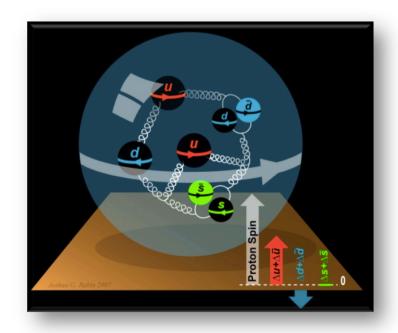


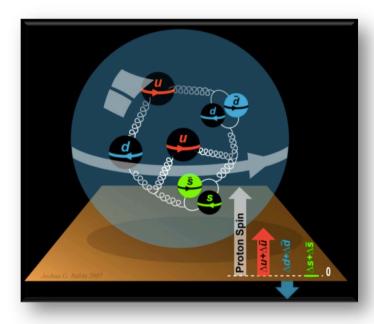
Experimental status of transverse nucleon structure (news & selected results)

Oleg Denisov, CERN / INFN section of Turin


Outline

```
Introduction
Transverse Momentum Dependent PDFs (FFs)
TMD PDFs and FFs – how to access
Unpolarised SIDIS:
    TMD multiplicities
Polarised SIDIS:
    Transversity
    Sivers function
Crucial nQCD test – T-odd TMD universality
First ever polarised Drell-Yan data
Prospectives
Summary
```

Introduction to the Spin I

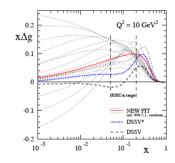

Almost all visible matter of the universe we are able to observe consists of nucleons.

SPIN is a fundamental quantum number (Pauli principle), to some extent define a rules on how the atomic/nuclear matter is made of.

Thus we better understand well how the spin of the nucleon (and hadron in general) is "constructed".

Introduction to the Spin I

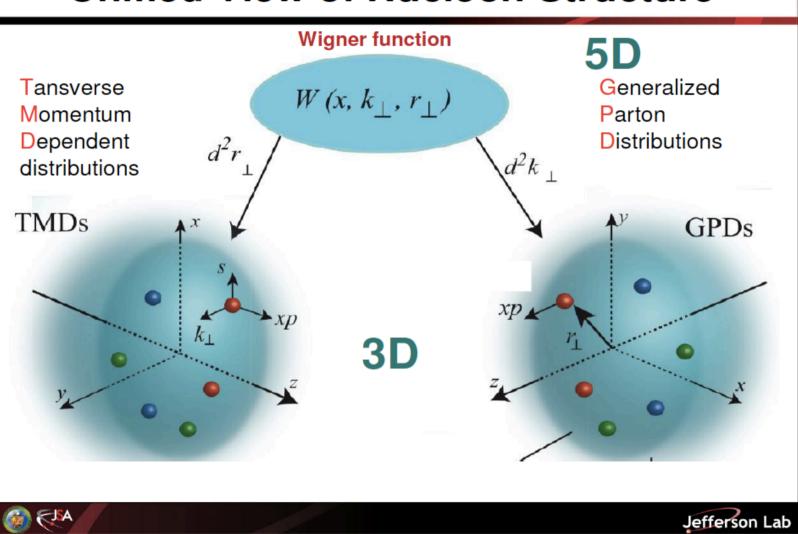
Nucleon spin $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$

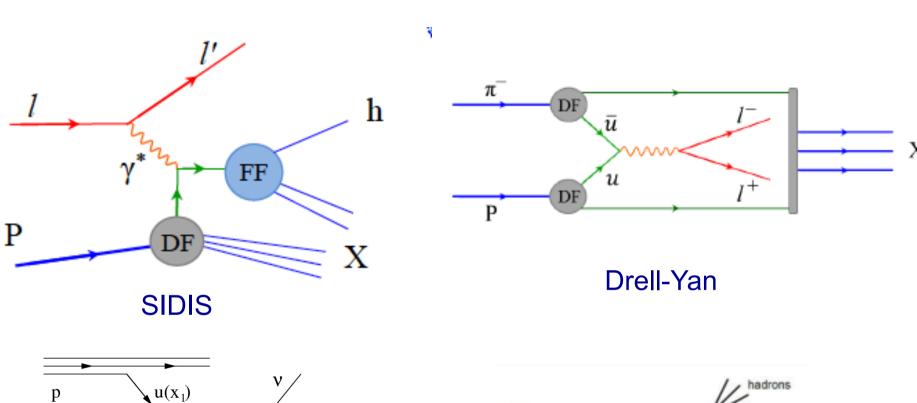

quark gluon orbital mom.

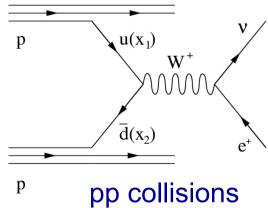
 $\Delta\Sigma$: sum over u, d, s, u, d, s

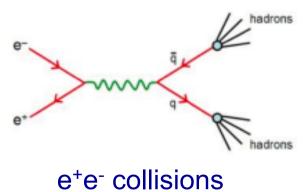
$$\Delta q = \overrightarrow{q} - \overrightarrow{q}$$
Parton spin parallel or anti parallel to nucleon spin

First two component were extensively studied in the SIDIS experiments with the longitudinally polarised target (collinear case approach): spin fraction carried by quarks and gluons is not sufficient to describe ½ nucleon spin (Spin Crisis, continued):

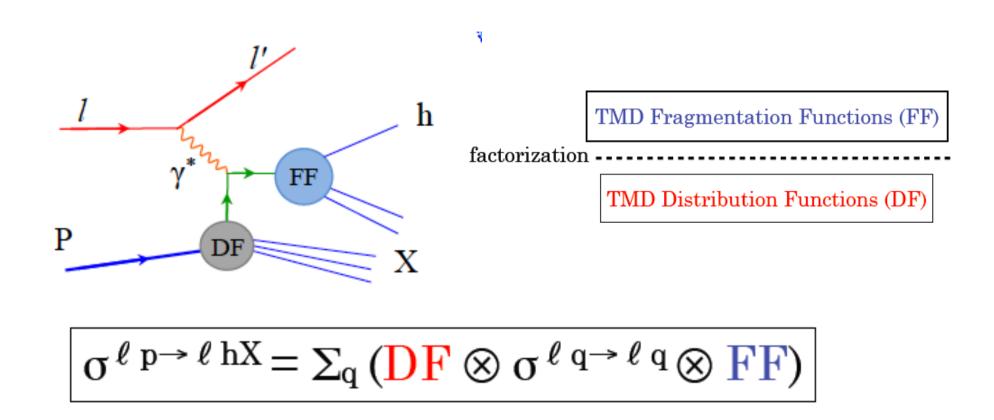

- Quark spin contribution $\Delta\Sigma$ =0.24 (Q²=10 (GeV/c)² DSSV arXiv:0804.0422)
- RHIC and COMPASS Open charm measurement and other direct measurements \rightarrow Δ G/G is not sufficient \rightarrow


