Recent Results from CLAS

K. Hicks (Ohio U.)

Sept. 26, 2017

Hadron 2017 International Conf.

Outline

- Goals of the CLAS Baryon Spectroscopy group
- Linear Polarization data: new N*'s?
- Reactions on the neutron: new $K^0\Lambda$ data
- Meson electroproduction: N* structure
- Photoproduction of K_sK_s: scalar mesons

Goals of CLAS Spectroscopy

- Search for "missing" resonances:
 - More N* resonances predicted than observed.
 - Some resonances may couple weakly to πN .
 - Multi-prong approach: analyze many final states.
- Search for "exotic" hadrons:
 - Ongoing program (not presented in this talk)
 - Scalar mesons: new data from K_sK_s final state
- Many new results!! (I can show only a few)

Polarization Observables

$$egin{aligned} \sigma_{ ext{total}} &= \sigma_{ ext{unpol.}} [1 - \delta_l \, \mathbf{\Sigma} \cos(2\phi) \ &+ \Lambda_x \, (-\delta_l \, \mathbf{H} \sin(2\phi) \, + \, \delta_\odot \, \mathbf{F}) \ &- \Lambda_y \, (-\mathbf{T} \, + \, \delta_l \, \mathbf{P} \cos\!2\phi) \ &- \Lambda_z \, (-\delta_l \, \mathbf{G} \sin(2\phi) \, + \, \delta_\odot \, \mathbf{E}) \, + \, ...] \end{aligned}$$

 $\delta_{\odot}(\delta_l)$: degree of beam pol.

 Λ : degree of target pol.

Talks by: Natalie Walford (Thursday, Sept. 28, 09:15)
Tsuneo Kageya (Tuesday, Sept. 26, 12:10)

Polarization Transfer: $\gamma p \rightarrow K^+ \Lambda$

One example of a "missing" resonance now found!

Strong Evidence for Nucleon Resonances near 1900 MeV

A. V. Anisovich, ^{1,2} V. Burkert, ³ M. Hadžimehmedović, ⁴ D. G. Ireland, ⁵ E. Klempt, ^{1,3} V. A. Nikonov, ^{1,2} R. Omerović, ⁴ H. Osmanović, ⁴ A. V. Sarantsev, ^{1,2} J. Stahov, ⁴ A. Švarc, ⁶ and U. Thoma ¹

 $\gamma p \rightarrow K^+ \Lambda$ at W=1.95-1.97 GeV, fits using the Bonn-Gatchina model

$\gamma p \rightarrow K^+ \Lambda$: Fits to the EM multipoles

Evidence for 2 new "missing" resonances & 3 with more precision. Made possible by precision data from CLAS.

N. Compton, PhD (Ohio U, 2017), submitted to PRC (arXiv:1706.04748).

Cont'd: comparison with $K^+\Lambda$

Total Cross Section

No "peak" near 1900 MeV for $K^0\Lambda$: photocouplings γnN^* and γpN^* are different.

g14 beam-target helicity asymmetries for $\gamma n \rightarrow \pi^- p$ and N* states excited from the neutron

- E&M interaction is not isospin symmetric
- γnN* and γpN* couplings are different
 ⇔ probes of dynamics in N* excitation
- eg. SAID Partial Wave Analysis (PWA): $A_{\gamma n}^{1/2} [N(2190)7/2-] \rightarrow -16 \pm 5 (10^{-3} \text{ GeV}^{-1/2})$ $A_{\gamma n}^{3/2} [N(2190)7/2-] \rightarrow -35 \pm 5 (10^{-3} \text{ GeV}^{-1/2})$

 $\cos \theta_{c,n}^{\pi^-}$

 $\cos \theta_{cn}^{\pi}$

Submitted to PRC (2017)

Neutron helicity amplitudes

A.V. Anisovich^{1,2}, V. Burkert³, N. Compton⁴, K. Hicks⁴, F.J. Klein⁵, E. Klempt^{1,3}, V.A. Nikonov^{1,2}, A.M. Sandorfi³, A.V. Sarantsev^{1,2}, and U. Thoma¹

