Heavy Quark Baryons and Exotica

Sebastian Neubert

Heidelberg University

XVII INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY AND STRUCTURE

September 25th-29th 2017, Salamanca

The LHC as a Heavy Baryon Factory

Proton-Proton Collisions at $\sqrt{s} = 13 \text{ TeV} \sim 20\,000 \,\text{b}\bar{\text{b}}$ -pairs per second

A CONTRACTOR OF THE CONTRACTOR

High B-baryon production fraction

– Mesons –				Baryons		
\mathbf{B}^+	+	B^{0}	:	${ m B_s^0}$:	$\Lambda_{ m b}$
$(u\bar{b})$		$(d\bar{b})$		$(s\bar{b})$		(udb)
	4		:	1	:	2
Unique dataset						

Sebastian Neubert (Uni Heidelberg)

CMS

SUISSE

Heavy Quark Baryons and Exotica

ATLAS

LICE

J = 1/2 Baryon Multiplets

Charmed Baryons

The Λ_c^+ excitation spectrum

- Well studied heavy-light-light system
 - Orbitally excited states
 - D-wave doublet predicted more states in other models
 - Missing state?
 - Indication by BaBar for structure in D⁰p at 2.84 GeV [PRL98(2007)012001]

heavy-quark + light-diquark

Predictions from [EPJ A51(2015)82]

Ф

Amplitude analysis of $\Lambda_{ m b} o { m D}^0{ m p}\pi$ at LHCb [JHEP05(2017)030]

1800

1600

1400 1200

1000 800

> 600 400

200

5400

LHCb

5500 5600

 $\Lambda^0_{\mu} \rightarrow D^0 p \pi$

· Comb. bkg.

5700 5800

5900

Part. rec. bkg

Candidates / (5 MeV

- Data set 3 fb^{-1} (Run I) $\sim 11\,000 \ \Lambda_b$ decays
- 5D amplitude analysis in helicity formalism
 Investigating D⁰p resonances

A new Λ_c^* state

[JHEP05(2017)030]

S. N. Friday 10:05h Session: Baryons

Three Λ_{c}^{+} resonances

State	M[MeV]	$\Gamma[\text{MeV}]$	JP
$\Lambda_{\rm c}^{+}(2860)$	2856	67	$3/2^+$
$\Lambda_{\rm c}^{+}(2880)$	2881	5.4	$5/2^{+}$
$\Lambda_{\rm c}^+(2940)$	2945	28	$3/2^-$ fav.

- First constraint on $\Lambda^+_{
 m c}(2940)$ spin
- $\Lambda_c^+(2880)$, $\Lambda_c^+(2940)$ in agreement with previous measurements

Only $3/2^+$ gives physical phase motion

D

The Λ_c^+ at BES III: Hadronic Branchings [PRL116(2016)052001]

Exclusive $e^+e^- \to \Lambda_c^+\Lambda_c^-$ production at threshold

- **Data sample corresponding to** $567 \,\mathrm{pb}^{-1}$ at $\sqrt{\mathrm{s}} = 4.599 \,\mathrm{GeV}$
- Beam energy-momentum constraint

P. Yue Thu 17:10h Session: Hadron decays

Ð

The Λ_c^+ at BES III: Hadronic Branchings [PRL116(2016)052001]

Exclusive $e^+e^- \to \Lambda_c^+\Lambda_c^-$ production at threshold

Data sample corresponding to $567 \,\mathrm{pb}^{-1}$ at $\sqrt{\mathrm{s}} = 4.599 \,\mathrm{GeV}$

Beam energy-momentum constraint⁻

BESII T

Mode	This work $(\%)$	PDG (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0

P. Yue Thu 17:10h Session: Hadron decays

Semileptonic Λ_c^+ decays

- \blacksquare Tag one $\Lambda_{\,\rm c}^+$ hadronically
- Lepton PID (dE/dx + TOF + EMC)
- Use beam constraint to infer missing energy

$$\begin{aligned} \mathcal{B}(\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_{\rm e}) &= (3.63 \pm 0.38 \pm 0.20)\%\\ \mathcal{B}(\Lambda_{\rm c}^+ \to \Lambda \mu^+ \nu_{\mu}) &= (3.49 \pm 0.46 \pm 0.27)\%\\ \frac{\mathcal{B}(\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_{\rm e})}{\mathcal{B}(\Lambda_{\rm c}^+ \to \Lambda \mu^+ \nu_{\mu})} &= 0.96 \pm 0.16 \pm 0.04 \end{aligned}$$

$$\begin{split} & \Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e} \text{ [PRL115(2015)221805]} \\ & \vdots \\$$

D.

