

Light quark baryons from photoproduction and electroproduction experiments

U. Thoma replacing J. Hartmann, Bonn

Contents:

- Introduction
- Experimental Data
- Results (PWA)
- Summary

Aim: Good understanding of the spectrum and the properties of baryon resonances \leftrightarrow bound states of strong QCD

- What are the relevant degrees of freedom ?
- Effective forces between them ?

e.g.:

Symmetric quark models:

 \rightarrow many more resonances expected than observed yet

Aim: Good understanding of the spectrum and the properties of baryon resonances \leftrightarrow bound states of strong QCD

- What are the relevant degrees of freedom ?
- Effective forces between them ?

e.g.:

Symmetric quark models:

- \rightarrow many more resonances expected than observed yet (certain configurations completely missing)
- Certain configurations not realised by QCD? Why?
- Experimentally not found yet (resonances might decouple from πN)

e.g.:

Aim: Good understanding of the spectrum and the properties of baryon resonances \leftrightarrow bound states of strong QCD

- What are the relevant degrees of freedom ?
- Effective forces between them ?

Symmetric quark models:

- \rightarrow many more resonances expected than observed yet (certain configurations completely missing)
- Certain configurations not realised by QCD ? Why?
- Experimentally not found yet (resonances might decouple from πN)

Or does the quark model just use the wrong degrees of freedom?

↔ Mesons-Baryon degrees of freedom?

or

... seems to be missing

Excited baryons from Lattice QCD:

Exhibits the broad features expected from SU(6) O(3)-symmetry

- \rightarrow Counting of levels consistent with non-rel. quark model
- \rightarrow no parity doubling

Of course there are also approximations made by lattice QCD (e.g. m_{π} =396 MeV)

\Rightarrow Good understanding of the spectrum and properties of baryon resonances

Experimentally: Broad and strongly overlapping resonances

Important:

- \rightarrow Investigation of different final states
- ightarrow Investigation of different production processes: $\pi N, \gamma N, \gamma^* N, \Psi, \Psi'$ -decays, ...
- → Measurement of polarization observables (unambiguous PWA)

Recently: a lot of progress from photoproduction experiments:

CLAS (JLab),

CBELSA/TAPS (ELSA),

CBALL (MAMI),

LEPS (Spring-8), ...

[⇔] polarized beam, polarized target

Double Polarization Experiments - Selected Results -

Circularly polarized photons, longitudinally polarized target

CBELSA/TAPS

proton spin

 $\sigma_{1/2}$

-1/2

proton spin

 $\sigma_{_{3/2}}$

>+1/2

 $\gamma p
ightarrow p \pi^0$:

PWAs: SAID (SN11, CM12), MAID BnGa (2011_2)

 \leftrightarrow describe the so far existing photoproduction data, but ...

large deviations observed

Differences even at low energies where everything was thought to be well understood ...

M. Gottschall et al. (CBELSA/TAPS-collaboration) Phys. Rev. Lett. 112, 012003 (2014)

Photoproduction: double polarization experiments

Circularly polarized photons, longitudinally polarized target:

CBELSA/TAPS

Resulting multipoles - BnGa-PWA

Resulting multipoles - BnGa-PWA

- Isospin selective: only N* (I=1/2) contribute
- ullet Investigation of resonances with small πN -coupling

Differential cross sections, beam asymmetries included in the different PWAs

$ec{\gamma}ec{p} ightarrow p\eta~~-$ Selected polarization observables -

linear pol. photons, transv. pol. target

- new BnGa-fit : Determination of precise *pη*-branching ratios for resonances indications for a new resonance (no PDG entry) at 2200 MeV

$ec{\gamma}ec{p} ightarrow p\eta~~$ - Results including new data on E,~G,~T,~P,~H

Determination of $p\eta$ -branching ratios for various resonances, e.g. :

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1710)1/2^+$	$N(1720)3/2^+$
BnGa	0.42±0.04	0.32±0.04	0.27±0.09	0.03±0.02
PDG	0.42±0.10	0.05 - 0.15	0.10 - 0.30	0.021±0.014

₩

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

\Rightarrow Hints for a new resonance around 2200 MeV with J P =5/2 $^{-}$

Higher statistics data on E and T and data of F could further clarify the situation \Leftrightarrow Proof of the N(2200)5/2⁻

Multi-channel Bonn-Gatchina PWA:

⇒ Confirmation known resonances, better determination of their properties

 \Rightarrow New resonances observed

	RPP 2010	our analyses	RPP	GWU'06 (SAID)
N(1700)3/2-	***	***	***	no evidence
N(1710)1/2+	***	***	***	no evidence
N(1860)5/2+		*	**	
N(1875)3/2-		***	***	no evidence
N(1880)1/2+		**	**	no evidence
N(1895)1/2-		**	**	no evidence
N(1900)3/2+	**	***	***	no evidence
N(1990)7/2+	**	**	**	no evidence
N(2000)5/2+	**	**	**	no evidence
N(2060)5/2-		***	**	no evidence
N(2150)3/2-		**	**	no evidence
Δ (1900)1/2 $^-$	*	*	**	no evidence
Δ (1920)3/2 $^+$	***	***	***	no evidence
Δ (1940)3/2 $^-$	*	**	**	no evidence

A.V. Anisovich et al. (BnGa-PWA), EPJA 48 (2012) 15

from 2000-2010 <u>not one</u> new baryon resonance was considered by the PDG

↔ Results from photoproduction do now enter the PDG and determine the properties of baryon resonances!