	$A_{1/2}$	Phase	$A_{1/2}^{(BW)}$	$A_{3/2}$	Phase	$A_{3/2}^{(BW)}$	E	Phase	$E^{(BW)}$	M	Phase	$M^{(BW)}$
$N(1535)1/2^-$	-88±4	$5\pm4^{\circ}$	-81 ± 6				88±4	$5\pm4^{\circ}$	81 ± 6			
$N(1650)1/2^-$	16±4	-28 $\pm 10^{\circ}$	16 ± 5				-16±4	$-28\pm10^{\circ}$	-16 ± 5			
$N(1895)1/2^-$	-15±10	$60{\pm}25^{\circ}$	-14±10				15±10	$60{\pm}25^{\circ}$	$14{\pm}10$			
N(1440)1/2+	41±5	23±10°	53±7							41±5	23±10°	53±7
$N(1710)1/2^{+}$	29±7	$80\pm20^{\circ}$	$\pm (30 \pm 7)$	No ¹	te: N(1	685)1/2+	not ne	eeded!		29±7	80±20°	$\pm (30 \pm 7)$
$N(1880)1/2^{+}$	72 ± 24	-30±30°	70 ± 22		•					72±24	-30±30°	70 ± 22
$N(2100)1/2^{+}$	29±9	$35\pm20^{\circ}$	29 ± 10							29±9	$35{\pm}20^{\circ}$	29 ± 10
$N(1520)3/2^-$	-45±5	-5±4°	-46±5	-119±5	5±4°	-118±5	126±5	5±5°	125±5	13±3	26±3°	13±3
$N(1875)3/2^-$	4±3	-85 ± 35	$\pm (4 \pm 3)$	-6±4	-85 ± 45	$\pm (6 \pm 4)$	3±2	-50 ± 40	3 ± 2	3±2	-80±40	$\pm(3\pm2)$
$N(2120)3/2^-$	80±30	$15{\pm}25^{\circ}$	81 ± 30	-33±20	-60±35°	-32 ± 20	-33±15	$75{\pm}40^{\circ}$	-33 ± 15	43±20	$5\pm20^{\circ}$	43 ± 20
N(1720)3/2+	$-(25^{+40}_{-15})$	-75±35°	$-(28^{+40}_{-15})$	100±35	-80±35°	±(103±35)	(20^{+30}_{-10})	-75±30°	(20^{+30}_{-10})	-85±30	-80±30°	±(85±30)
$N(1900)3/2^{+}$	-98±20	-13±20°	-102±20	74±15	$5\pm15^{\circ}$	73 ± 15	70±17	-8±20°	71 ± 17	-22±12	$40{\pm}40^{\circ}$	-21±11
$N(1975)3/2^{+}$	-26±13	$8{\pm}25^{\circ}$	-26 ± 13	-77±15	$5\pm20^{\circ}$	-75 ± 15	-12±10	-10±35°	-12±9	80±15	$5\pm20^{\circ}$	79 ± 14
$N(1675)5/2^-$	-53±4	-3±5°	-53±4	-73±5	-12±5°	-72±5	3±2	60±30°	3 ± 2	52±5	-10±5°	51±4
$N(2060)5/2^-$	52±25	-5±20°	52 ± 24	12±7	-40±35°	12 ± 7	-21±7	$3\pm15^{\circ}$	-20±7	-29±6	$3\pm20^{\circ}$	-29 ± 6
N(1680)5/2+	32±3	-7±5°	33±3	-63±4	-10±5°	-63±4	19±2	-13±7°	19±2	25±2	-9±4°	26±2
$N(2000)5/2^{+}$	19±10	-80±40	$\pm (19\pm 10)$	11±5	82±30°	$\pm(11\pm5)$	-(3 ⁺⁴ ₋₃)	not defined	$-(3^{+4}_{-3})$	8±4	-86±30°	$\pm (8\pm 4)$
$N(1990)7/2^{+}$	-32±15	5±20°	-32±15	-70±25	0±20°	-72±25	-7±4	-8±20°	-7±4	31±15	-5±20°	31±15
$N(2190)7/2^-$	30±7	5±15°	30±7	-23±8	13±20°	-23±8	1^{+3}_{-1}	100±130°	1^{+3}_{-1}	12±4	8±12°	12±4

