{AB}(E_R)}$$

$$X_{AB} \to \langle \psi_R^- | N^A_B | \psi_R^+ \rangle e^{2\eta^\Pi_{AB}(E_R)} \in \mathbb{R}^+$$

Plausible dispersion relation for $\eta(E)$
Narrow-Resonance Case:

$$\eta(E) = \frac{1}{\pi} \int_0^{\infty} dE' \frac{\text{Im} \eta(E')}{E' - M_R - i\epsilon}$$

$$= \frac{1}{\pi} \int_0^{\infty} dE' \frac{\text{Im} \eta(E')}{E' - M_R} + i\text{Im} \eta(E')$$

$\text{Im} \eta(E')$ is smooth and $\eta(M_R) \approx i\text{Im} \eta(M_R) \to e^{\eta(M_R)}$: Pure phase factor $|e^{\eta(M_R)}| \approx 1$
11. Relativistic case

\[\langle N_D^A \rangle \equiv \langle \psi_R^{-} | N_D^A | \psi_R^{+} \rangle \]

The QFT expression can be applied in the relativistic case too

\[V \rightarrow V e^{-\varepsilon |t|} \]

\[\langle \psi_R^{-} | N_D^A | \psi_R^{+} \rangle = \langle \varphi_R^{-} | U_D (+\infty, 0) N_D^A U_D (0, -\infty) | \varphi_R^{+} \rangle \]

\[= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} dt \langle \varphi_R^{-} | U_D (+\infty, t) N_D^A (t) U_D (t, -\infty) | \varphi_R^{+} \rangle \]

Necessary condition for a resonance to be qualified as elementary

\[\langle N_D^A \rangle = 0 \quad \forall A \]

Criterion for an elementary narrow resonance with respect the open channels

\[\langle N_D^A \rangle = \langle \psi_R^{-} | N_D^A | \psi_R^{+} \rangle e^{2i \text{Im} \eta^H_A (E_R)} = \left| \langle \psi_R^{-} | N_D^A | \psi_R^{+} \rangle \right| \ll 1 \]
12. \(S\)-matrix transformations

Introduced in Z.H.Guo, Oller, PRD93,096001(2016)

Example: Narrow resonance case

Laurent series around the resonance pole: \(s_P = (M_R - i\Gamma/2)^2\)

\[
S(s) = \frac{R}{s - s_P} + S_0(s)
\]

\[S(s)S(s)^\dagger = I\]

\(S_0(s) \rightarrow S_0, \text{ constant}\)

\[
(s - s_P)(s - s_P^*)S_0S_0^\dagger + (s - s_P)S_0R^\dagger + (s - s_P^*)RS_0^\dagger + RR^\dagger = (s - s_P)(s - s_P^*)
\]

\[
S_0S_0^\dagger = I
\]

\[S_0R^\dagger + RS_0^\dagger = 0\]

\[- s_P S_0 R^\dagger - s_P^* R S_0^\dagger + RR^\dagger = 0\]
Solution:

\[S_0 = \mathcal{O} \mathcal{O}^T \]
\[\mathcal{O} \mathcal{O}^\dagger = I \]

Rank 1 Symmetric Projection Operator \(\mathcal{A} \):

\[R = i \lambda \mathcal{A} \mathcal{O} \mathcal{O}^T, \quad \lambda \in \mathbb{R} \]
\[\mathcal{A}^\dagger = \mathcal{A} \]
\[\mathcal{A}^2 = \mathcal{A} \]
\[\lambda = 2 \text{Im} \ s_p = -2M_R \Gamma_R \]

Resonant S-matrix \(S_R(s) \):

\[S(s) = \mathcal{O} \left(I + \frac{i\lambda \mathcal{A}}{s - s_R} \right) \mathcal{O}^T \]
\[\underbrace{S(s)}_{S_R(s)} \]
Origin of phases: **Smooth non-resonant terms, \(\mathcal{O} \)**

E.g. Coulomb phases in nuclear physics

In general, do not take the real part in \(\langle \psi_R^- | N_D^A | \psi_R^+ \rangle \) **to make it real!!**