In order to create Angular Momentum of partons spin-orbit correlation has to be taken into account → transverse momentum of the quark k_T appears → 3D structure of the Nucleon has to be studied


3D structure of nucleon II


Unified View of Nucleon Structure

Four probes to access transverse hadron structure (TMD PDFs)



Oleg Denisov

SIDIS → access to TMD PDFs and FFs

(Un)polarized SIDIS process allows to probes both TMD PDFs and FFs

Unpolarised SIDIS Access to TMD-FFs via hadron multiplicities

TMD multiplicity – ratio of hadron yields and the number of DIS events in multi-dimensional space is the most relevant experimental observable to investigate spin-averaged TMD-PDFs and TMD-FFs

⁶LiD (deuteron) isoscalar target

$$\frac{\mathrm{d}N^h}{\mathrm{d}N^{\mathrm{DIS}}} \propto \sum_{q} e_q^2 q D_q^h$$

the cross-section dependence on p_{Th} comes from:

- intrinsic k_T of the quarks
- p_{\perp} generated in the quark fragmentation

$$\langle p_{Th}^2 \rangle = \langle p_{\perp}^2 \rangle + z^2 \langle k_T^2 \rangle$$

The small P_{hT}^2 region (< 1 (GeV/c)²) - hadron transverse momenta are expected to arise from non-perturbative effects

Larger P²_{hT}, - contributions from higher-order perturbative QCD are expected to dominate.

NEW!! TMD hadron multiplicities in SIDIS (multidimensional (x, Q^2, z, P_{hT}^2) space) COMPASS ⁶LiD (deuteron) isoscalar target

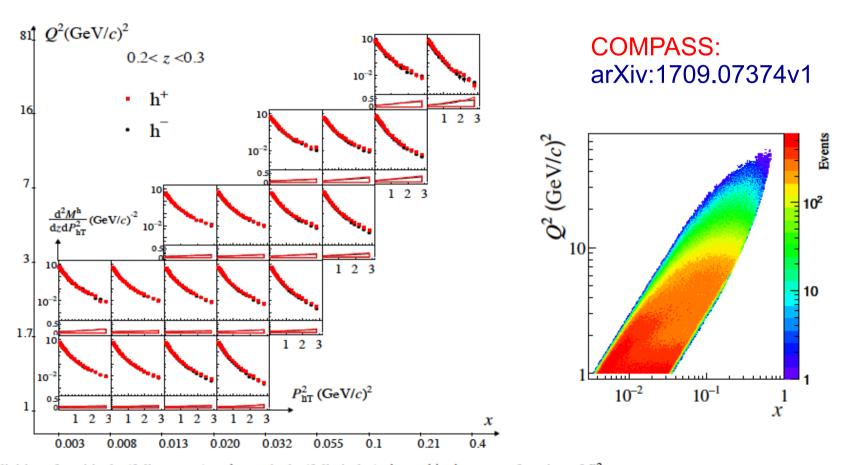
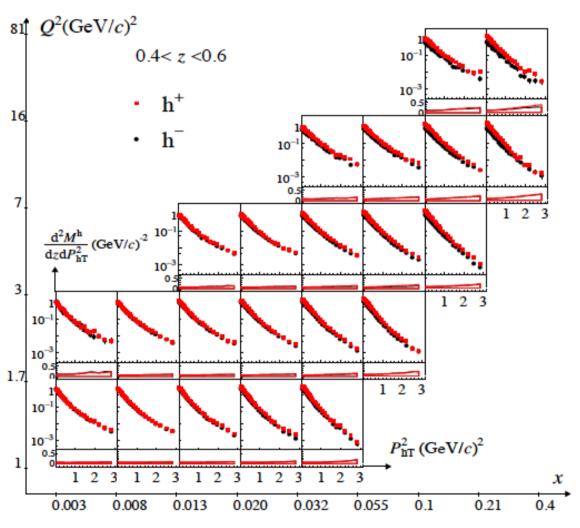
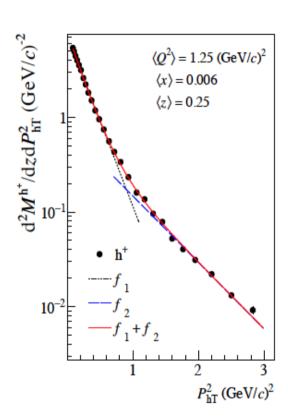
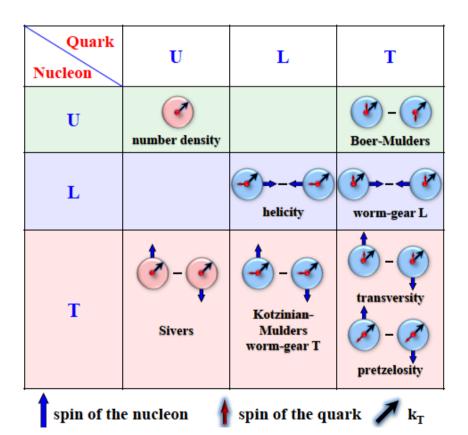




Fig. 5: Multiplicities of positively (full squares) and negatively (full circles) charged hadrons as a function of $P_{\rm hT}^2$ in (x,Q^2) bins for 0.2 < z < 0.3. Error bars on the points correspond to the statistical uncertainties. The systematic uncertainties $(\sigma_{\rm sys}/M^h)$ are shown as bands at the bottom.

NEW!! TMD hadron multiplicities in SIDIS (multidimensional (x, Q^2, z, P_{hT}^2) space) COMPASS ⁶LiD (deuteron) isoscalar target

Fig. 7: Same as Fig. 5 for 0.4 < z < 0.6.



total: 4918 data points

Leading Order (TMD) PDFs Polarised SIDIS

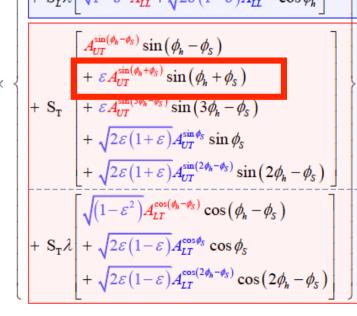
At leading order, three PDFs are needed to describe the nucleon in the collinear case.