γnN^* vs γpN^* couplings

(10 ⁻³ GeV ^{-1/2})	A _n ^{1/2}	A _p ^{1/2}	A _n ^{3/2}	A _p ^{3/2}
SAID				
N(1720)3/2+	-15 ±5 ^[4]	95 ±2 [6]	13 ± 4 ^[4]	-48 ±2 ^[6]
N(1895)1/2-				
N(1975)3/2+				
N(2190)7/2-	-16 ±5 ^[4]		-35 ±5 [4]	
<u>BnGa</u>				
N(1720)3/2+	-(28 +40/-15) ^[3]	110 ±45 ^[5]	±(103 ±35) ^[3]	150 ±30 ^[5]
N(1895)1/2-	-15 ±10 ^[3]	-11 ±6 ^[5]		
N(1975)3/2+	-26 ±13 ^[3]		-77 ±15 ^[3]	
N(2190)7/2-	+30 ±7 ^[1]	-65 ±8 ^[5]	-23 ± 8 [1]	+35 ±17 ^[5]

^[1] CLAS/g14: Phys. Rev. Lett. 118 (2017)

^[2] SAID: Phys. Rev. C85 (2012) 025201

^[3] BnGa: Phys. Rev. C (submitted)

^[4] R.L. Workman and A. Švarc (priv. comm.)

^[6] SAID: Phys. Rev. C86 (2012) 015202

^[5] BnGa: Eur. Phys. J. A**48** (2012) 15

Differential cross sections and polarization observables from CLAS K^* photoproduction and the search for new N^* states

The CLAS Collaboration

A.V. Anisovich, KH, et al. PLB, 771, 142-150 (2017) Based on analysis of W. Tang (PhD, Ohio U, 2012)

Additional fits to differential cross sections and other spin-density (ρ_{10} , ρ_{11}) done.

CLAS $\gamma p \rightarrow K^{*0}\Lambda$ Total Cross Section

CLAS $\gamma p \rightarrow K^{*0}\Lambda$ BoGa fit results:

Table 1

Branching ratios for $N^* \to K^* \Lambda$ decays. For the states denoted with * we assume $\Gamma_{\nu p} = 0.1$ MeV.

B.R. to $K^*\Lambda$

$N(1880)1/2^+$	$0.8\pm0.3\%$	N(1895)1/2 ⁻	$6.3\pm2.5\%$
$N(2100)1/2^+$	$7.0 \pm 4\%$	$N(1875)3/2^-$	< 0.2%
$N(2120)3/2^{-}$	< 0.2%	$N(2060)5/2^-$	$0.8 \pm 0.5\%$
$N(2000)5/2^+$	$2.2 \pm 1.0\%$	$N(1900)3/2^+$	< 0.2%
$N(2190)7/2^{-}$	$0.5 \pm 0.3\%$	$N(2355)*1/2^-$	$6 \pm 1.5\%$
$N(2250)*3/2^-$	$10 \pm 5\%$	$N(2300)*5/2^-$	$4.5\pm1.4\%$

Table 2

Masses and widths of tentative additional resonances contributing to the reaction $\gamma p \to K^{*+}\Lambda$.

Possible new high-mass N*'s

Resonance	Mass	Width
N(2355)1/2 ⁻	$2355 \pm 20 \text{ MeV}$	$235 \pm 30 \text{ MeV}$
$N(2250)3/2^-$	$2250 \pm 35 \text{ MeV}$	$240 \pm 40 \text{ MeV}$
$N(2300)5/2^-$	2300 ⁺³⁰ ₋₆₀ MeV	$205\pm65~\text{MeV}$

Often we see N* resonances near the threshold of higher-mass meson production.