Strangely charming baryons: The Ω_c

[PRL118(2017)182001]

- The |css > system is a proving ground for HQET
- Popular model: heavy quark + light diquark
- Two S-wave ground states Ω^0_{c} and $\Omega^0_{c}(2770)$ observed
- 5 P-wave states predicted

Summary of theoretical predictions

[PRL118(2017)182001]

Reconstruct $\Xi_c \to p K^- \pi^+$

- Ξ_c detached from primary vertex
- PID of daughter tracks
- pointing to primary vertex

D

- $\blacksquare \Xi_{c}$ detached from primary vertex
- PID of daughter tracks
- pointing to primary vertex

Adding another kaon:

Sebastian Neubert (Uni Heidelberg)

[PRL118(2017)182001]

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2\pm0.1\pm0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
		$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2\pm0.3\pm0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{\rm c}(3119)^0$	$3119.1\pm0.3\pm0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$<2.6{\rm MeV},95\%$ CL		
$\Omega_{\mathbf{c}}(3188)^0$	$3188 \pm 5 \pm 13$	$60\pm~15\pm11$	$1670 \pm 450 \pm 360$	

- Are these the 5 P-wave states? [PRD95(2017)114012]
- Why two very narrow states? [PRD96(2017)014009]
- Next steps: quantum numbers and Isospin multiplet

V. Belyaev Friday 09:45h Session: Baryons

LHCb

12 / 24

Ð

A Doubly Charmed Baryon Ξ_{cc}^{++} at LHCb [PRL119(2017)112001]

with $\Lambda_c^+ \to p K^- \pi^+$

A Doubly Charmed Baryon Ξ_{cc}^{++} at LHCb [PRL119(2017)112001]

Adding $K^{-}\pi^{+}\pi^{+}$, background suppression using neural network

2016 Dataset: 1.7 fb⁻¹, 13 TeV
 \(\mathcal{E}_{cc}^{++}\) reconstructed entirely online in the trigger

D

Heavy Quark Baryons and Exotica

Hadron2017, Salamanca

13 / 24

Comparison with Selected Theory Predictions

Method	$m_{\Xi_{cc}^{++}}[MeV/c^2]$	Reference
Experiment	$3621.40 \pm 0.72 \pm 0.27 \pm 0.14$	[PRL119(2017)112001]
Effective potential	3627 ± 12	[PRD90(2014)094007]
Relativized Quark Model	3613	arXiv:1708.04468
Relativistic Quark Model	3620	[PRD66(2002)014008]
Lattice QCD	$3610\pm23\pm22$	[PRD90(2014)094507]
HQ effective theory	3610	[Pr. Part. Nucl. Phys. 33(1994)787]

- Excellent agreement in several theoretical approaches!
- Comment on Selex observation:
 - Observation of Ξ_{cc}^+ at m = $3519 \pm 2 \,\text{MeV/c}^2$ can't be Isospin partner [PRL89(2002)112001][PLB628(2005)18]
 - Low statistics (yields 15.9 and 5.62 events)
 - Short lifetime 33 fs and too large production xsection

D

Heavy Baryons with Hidden Charm

6D Amplitude analysis allows to measure resonance parameters

State	Mass [MeV]	Width [MeV]	JP
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$3/2^{-}$
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	$5/2^{+}$

Spin parity assignment not unique

Excluded: same parity solution

Results confirmed in two subsequent analyses

- $\label{eq:Ab} \Lambda_{\rm b} \to J/\psi p K \text{ moments analysis} \\ \text{[PRL117(2016)082002]}$
- $\Lambda_{\rm b} \rightarrow {\rm J}/\psi_{\rm P}\pi$ amplitude analysis [PRL117(2016)082003]

Pentaquark Models

Many contributions Session: Exotics

Proximity of thresholds suggests two-body contributions

Closeby thresholds		
[MeV]	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass	$4380\pm8\pm29$	$4449.8 \pm 1.7 \pm 2.5$
$\Sigma_{c}^{*+}\overline{D}^{0}$	4382.3 ± 2.4	
$\chi_{c1}(1P)p$		4448.93 ± 0.07
$\Lambda_{c}^{+*}\overline{D}^{0}$		4457.09 ± 0.35
$\Sigma_{c}\overline{D}^{0*}$		4459.9 ± 0.5
$\Sigma_{\rm c}\overline{\rm D}^0\pi^0$		4452.7 ± 0.5
[EPJ A51(2015)11,152]		

Rescattering	Hadronic molecules	Tightly bound states
kinematic effect	loosely bound system	constituents
	of color-singlets	carrying color (di-quarks)
above threshold	below threshold	no association
-	S-wave binding restricts J ^P	large multiplets