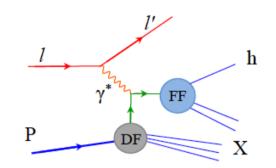
If one admit a non-zero transverse quark momentum k_T in the nucleon five more PDFs (TMD PDFs) are needed.

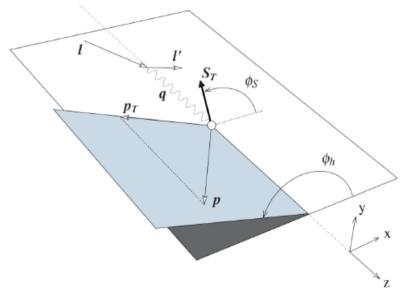
In this talk dedicated attention to two non zero structure functions:

- Transversity h¹(x) (similar the helicity distribution g¹(x)) describing the difference between the number densities of quarks with spin parallel and anti-parallel to the spin of the transversely polarised parent hadron
- Sivers function $f_{1T}^L(x, k_T)$ describes the influence of the transverse spin of the nucleon onto the quark transverse momentum distribution

Oleg Denisov


SIDIS →

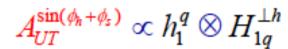

18 structure functions 14 azimuthal modulations


$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} =$$

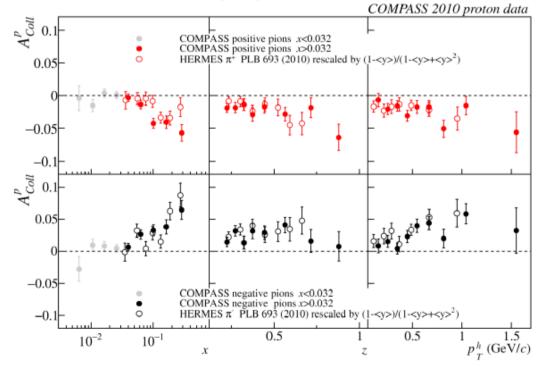
$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

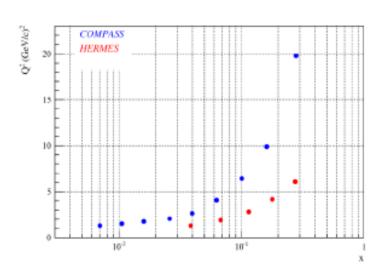
$$\begin{bmatrix} 1 + \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h} \cos2\phi_h \\ + \lambda\sqrt{2\varepsilon(1-\varepsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h \\ + S_L \left[\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{\sin\phi_h} \sin\phi_h + \varepsilon A_{UL}^{\sin2\phi_h} \sin2\phi_h \right] \\ + S_L \lambda \left[\sqrt{1-\varepsilon^2} A_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} A_{LL}^{\cos\phi_h} \cos\phi_h \right] \end{bmatrix}$$

$$A_{U(L),T}^{w(\varphi_h,\varphi_s)} = \frac{F_{U(L),T}^{w(\varphi_h,\varphi_s)}}{F_{UU,T} + \varepsilon F_{UU,L}}; \ \varepsilon = \frac{1 - y - \frac{1}{4} \gamma^2 y^2}{1 - y + \frac{1}{2} y^2 + \frac{1}{4} \gamma^2 y^2}, \ \gamma = \frac{2Mx}{Q}$$


Oleg Denisov

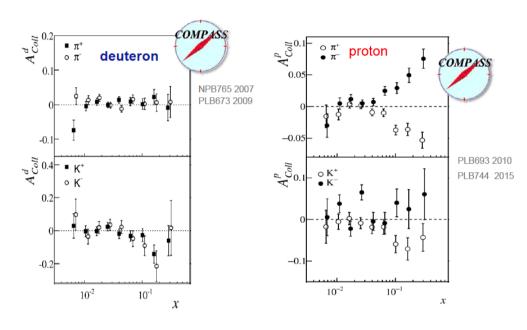
Collins asymmetry (transvesrsity) zero knowledge ~10 years ago


First seen non zero asymmetry by HERMES on p in 2004


COMPASS:

- Measured on p/D in SIDIS and in di-hadron SIDIS
- Compatible results COMPASS/HERMES
- No (or very slow) QCD evolution? Very intriguing result!

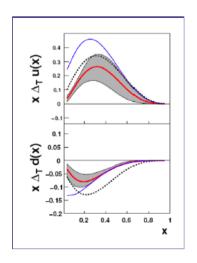
COMPASS PLB 744 (2015) 250

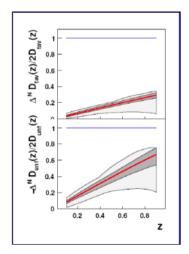


Oleg Denisov

Collins asymmetry (transvesrsity) Deuteron data – flavour separation possible

COMPASS:

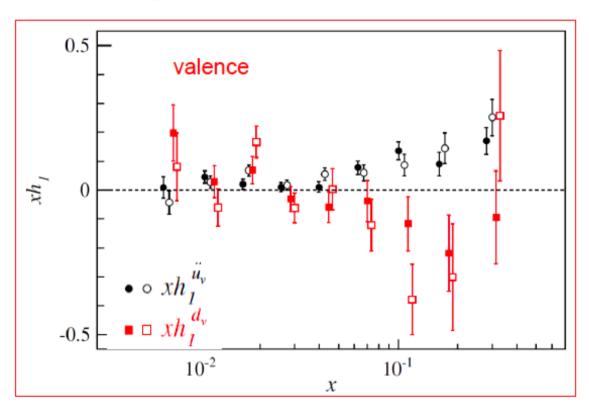



Reasonably well constrained using Belle & Hermes & COMPASS data

Flavour dependent

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data


Oleg Denisov

NEW!! Collins and di-hadron production asymmetry (transversity extraction)

point by point extraction

one can use directly the COMPASS p and d asymmetries, and the Belle data to evaluate the analysing power (with some "reasonable" assumptions)