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

Resonant amplitudes

Non-resonant amplitudes

•Real $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$, $S_{1/2}(Q^2)$

 $\bullet G_1(Q^2), G_2(Q^2), G_3(Q^2)$

•G_M(Q²), G_E(Q²), G_C(Q²)

I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).

Definition of N* photo-/electrocouplings employed in the CLAS data analyses:

$$\Gamma_{r} = \frac{k_{r_{N^*}}^{2}}{\pi} \frac{2M_{N}}{(2J_{r}+1)M_{N^*}} \left[A_{1/2} \right]^{2} + \left| A_{3/2} \right|^{2}$$

 Γ_{γ} : N* electromagnetic decay widths; W=M_{N*} on the real energy axis.

• Consistent results on γ_v NN* electrocouplings from different meson electroproduction channels and different analysis approaches demonstrate reliable extraction of these quantities.

Slides borrowed from V. Mokeev

Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² -range, GeV ²	Measured observables
π ⁺ n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	$d\sigma/d\Omega$ $d\sigma/d\Omega$ $d\sigma/d\Omega$, A_b $d\sigma/d\Omega$
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39	0.16-0.36 0.4-1.8 3.0-6.0	$d\sigma/d\Omega$ $d\sigma/d\Omega$, A_b , A_t , A_{bt} $d\sigma/d\Omega$
ηр	1.5-2.3	0.2-3.1	dσ/dΩ
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P ⁰ , P'
K +Σ ⁰	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'
π ⁺ π ⁻ p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections

- dσ/dΩ–CM angular distributions
- A_b,A_t,A_{bt}-longitudinal beam, target, and beam-target asymmetries
- P⁰, P' –recoil and transferred polarization of strange baryon

Recent extensions

Almost full coverage of the final hadron phase space in πN , $\pi^+\pi^-p$, ηp , KY electroproduction

The measured observables from CLAS for the exclusive electroproduction of all listed final states are stored in the CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.

N(1440)1/2⁺ electrocoupling

V. Burkert, Baryons 2002

V. D. Burkert, Baryons 2016

Slides borrowed from V. Mokeev

Access to the Dressed Quark Mass Function

DSE analyses of the CLAS data on $\Delta(1232)3/2^+$ electroexcitation for the first time demonstrated that dressed quark mass is running with momentum.

Good data description at Q²>2.0 GeV² achieved with the same dressed quark mass function for the ground and excited nucleon states of distinctively different structure provides strong evidence for:

- · the relevance of dressed quarks with dynamically generated mass and structure;
- access to quark mass function from the data on elastic and N→N* transition form factors.

One of the most important achievements in hadron physics of the last decade obtained in synergistic efforts between experimentalists and theorists.

New CLAS $\pi^+\pi^-$ p Electroproduction Data at High Photon Virtualities

Fully integrated π⁺π⁻p electroproduction cross sections off protons

1.40 GeV<W<2.00 GeV, 2.0 GeV²<Q²<5.0 GeV²

E.L. Isupov et al. (CLAS), arXiv:1705.01901, in press by Phys. Rev. C

Analysis objectives:

- Extraction of γ_vpN* electrocouplings for most N*s in mass range up to W=2.0 GeV and 2.0< Q²< 5.0 GeV².
- Search for new baryon states through their manifestations in exclusive $\pi+\pi$ -p electroproduction with Q²-independent masses and decay widths.

Mass range where the signals from new baryon states were reported, A.V. Anisovich et al., Eur. Phys. J. A48, 15 (2012).

CLAS12 N* Program at High Q²

E12-09-003

Nucleon Resonance Studies with CLAS12

Gothe, Mokeev, Burkert, Cole, Joo, Stoler

E12-06-108A

KY Electroproduction with CLAS12

Carman, Gothe, Mokeev

• Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for $N\pi$, $N\eta$, $N\pi\pi$, KY:

 E_b = 11 GeV, Q^2 = 3 \rightarrow 12 GeV², $W \rightarrow$ 3.0 GeV with the almost complete coverage of the final state phase space

Key Motivation

Study the structure of all prominent N* states in the mass range up to 2.0 GeV vs. Q² up to 12 GeV².