(before: almost entirely πN -scattering and some π -photoproduction)

Photoproduction provides access

- to the "inelastic channels"
- ⇒ better determination of resonance properties

Multi-channel Bonn-Gatchina PWA:

- \Rightarrow Confirmation known resonances, better determination of their properties
- \Rightarrow New resonances observed

	RPP 2010	our analyses	RPP	GWU'06 (SAID)
N(1700)3/2-	***	***	***	no evidence
N(1710)1/2+	***	***	***	no evidence
N(1860)5/2+		*	**	
N(1875)3/2-		***	***	no evidence
N(1880)1/2+		**	**	no evidence
N(1895)1/2-		**	**	no evidence
N(1900)3/2+	**	***	***	no evidence
N(1990)7/2+	**	**	**	no evidence
N(2000)5/2+	**	**	**	no evidence
N(2060)5/2-		***	**	no evidence
N(2150)3/2-		**	**	no evidence
Δ (1900)1/2 $^-$	*	*	**	no evidence
Δ (1920)3/2+	***	***	***	no evidence
Δ (1940)3/2 $^-$	*	**	**	no evidence

Beam-Recoil polarization:

Fit within the Bonn-Gatchina multi-channel PWA: Favours the existence of the $P_{13}(1900)$ (confirmed by O. V. Maxwell, PRC85, 034611 (2012), T. Mart, M. Kholili, PRC86, 022201 (2012))

Evidence against the quark-diquark model

CLAS

Parity doublets occur:

- present lattice QCD calculations or constituent quark-models
- ⇔ QCD not yet understood !

Search for parity doublets

V. Anisovich et al. (BnGa-PWA), arXiv:1503.05774

Precise measurements of polarisation observables

CBELSA/TAPS, CLAS-data (only few of the measured bins / data sets shown:)

W=2109 $T(\gamma p \rightarrow p\pi^0)$ (CB-ELSA) 0.5 W=2040 Results from the multi-channel 0.5 **BnGa-PWA:** -0.5 — : fit with Δ (2200)7/2⁻ W=2191 ---: fit without $\Delta(2200)7/2^{-}$ -0.5 0.5 W=2085 -0.5 0.5 W=2227 0.5 -0.5 -0.5 -0.5 J. Hartmann et al. cos θ (CBELSA/TAPS), PLB 748, 212 (2015) -0.5 -1 S. Strauch et al. (CLAS). cos θ arXiv:1503.05163 (2015)

 $E(\gamma p \rightarrow n\pi^{+})$ (CLAS)

The nature of states: Roper resonance - $N(1440)1/2^+$

Electroproduction data from CLAS: Q²-dependence of helicity amplitudes

in 2002 Roper was still consistent with a hybrid state

 \Rightarrow the new data:

LF RQM describes helicity amplitudes at Q² >1.5-2.5 GeV²

Interpretation: Meson-baryon contributions dominate low Q²-behaviour

CLAS results: Identify Roper resonance as first radial excitation of the proton

The 1st radial excitation of the 3q-core emerges as the probe penetrates the MB cloud

The nature of states: $N(1440)1/2^+$, $N(1535)1/2^-$

Electroproduction data from CLAS: Q²-dependence of helicity amplitudes

LF RQM describes helicity amplitudes at $\mathsf{Q}^2>\!\!1.5\text{-}2.5\,\mathsf{GeV}^2$

Interpretation: Meson-baryon contributions dominate low Q²-behaviour

Understanding the nature of the states further: qqq, meson-baryon, hybrid via measurement of the Q²-dependence of the helicity amplitudes

⇒ Further data to come from CLAS12

Summary

- Based on the new data, our knowledge of the spectrum and the properties of baryons is steadily increasing !
- ↔ Important contributions from photoproduction experiments (single and double polarisation experiments (many final states))
- ⇒ Observation of new resonances
- \Rightarrow Confirmation of known states, determination of their properties
 - e.g.: puzzeling difference between pη-BR of N(1535)1/2⁻ and N(1650)1/2⁻ now very much reduced
 - multi-meson-decays of baryon resonances
 - \Rightarrow much more interesting data to come
- ⇒ Many interesting results on the spectrum and the properties of baryon resonances
- ⇔ Quark models/first lattice calculations do not yet provide the expected systematics in the spectrum

Experiment: - no alternating pattern of positive and negative parity states

- parity doublets observed (not for all states (?))
- Baryons fall on Regge-trajectories, Why ?

Bound states of QCD are not yet understood!

11