advantage: no MC nor parametrisation is needed

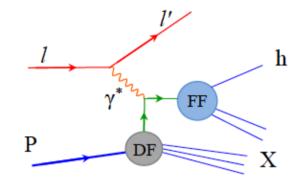
open points: dihadron

closed points: Collins

large uncertainties on the d distribution due to the poor deuteron/neutron data

A. Martin F. B. V. Barone PRD91 2015

SIDIS →


18 structure functions 14 azimuthal modulations

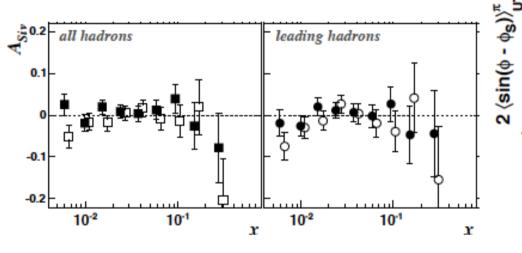
$$\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{S}} = \frac{\left[\frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)}{\left(1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_{h}}\cos\phi_{h}+\varepsilon A_{UU}^{\cos2\phi_{h}}\cos2\phi_{h} + \lambda\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\phi_{h}}\sin\phi_{h} + \lambda\sqrt{2\varepsilon(1+\varepsilon)}A_{UL}^{\sin\phi_{h}}\sin\phi_{h} + \varepsilon A_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right]} + S_{L}\left[\sqrt{2\varepsilon(1+\varepsilon)}A_{LL}^{\sin\phi_{h}}\sin\phi_{h} + \varepsilon A_{UL}^{\sin2\phi_{h}}\sin2\phi_{h}\right] + S_{L}\lambda\left[\sqrt{1-\varepsilon^{2}}A_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}A_{LL}^{\cos\phi_{h}}\cos\phi_{h}\right]$$

$$\left[A_{UT}^{\sin(\phi_{h}-\phi_{S})}\sin(\phi_{h}-\phi_{S}) + \varepsilon A_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(\phi_{h}+\phi_{S}) + \varepsilon A_{UT}^{\sin(\phi_{h}+\phi_{S})}\sin(3\phi_{h}-\phi_{S}) + \sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_{h}-\phi_{S}}\sin(2\phi_{h}-\phi_{S}) + \sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(2\phi_{h}-\phi_{S})}\sin(2\phi_{h}-\phi_{S})\right]$$

$$+ S_{T}\lambda\left[\sqrt{1-\varepsilon^{2}}A_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(\phi_{h}-\phi_{S}) + \sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(\phi_{h}-\phi_{S})}\cos(2\phi_{h}-\phi_{S})\right]$$

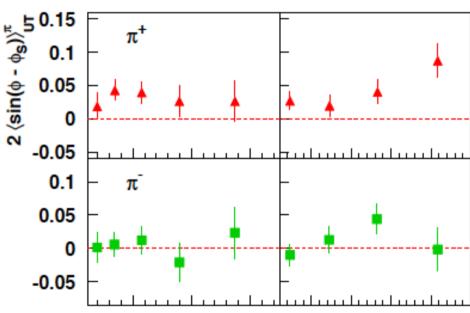
$$+ S_{T}\lambda\left[\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_{h}-\phi_{S})}\cos(2\phi_{h}-\phi_{S})\right]$$

Quark Nucleon	U	L	T
U	$f_1^q(x, \boldsymbol{k}_T^2)$ number density		$h_1^{\perp q}(x,m{k}_T^2)$ Boer-Mulders
L		$g_1^q(x,oldsymbol{k}_T^2)$ helicity	$h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2)$ worm-gear L
T	$f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ Sivers	$g_{1T}^q(x,m{k}_T^2)$ Kotzinian- Mulders worm-gear T	$h_1^q(x, m{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, m{k}_T^2)$ pretzelosity


+ two FFs: $D_{1a}^h(z,P_{\perp}^2)$ and $H_{1a}^{\perp h}(z,P_{\perp}^2)$ Oleg Denisov

Sivers asymmetry: first round (earlier 2000):

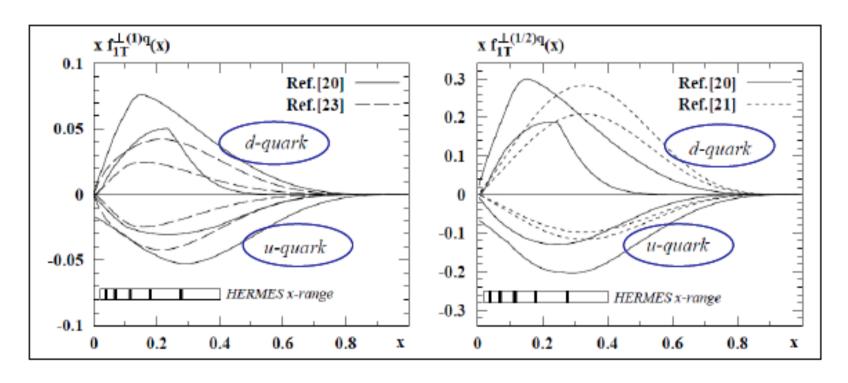
Sivers 2004 – first Hermes data at proton – non zero asymmetry, COMPASS at deuteron - zero


COMPASS Results of 2005
Hep-ex/0503002
Solid state ⁶LD polarised target

Hermes Results of 2004 hep-ph/0408013 Gaseous H₂ polarized target

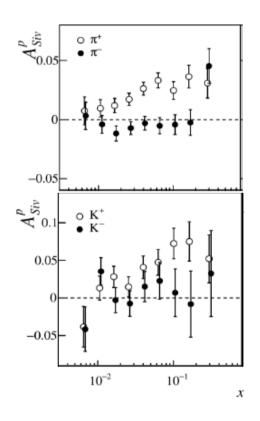
Full points – positive hadrons, Open points – negative hadrons

DOUBTS.....