Pentaquark Models

Many contributions Session: Exotics

 $P_{a}(4450)^{+}$

Closeby thresholds

 $P_{-}(4380)^{+}$

Proximity of thresholds suggests two-body contributions

	[]	- (()	- (
	Mass	$4380\pm8\pm29$	$4449.8 \pm 1.7 \pm 2.5$
	$\Sigma_{c}^{*+}\overline{D}^{0}$	4382.3 ± 2.4	
\longrightarrow	$\chi_{c1}(1P)p$		4448.93 ± 0.07
	$\Lambda_{\rm c}^{+*}\overline{\rm D}^0$		4457.09 ± 0.35
	$\Sigma_{c}\overline{D}^{0*}$		4459.9 ± 0.5
	$\Sigma_{\rm c}\overline{\rm D}^0\pi^0$		4452.7 ± 0.5
		[EPJ A51(2015)	11,152]
V			
1			

[MeV]

Rescattering	Hadronic molecules	Tightly bound states
kinematic effect	loosely bound system	constituents
	of color-singlets	carrying color (di-quarks)
above threshold	below threshold	no association
_	S-wave binding restricts J ^P	large multiplets

- Even in amplitude analyses cusps are difficult to distinguish from real resonances [PRD92(2015)071502]
- phase motion: resonance vs cusp

Add complementary data:
 Rescattering can be ruled out if there is a narrow enhancement in the elastic channel \(\chi_{c1}(1P))\) p

First observation of $\Lambda_b \to \chi_{\textbf{c}1(2)} p K$

- Even in amplitude analyses cusps are difficult to distinguish from real resonances
 [PRD92(2015)071502]
- phase motion: resonance vs cusp

Add complementary data: Rescattering can be ruled out if there is a narrow enhancement in the elastic channel \(\chi_{c1}(1P))\) p First observation of $\Lambda_{\rm b} \to \chi_{{\rm c1}(2)} p K$

[PRL119(2017)062001]

Next step: amplitude analysis

Both final states provide access to strange pentaquarks $usdc\bar{c}$

 $\Lambda_{b}^{0} \begin{pmatrix} \mathbf{b} \\ \mathbf{u} \\ \mathbf{d} \\ \mathbf{$

- **J**/ $\psi \phi$ system $\rightarrow c \bar{c} s \bar{s}$ Tetraquarks
- LHCb Analyse $B \rightarrow J/\psi \phi K$: [PRL118(2017)022003] [PRD95(2017)012002]

- Less tracks reconstruct
- Lower Ξ_{b} production cross section
- Expect comparable statistics

First Observation of $\Xi_{\mathbf{b}}^{-} \rightarrow \mathrm{J}/\psi \Lambda \mathrm{K}^{-}$

$$= (4.19 \pm 0.29 \pm 0.14) \times 10^{-2}$$

$$m(\Xi_b^-) - m(\Lambda_b)$$

= 177.08 ± 0.47 ± 0.16 MeV/c²

Use Run II data set to study $J/\psi \Lambda K^-$ amplitudes

D

[PLB772(2017)265]

Beauty Baryons

$\Xi_{\mathbf{b}}$ Excitations: The $\Xi_{\mathbf{b}}^{0*}(5945)$

- Discovered by CMS [PRL108(2012)252002]
- in $\Xi_{\mathbf{b}}^{0*} \to \Xi_{\mathbf{b}}^{-} \pi^{+}$ with $\Xi_{\mathbf{b}}^{-} \to J/\psi \Xi^{-}$ and $\Xi^{-} \to \Lambda^{0} \pi^{-}$
- Compatible with J⁺ = 3/2⁺ state No other states seen in Ξ⁻_bπ⁺
- Precise measurement of mass and width at LHCb [JHEP05(2016)161]

■ in
$$\Xi_{\mathbf{b}}^{0*} \to \Xi_{\mathbf{b}}^{-} \pi^{+}$$
 with $\Xi_{\mathbf{b}}^{-} \to \Xi_{\mathbf{c}}^{0} \pi^{-}$
and $\Xi_{\mathbf{c}}^{0} \to \mathrm{pK}^{-} \mathrm{K}^{-} \pi^{+}$

$$\mathbf{m}(\Xi_{\mathbf{b}}^{0*}) - \mathbf{m}(\Xi_{\mathbf{b}}^{-}) - \mathbf{m}(\pi^{+}) = 15.727 \pm 0.068 \pm 0.023 \, \mathbf{MeV}$$

$$\Gamma(\Xi_{\mathbf{b}}^{0*}) = 0.90 \pm 0.16 \pm 0.08 \, \mathbf{MeV}$$

Isospin partners: Two Ξ_b^- Excitations [PRL114(2015)062004]

- Two excited Ξ_{b}^{-} states found at LHCb
- in $\Xi_{\mathbf{b}}^{-*} \to \Xi_{\mathbf{b}}^{0} \pi^{-}$ with $\Xi_{\mathbf{b}}^{0} \to \Xi_{\mathbf{c}}^{+} \pi^{-}$ and $\Xi_{\mathbf{c}}^{+} \to \mathrm{pK}^{-} \pi^{+}$
- decay angle distributions compatible with quark-model spin assignments
- Ξ_{b}^{-*} and Ξ_{b}^{0*} isospin partners Isospin-splitting $\delta m_{iso} \approx 2.3 \text{ MeV}$
- Isospin partner to Ξ^{-'}_b below Ξ⁻_bπ⁺ threshold?