CLAS12 is the only facility foreseen in the world capable to map-out N* quark core under almost negligible contributions from meson-baryon cloud

The experiments will start at the end of 2017!

Double K_S^0 Photoproduction off the Proton at CLAS

Shloka Chandavar (PhD, OhioU, 2015)

S. Chandavar¹ and K. Hicks¹

' Ohio University

(Dated: September 19, 2017)

Undergoing CLAS review To be submitted to PRC

Name	Mass $[MeV/c^2]$
$f_0(600) *$	400 - 1200
$f_0(980) *$	980 ± 10
$f_0(1370) *$	1200 - 1500
$f_0(1500) *$	1507 ± 5
$f_0(1710) *$	1718 ± 6

- There are 5 isoscalar states identified by experiment: $f0(600), f_0(980), f_0(1370), f_0(1500)$ and $f_0(1710)$
- There are only 2 slots for the f_0 states in the quark model

Photoproduction can give info on the coupling of the f_0 meson to the photon.

What previous experiments observed

Crystal Barrel

 $f_0(1500)$ is seen in the $\eta\eta$ mass projection

C. Amsler and N.A. Tornqvist, Phys. Rept. 389 (2004) 61.

 $J/\Psi \rightarrow \gamma \pi \pi$

PWA: $J=0 \rightarrow f_0(1500)$

Shaded region = $J/\Psi \rightarrow \pi^+\pi^-\pi^0$ WA102 Central production

D. Barberis et al., [WA102 Collaboration], Phys. Lett. B462 (1999) 462, hep-ex/9907055 The $f_0(1500)$ is clearly seen

M(K*K*) GeV

M. Ablikim et al., [BES Collaboration] Phys. Lett. B 642 (2006) 441

ZEUS Experiment: detected K_s⁰K_s⁰

ZEUS Collaboration: S. Chekanov, et al, *Inclusive* $K^0_S K^0_S$ resonance production in ep collisions at HERA, *Phys.Rev.Lett.*101:112003,2008, arXiv:0806.0807v2

Why choose strange decay?

M.Chanowitz suggests in PRL 95, 172001 (2005) that glueballs are more likely to decay to strange channels

Why choose $K_s^0K_s^0$?

Ensure that the final state has the same PC =++ as the lightest glueball

CLAS: $\gamma p \rightarrow K_s^0 K_s^0 p (g12 run)$

There is a clear kaon peak above the combinatorial background

Only those events are selected which have a missing mass of the proton

The plot of the two K_s^0 plotted against each other shows the high correlation between them.

4 combinations of $\pi^+\pi^-$ are possible. We select the 2 combinations that most closely match the value of the Ks mass.

Invariant mass: $f_0 \rightarrow K_s^0 K_s^0$

All events: $M(4\pi)$: $M(K_sK_s)$ + sidebands

900 800 700 600 400 1.2 1.4 1.6 1.8 2 2.2 K_S K_S Invariant Mass (GeV/c)

Sideband-subtracted events

Cut Level	Type of Cut	Size of Cut
1	Timing Cut for identification of pions	±1 ns
2	Fiducial Cut	Fit to CLAS acceptance
3	Missing mass (proton)	$\pm 0.0497 \text{ GeV } (3\sigma)$
4	Photon beam energy	2.7-3.0 and 3.1-5.1 GeV
5	K_S^0 peak and sideband subtraction	$0.01614 \text{ GeV } (3\sigma)$

Figure 6. Background subtracted plots for the 4π invariant mass for |t| < 1 GeV² (left) and |t| > 1 GeV² (right).

Angular distributions (G.J.-frame)

Summary

- CLAS data, including polarization observables, are being used to identify "missing" N*'s.
 - KY data has been especially fruitful here.
- Electroproduction data used to extract the N* electrocouplings to give info on N* structure.
 - Meson-baryon terms contribute significantly:
 - Complex interplay of 3-quark core and meson-baryon cloud
- <u>Preliminary</u> results indicate $f_0(1500)$ produced via t-channel photoproduction.
 - Contrary to expectation of a "pure" glueball.