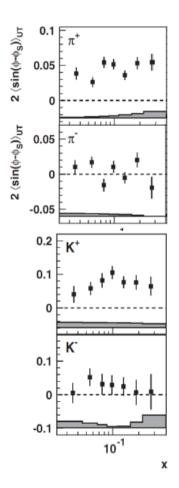


$$A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$$

Oleg Denisov

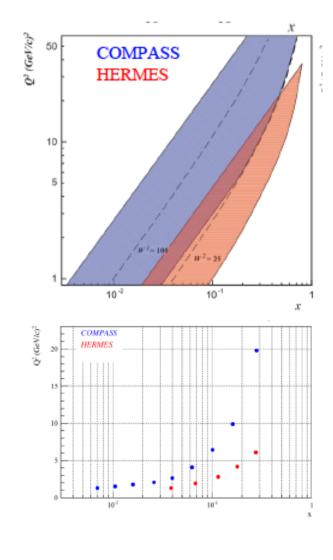

Joint data analysis form Hermes and COMPASS – no contradictions

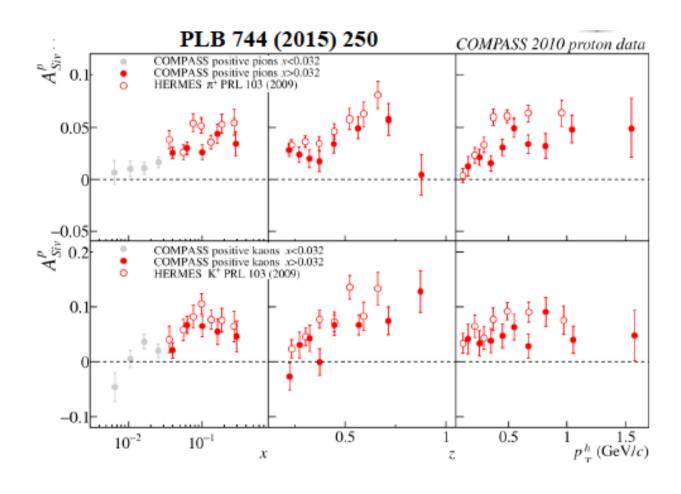
As it was shown by Mauro Anselmino and Colleagues (second half of 2005) when first extraction of Sivers function has been performed from Hermes and COMPASS data (Transversity'2005, hep-ph/051101)) that the contributions from u- and d-quarks are opposite



Second round: COMPASS ←→Hermes proton data

COMPASS final results on proton (data 2007, 2010) PLB 744 (2015)


Hermes Final results on proton PRL 103 (2009)



Oleg Denisov

COMPASS ←→Hermes proton data COMPASS Sivers is smaller – QCD evolution eff.?

Even if exist evolution has to be rather slow

TMDs universality SIDIS←→DY

The time-reversal odd character of the Sivers and Boer-Mulders PDFs lead to the prediction of a sign change when accessed from SIDIS or from Drell-Yan processes:

$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$

$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

Its experimental confirmation is considered a crucial test of non-perturbative QCD.

Universality test includes not only the sing-reversal character of the TMDs but also the comparison of the amplitude as well as the shape of the corresponding TMDs

SIDIS←→DY – QCD test

Andreas Metz (Trento-TMD'2010):

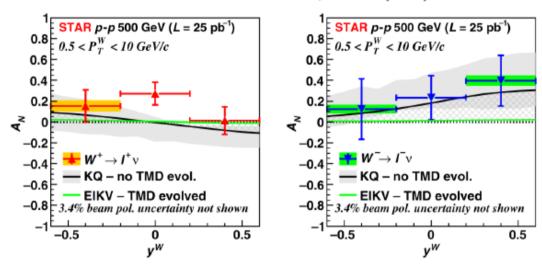
Sign reversal of the Sivers function

Prediction based on operator definition (Collins, 2002)

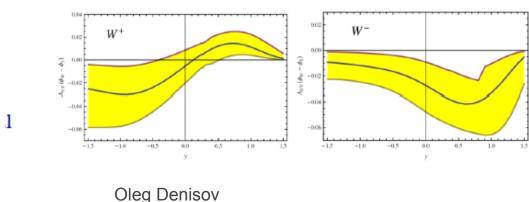
$$\left.f_{1T}^{\perp}\right|_{DY}=-\left.f_{1T}^{\perp}\right|_{DIS}$$

- What if sign reversal of f_{1T}^{\perp} is **not** confirmed by experiment?
 - Would not imply that QCD is wrong
 - Would imply that SSAs not understood in QCD
 - Problem with TMD-factorization
 - Problem with resummation of large logarithms
 - → Resummation relevant if more than one scale present
 - → CSS resummation in Drell-Yan (Collins, Soper, Sterman, 1985); resum logarithms of the type

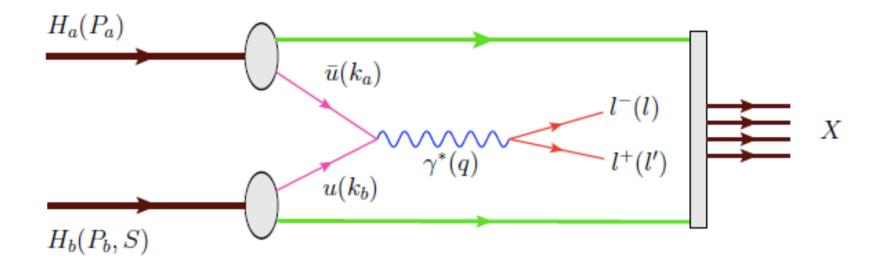
$$\alpha_s^k \ln^{2k} \frac{\vec{Q}_T^2}{Q^2}$$


→ Has also implications for Fermilab and LHC physics

Sivers in SIDIS and pp collisions


Very important STAR (RHIC) result:

- First experimental investigation of Sivers-non-universality in pp collision (W/Z production)
- Very different hard scale (Q²) compared to the available SIDIS (FT) data
- QCD evolution effects may play a substantial role


STAR collaboration: PRL 116, 132301 (2016)