The right procedure is doing the phase or \(S \)-matrix transformations

The transformed \(S \) matrix

\[
S_{\mathcal{O}}(s) \equiv \mathcal{O} S(s) \mathcal{O}^T
\]

E.g. for the case of only one channel:

\[
g_A^2 \rightarrow g_A^2 \quad \quad S_0^{-1} \quad \quad \quad \quad e^{-i\phi}
\]

Non-Resonant terms

Resonance Propagator is Complex

\[
\langle \psi_R^- | N_D^A | \psi_R^+ \rangle \rightarrow |\langle \psi_R^- | N_D^A | \psi_R^+ \rangle|
\]
13. Finite width resonances

Necessary Condition for still interpreting $|\langle \psi_R^- | N_D^A | \psi_R^+ \rangle|$ as an average number of particles Z.H.Guo, Oller, PRD93,096001(2016)

The transformations

$$S_\Theta(s) \equiv \Theta S(s) \Theta^T$$

$$\Theta \Theta^\dagger = I$$

$$g_A^2 \rightarrow g_A^2 \Theta_{AA}^2$$

make sense only if:

▷ The Laurent expansion around s_P is valid in some interval of physical (real values above threshold) for s

$$S(s)S(s)^\dagger = I \text{ is meaningful}$$

Condition A: $s_n < \text{Re} s_P < s_{n+1}$

s_n is the threshold of channel n
Physical idea

- If this condition is fulfilled one can think of a physical process with a clear resonance contribution. E.g. the σ and E791 data on D^+ and D_s^+ decays.
- The resonance phenomenon is physically manifest in the open channels.
- We preserve $|g_A|$ to the open channels.
A resonance is then very different

\[
\frac{g^2}{s - s_R} + \frac{g^{2*}}{s - s_R^*} = 2\text{Re} \frac{g^2}{s - s_R}
\]

Double-pole like virtual state

This could well be the case for the \(X(3872) \), at least as a double-like pole. It could also be triple-like, etc. Z.H. Guo, Oller, PRD93,096001(2016)

\(\bar{D}^0 D^{*0} \) threshold. Tiny width
Basic set-up Different perspective QFT-like calculation New equation for X Relativistic case Resonances \textit{S}-matrix transformations

\textbf{An example: \textit{S}-wave Effective Range Expansion}

X.W.Kang, Z.H. Guo, Oller, PRD94, 014012 (2016)

$$T(k) = \frac{1}{-\frac{1}{a} + \frac{1}{2} r k^2 - i k}$$

$$G(k) = -i k$$

$$\tan \phi = \frac{\Gamma}{2 M_R} \quad \longrightarrow \quad 0 \leq \phi \leq \pi/2 \text{ for } M_R \geq 0$$

$$k_R = k_r - i k_i = \sqrt{2 \mu(M_R - i\Gamma/2)} = |k_R| \left(\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right)$$

$$X = -\gamma^2 \frac{dG}{ds} = -\gamma^2 \frac{dG}{dk} = i \frac{k_i}{k_r} = i \tan \frac{\phi}{2}$$

$$|X| \leq 1 \iff k_r \geq k_i \iff M_R \geq 0$$

($|X| = 1 \text{ for } M_R = 0 \text{ and } \Gamma > 0$)

If the real part is taken then ALWAYS $X = 0$!
14. Scattering Amplitude $t(E)$

Dispersion Relation for the inverse of $t(E)$

$$\text{Im} t(E)^{-1} = -ik$$

One subtraction is needed

$$\oint dz \frac{t(z)^{-1}}{(z - E)(z - C)}$$

The only other structure apart from the threshold that can give rise to a strong distortion in $t(E)^{-1}$ is a pole at M_Z

$$t(E) = \frac{1}{\lambda} \frac{1}{E - M_Z} + \beta - ik$$

CDD pole Castillejo, Dalitz, Dyson, PR, 101, 453 (1956)

The general formula for a partial-wave without crossed-channel dynamics was deduced in: Oller, Oset PRD60, 074023 (1999)
Contact interaction plus s-channel exchange of bare resonances