P. Sun and F. Yuan, PRD 88 11, 114012 (2013)

Drell-Yan process

$$P_{a(b)}$$

$$s = (P_a + P_b)^2,$$

$$x_{a(b)} = q^2/(2P_{a(b)} \cdot q),$$

$$x_F = x_a - x_b,$$

$$M_{\mu\mu}^2 = Q^2 = q^2 = s \ x_a \ x_b,$$

$$\mathbf{k}_{Ta(b)}$$

$$\mathbf{q}_T = \mathbf{P}_T = \mathbf{k}_{Ta} + \mathbf{k}_{Tb}$$

the momentum of the beam (target) hadron,

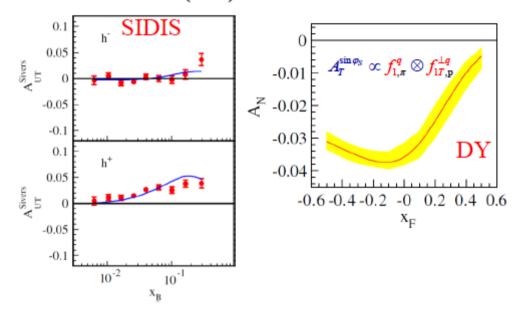
the total centre-of-mass energy squared,

the momentum fraction carried by a parton from $H_{a(b)}$,

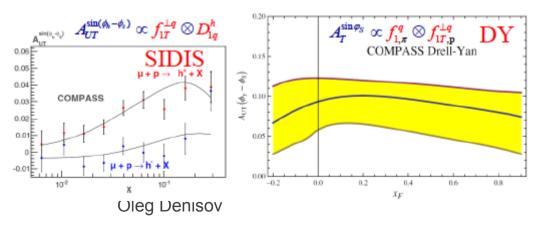
the Feynman variable,

the invariant mass squared of the dimuon,

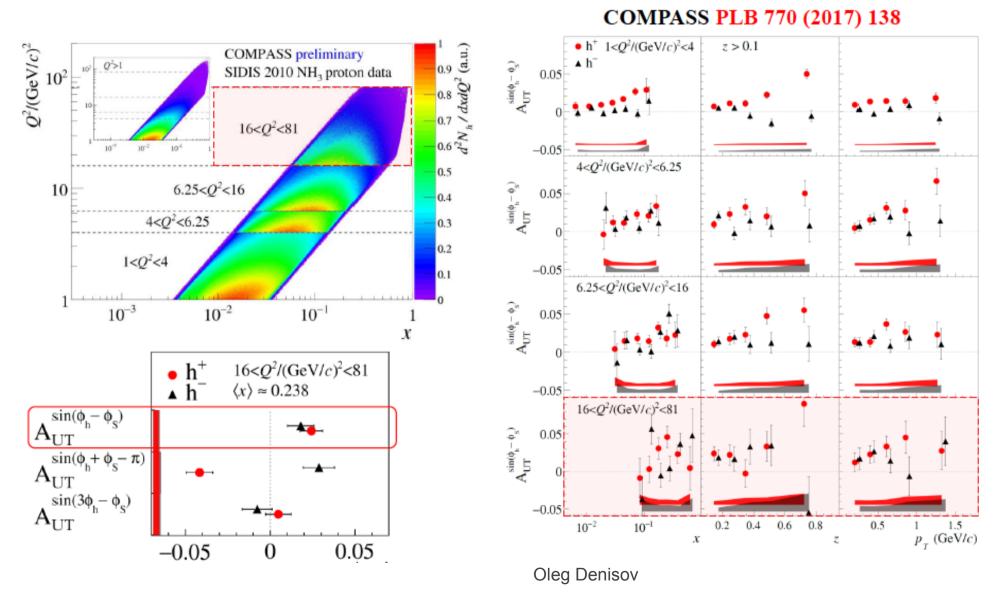
the transverse component of the quark momentum,

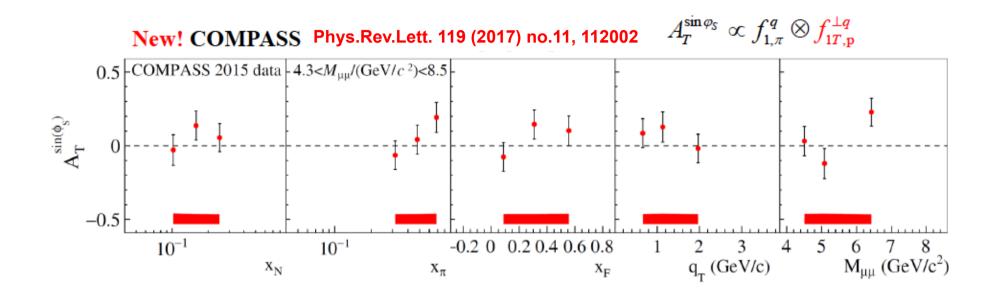

the transverse component of the momentum of the virtual photon.

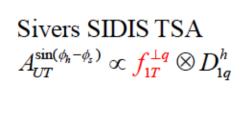
Sivers in SIDIS and Drell-Yan

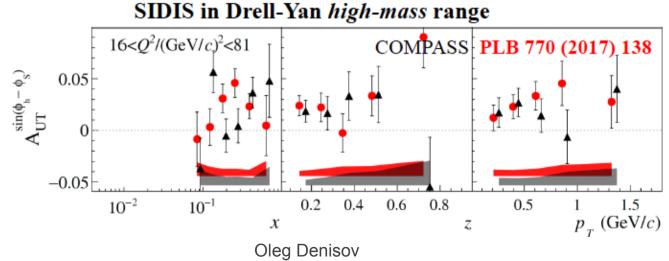

SIDIS data:

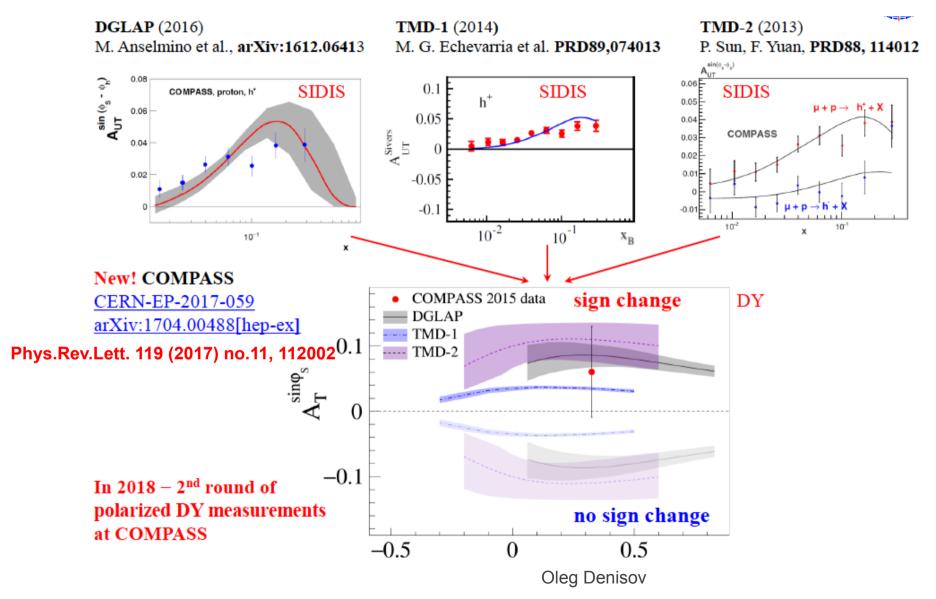
- Global fits of available 1-D SIDIS data
- Different TMD evolution schemes
- Different predictions for Drell-Yan
- Extremely important to extract Sivers in SIDIS in Drell-Yan Q² range

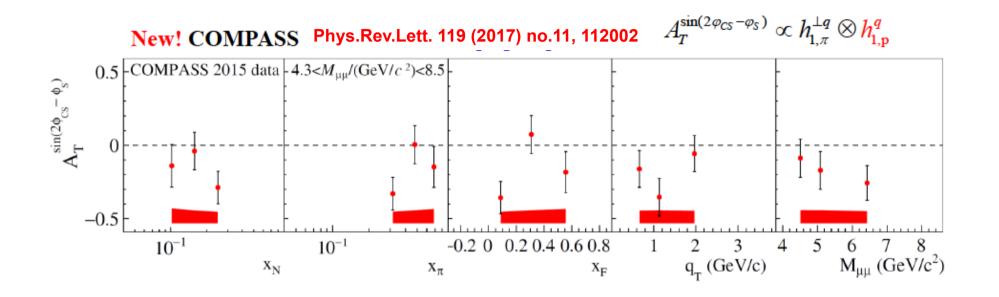

M.G. Echevarria, A.Idilbi, Z.B. Kang and I. Vitev, PRD 89 074013 (2014)

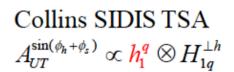

P. Sun and F. Yuan, PRD 88 11, 114012 (2013)

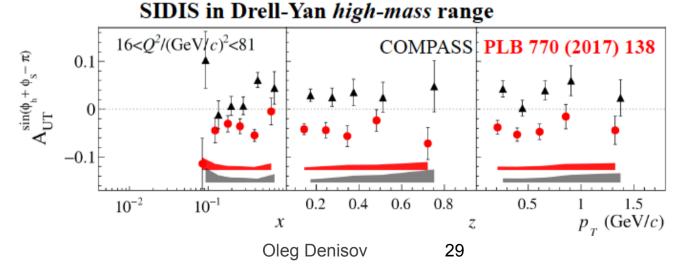


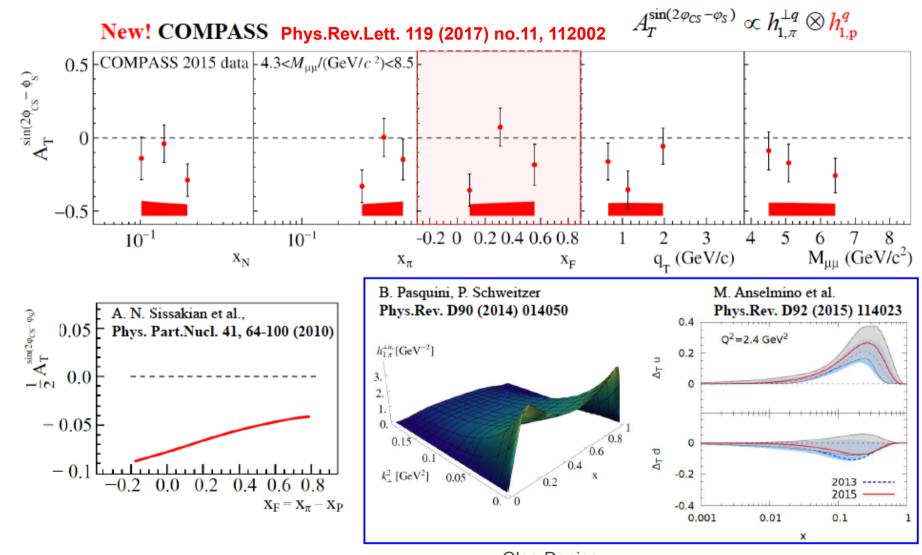

NEW!! Sivers in SIDIS in Drell-Yan kinematic range

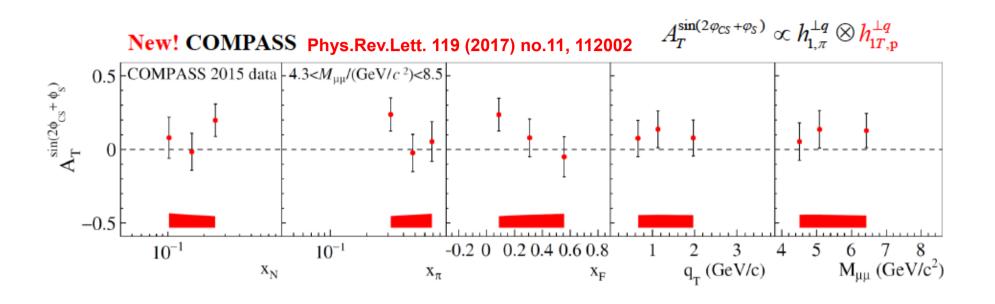

NEW!! First ever polarised DY Sivers in Drell-Yan

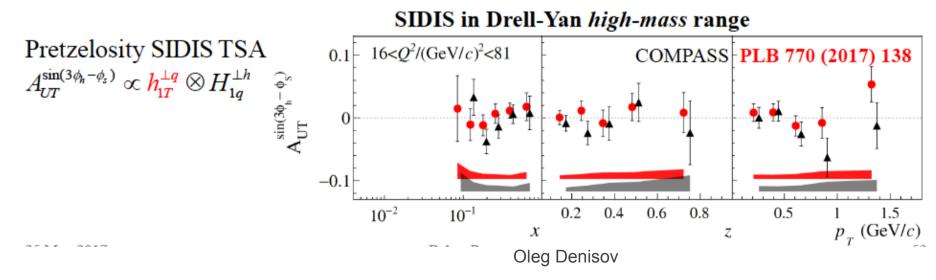





NEW!! First ever polarised DY Sivers in Drell-Yan

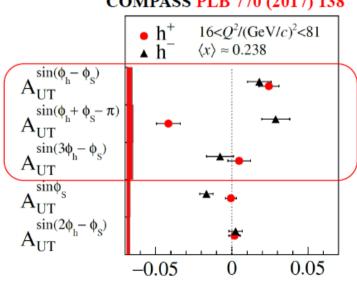

NEW!! First ever polarised DY Transversity in Drell-Yan



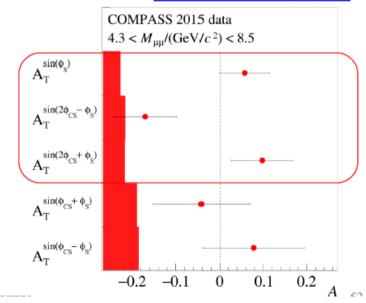


NEW!! First ever polarised DY Transversity in Drell-Yan

NEW!! First ever polarised DY Pretzelosity in Drell-Yan



NEW!! First ever polarised DY **TSAs in Drell-Yan compared to SIDIS**


$$\begin{split} &\frac{d\sigma}{dxdydzdp_{T}^{2}d\phi_{h}d\phi_{S}} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ \begin{array}{l} 1 + \dots \\ \\ 1 + \dots \end{array} \right. \\ &\left. \left[\begin{array}{l} A_{UT}^{\sin(\phi_{h} - \phi_{S})} \sin\left(\phi_{h} - \phi_{S}\right) \\ + \varepsilon A_{UT}^{\sin(\phi_{h} + \phi_{S})} \sin\left(\phi_{h} + \phi_{S}\right) \\ + \varepsilon A_{UT}^{\sin(3\phi_{h} - \phi_{S})} \sin\left(3\phi_{h} - \phi_{S}\right) \\ + \sqrt{2\varepsilon\left(1 + \varepsilon\right)} A_{UT}^{\sin\phi_{S}} \sin\phi_{S} \\ + \sqrt{2\varepsilon\left(1 + \varepsilon\right)} A_{UT}^{\sin(2\phi_{h} - \phi_{S})} \sin\left(2\phi_{h} - \phi_{S}\right) \end{array} \right] \end{split}$$

COMPASS PLB 770 (2017) 138