Kang, Oller, EPJC77, 399 (2017) study of the $X(3872)$

Interplay of quark and meson degrees of freedom in a near-threshold resonance

$[ABK]$ Artoisenet, Braaten, Kang, PRD, 82, 014013 (2010) Using line shapes to discriminate between binding mechanisms for the $X(3872)$
Basic set-up Different perspective QFT-like calculation New equation for \(X \) Relativistic case Resonances \(S \)-matrix transformations.

\[
[BHKKN]
\]

\[
D_F(E) = E - E_f - \frac{(E - E_f)^2}{(E - M_Z)^2} + \frac{i}{2} g_f k
\]

\[
t(E) = \frac{g_f}{8\pi^2 \mu D_F(E)}
\]

\[
t(E) = \frac{1}{4\pi^2 \mu} \frac{E - E_f + \frac{1}{2} g_f \gamma_V}{(E - E_f)(\gamma_V + i k) + \frac{i}{2} g_f \gamma_V k}
\]

\[
g_f = \frac{2\lambda}{\beta^2}
\]

\[
E_f = M_Z - \frac{\lambda}{\beta}
\]

\[
\gamma_V = -\beta
\]

\[
\gamma_V = 1/a_V, \ a_V \text{ scattering length in pure contact-interaction theory.}
\]

For \(|M_Z| \gg |E_f| \) one recovers the standard Flatté approximation.
Limitation of [BHKKN] and [ABK]

- They predict only $\lambda \geq 0$

$$\begin{align*}
[BHKKN] & \quad [ABK] \\
\lambda &= \frac{\gamma^2}{2} g_f & \lambda &= \frac{2g^2\gamma_0^2(\gamma_1-\kappa_2)^2}{(\gamma_0+\gamma_1-2\kappa_2)^2}
\end{align*}$$

- Positive effective range r, v_3, v_5, etc, cannot be reproduced with $\lambda \geq 0$:

$$
r = -\frac{\lambda}{\mu M_Z^2} < 0
$$

$$
v_3 = -\frac{\lambda}{8\mu^3 M_Z^4} < 0
$$

- $\omega(E) \geq 0 \rightarrow \lambda \geq 0$:

$$
\omega(E) = \theta(E) \frac{\lambda k/\pi}{|\lambda + (\beta - ik)(E - M_Z)|^2}
$$

Constant contact term plus one s-channel bare-pole exchange picture collapses for $\lambda < 0$
14. Conclusions

- A new perspective on compositeness based on the number operators
- Amenable to calculations employing QFT
- New equation of compositeness for NR systems
- It can be also extended to relativistic systems
- Generalization to resonances
- Phase-factor transformations
- S-matrix transformations
- Universal criterion for a relativistic or non-relativistic bound state to be qualified as elementary
- Necessary condition for a resonance to be elementary
- More work is needed for finite-width resonances.
- CDD & including bare state explicitly
Other methods to study the nature of resonances

- **Study of form factors and determination of the corresponding quadratic radius** Sekihara, Hyodo, Jido, PRC83, 055202 (2011); Albaladejo, Oller, PRD86, 034003 (2012)

Other methods to study the nature of resonances

- **Study of form factors and determination of the corresponding quadratic radius** Sekihara, Hyodo, Jido, PRC83, 055202 (2011); Albaladejo, Oller, PRD86, 034003 (2012)

- **Evolution of the pole positions with the increase in the number of color of QCD.** E.g. for a $q\bar{q} \ M = \mathcal{O}(N_C^0)$ and $\Gamma = \mathcal{O}(N_C^{-1})$. Pioneer works Oset, Oller, PRD60, 074023 (1999); Peláez, PRL92, 102001 (2004); Hyodo, Jido, Hosaka, PRL97, 192002 (2006)

- **Regge trajectories** Londergan, Nebreda, Peláez, Szczepaniak, PLB729, 9 (2014)

- **Dependence on the mass under quark mass variations.** Lattice QCD. Ruiz de Elvira, Meißner, Rusetsky, Schierholz, arXiv:1706.09015