$$\begin{split} &\frac{d\sigma^{LO}}{d\Omega} \propto F_{U}^{1} \left(1 + \cos^{2}\theta_{CS}\right) \left\{ \begin{array}{l} 1 + \dots \\ \\ 1 + \dots \end{array} \right. \\ &+ \left. S_{T} \begin{bmatrix} A_{T}^{\sin\varphi_{S}} \sin\varphi_{S} \\ + D_{\left[\sin^{2}\theta_{CS}\right]} \begin{pmatrix} A_{T}^{\sin(2\varphi_{CS}-\varphi_{S})} \sin\left(2\varphi_{CS}-\varphi_{S}\right) \\ + A_{T}^{\sin(2\varphi_{CS}+\varphi_{S})} \sin\left(2\varphi_{CS}+\varphi_{S}\right) \end{pmatrix} \\ &+ D_{\left[\sin^{2}\theta_{CS}\right]} \begin{pmatrix} A_{T}^{\sin(\varphi_{CS}-\varphi_{S})} \sin\left(\varphi_{CS}-\varphi_{S}\right) \\ + A_{T}^{\sin(\varphi_{CS}+\varphi_{S})} \sin\left(\varphi_{CS}+\varphi_{S}\right) \end{pmatrix} \end{bmatrix} \end{split}$$

COMPASS arXiv:1704.00488 [hep-ex]

Oleg Denisov

Progress

We did enormous progress over past 10-15 years:

Multiplicities: started many years ago (SMC etc..) but only now data sets large enough to study TMD-FFs evolution etc

Transversity: Basically no knowledge 15 years ago – well constrained now, extracted in a model independent (almost) way, flavour dependent

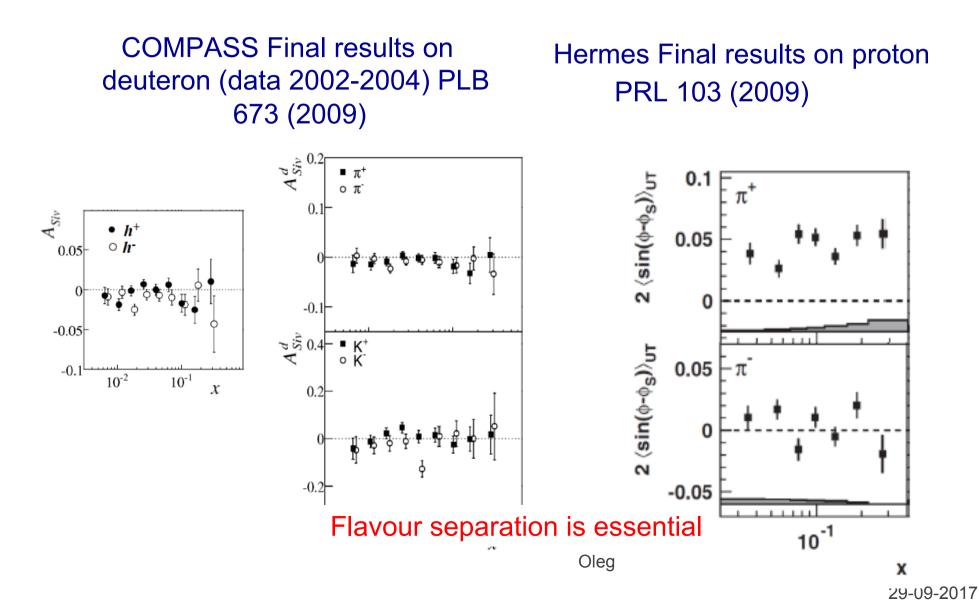
Sivers: Expected to be equal to zero one decade ago – proved to be large in SIDIS, Drell-Yan and pp experiments are on the way to access it with relatively high precision

OUTLOOK

Plenty of new results are expected to come soon:

- Jlab -12
- RHIC 2017 Run
- COMPASS Drell-Yan on transversally polarised NH₃ 2018

Summary


- Proton spin puzzle is still there
- The only way to resolve it to move in 3-D
- TMDs study will provide essential input for 3-D structure of the hadron
- Huge progress in the field over past 10 years (Transversity, Sivers, Multiplicities...)
- More data to come soon

Summary

- Proton spin puzzle is still three
- The only way to resolve it to move in 3-D
- TMDs study will provide essential input for 3-D structure of the hadron
- Huge progress in the field over past 10 years (Transversity, Sivers, Multiplicities...)
- More data to come soon

SPARES

Sivers 2009 – final results Hermes&COMPASS data perfectly fits together