- **Compare predictions within specific models with experiment**, e.g. spectrum, decay properties, etc
<table>
<thead>
<tr>
<th>Name</th>
<th>$\sqrt{s_{\text{p}}}$ [MeV]</th>
<th>$X^R_{\pi\pi}$</th>
<th>X^R_{KK}</th>
<th>$X^R_{\eta\eta}$</th>
<th>$X^R_{\eta\eta'}$</th>
<th>$X^R_{\rho\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0(500)$</td>
<td>$442^{+4}{-4} - i246^{+7}{-5}$</td>
<td>$0.40^{+0.01}_{-0.01}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>$0.40^{+0.01}_{-0.01}$</td>
</tr>
<tr>
<td>$f_0(980)$</td>
<td>$978^{+17}{-11} - i29^{+9}{-11}$</td>
<td>$0.02^{+0.01}_{-0.01}$</td>
<td>$0.68^{+0.10}_{-0.16}$</td>
<td>...</td>
<td>...</td>
<td>$0.67^{+0.11}_{-0.17}$</td>
</tr>
<tr>
<td>$f_0(1710)$</td>
<td>$1690^{+20}{-20} - i110^{+20}{-20}$</td>
<td>$0.00^{+0.00}_{-0.00}$</td>
<td>$0.03^{+0.02}_{-0.02}$</td>
<td>$0.02^{+0.03}_{-0.03}$</td>
<td>$0.25^{+0.16}_{-0.16}$</td>
<td>$0.30^{+0.17}_{-0.17}$</td>
</tr>
<tr>
<td>$\rho(770)$</td>
<td>$760^{+7}{-5} - i71^{+4}{-5}$</td>
<td>$0.08^{+0.01}_{-0.01}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>$0.08^{+0.01}_{-0.01}$</td>
</tr>
<tr>
<td>$K^*_0(800)$</td>
<td>$643^{+75}{-30} - i303^{+25}{-75}$</td>
<td>$0.94^{+0.19}_{-0.39}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>$0.94^{+0.19}_{-0.39}$</td>
</tr>
<tr>
<td>$K^*(892)$</td>
<td>$892^{+5}{-7} - i25^{+2}{-2}$</td>
<td>$0.05^{+0.01}_{-0.01}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>$0.05^{+0.01}_{-0.01}$</td>
</tr>
<tr>
<td>$a_0(1450)$</td>
<td>$1459^{+70}{-95} - i174^{+110}{-100}$</td>
<td>$0.09^{+0.02}_{-0.07}$</td>
<td>$0.02^{+0.12}_{-0.02}$</td>
<td>$0.12^{+0.21}_{-0.08}$</td>
<td>...</td>
<td>$0.23^{+0.35}_{-0.17}$</td>
</tr>
<tr>
<td>$a_1(1260)$</td>
<td>$1260 - i250$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0.45</td>
</tr>
<tr>
<td>Hyperon with $l = 0$</td>
<td>$\Lambda(1405)$ broad</td>
<td>$1388^{+9}{-9} - i114^{+24}{-25}$</td>
<td>$0.73^{+0.16}_{-0.07}$</td>
<td>...</td>
<td>...</td>
<td>$0.73^{+0.16}_{-0.07}$</td>
</tr>
<tr>
<td>Hyperon with $l = 1$</td>
<td>$\Lambda(1405)$ narrow</td>
<td>$1421^{+3}{-3} - i19^{+8}{-5}$</td>
<td>$0.18^{+0.15}_{-0.06}$</td>
<td>$0.81^{+0.18}_{-0.08}$</td>
<td>...</td>
<td>$0.99^{+0.33}_{-0.14}$</td>
</tr>
<tr>
<td>$D_s^*(2317)$</td>
<td>2321^{+6}_{-3}</td>
<td>$0.04^{+0.01}_{-0.00}$</td>
<td>$0.00^{+0.00}_{-0.00}$</td>
<td>$0.01^{+0.00}_{-0.00}$</td>
<td>$0.13^{+0.03}_{-0.03}$</td>
<td>$0.17^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>$Y(4260)$</td>
<td>$4232.8 - i36.3$</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
</tr>
<tr>
<td>$\Lambda_c(2595)$</td>
<td>$2592.25 - i1.3$</td>
<td>$0.11^{+0.02}_{-0.02}$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>$0.11^{+0.02}_{-0.02}$</td>
</tr>
</tbody>
</table>

Table: Z.H. Guo, Oller, PRD93,096001(2016)