	$\delta {f M}[{f MeV}]$	$\Gamma[MeV]$	JP
$\Xi_{b}^{-\prime}$	$3.653 \pm 0.018 \pm 0.006$	< 0.0895%C.L.	$1/2^{+}$
Ξ_{b}^{-*}	$23.96 \pm 0.12 \pm 0.06$	$1.65 \pm 0.31 \pm 0.10$	$3/2^{+}$

- LHC is a heavy quark baryon factory
- **Discovery of 5 new** Ω_{c} states and
- **Doubly charmed** Ξ_{cc}^{++} this year's highlight
- Impressive success for theory
- More puzzles to solve which role do multiquark states play in the baryon spectrum?

Backup

More Theory Predictions

Reference	Value (MeV)	Method
[Karliner and Rosner, 2014]	3627 ± 12	
[De Rujula et al., 1975]	3550 - 3760	QCD-motivated quark model
J. Bjorken (unpublished draft, 1986)	3668 ± 62	QCD-motivated quark model
[Anikeev et al., 2001]	3651	QCD-motivated quark model
[Fleck and Richard, 1989]	3613	Potential and bag models
[Richard, 1994]	3630	Potential model
[Korner et al., 1994]	3610	Heavy quark effective theory
[Roncaglia et al., 1995]	3660 ± 70	Feynman-Hellmann + semi-empirical
[Lichtenberg et al., 1996]	3676	Mass sum rules
[Ebert et al., 1997]	3660	Relativistic quasipotential quark model
[Silvestre-Brac, 1996]	3607	Three-body Faddeev equations.
[Gerasyuta and Ivanov, 1999]	3527	Bootstrap quark model + Faddeev eqs.
[Itoh et al., 2000]	ucc: 3649 ± 12 ,	
	$dcc: 3644 \pm 12$	Quark model
[Kiselev and Likhoded, 2002a]	3480 ± 50	Potential approach + QCD sum rules
[Narodetskii and Trusov, 2002]	3690	Nonperturbative string
[Ebert et al., 2002]	3620	Relativistic quark-diquark
		•

ф,

Reference	Value (MeV)	Method
[He et al., 2004]	3520	Bag model
[Richard and Stancu, 2005]	3643	Potential model
[Migura et al., 2006]	3642	Relativistic quark model + Bethe-Salpeter
[Albertus et al., 2007b]	3612^{+17}	Variational
[Roberts and Pervin, 2008]	3678	Quark model
[Weng et al., 2011]	3540 ± 20	Instantaneous approx. + Bethe-Salpeter
[Zhang and Huang, 2008]	4260 ± 190	QCD sum rules
[Lewis et al., 2001]	$3608(15)({13\atop 35})$,	
	$3595(12)\binom{21}{22}$	Quenched lattice
[Flynn et al., 2003]	3549(13)(19)(92)	Quenched lattice
[Liu et al., 2010]	$3665 \pm 17 \pm 14^{+0}_{-78}$	Lattice, domain-wall + KS fermions
[Namekawa, 2012]	3603(15)(16)	Lattice, $N_f = 2 + 1$
[Alexandrou et al., 2012]	3513(23)(14)	LGT, twisted mass ferm., m_{π} =260 MeV
[Briceno et al., 2012]	3595(39)(20)(6)	LGT, $N_f=2+1,\ m_\pi=200$ MeV
[Alexandrou et al., 2014]	3568(14)(19)(1)	LGT, ${N_f}=2+1$, $m_{\pi}=210$ MeV

Ф

Rescattering: hadronic loops

[PRD92(2015)071502]

Nonrelativistic loop integral:

$$\mathbf{G}_{\Lambda}(\mathbf{E}) = \int \frac{\mathbf{d}^{3}\mathbf{q}}{\left(2\pi\right)^{3}} \frac{\vec{\mathbf{q}}^{2} \, \mathbf{f}_{\Lambda}(\vec{\mathbf{q}}^{2})}{\mathbf{E} - \mathbf{m}_{1} - \mathbf{m}_{2} - \vec{\mathbf{q}}^{2}/2\mu}$$

with a form factor $f_{\Lambda}(\vec{q}^2)$.

Triangle Singularity given by Landau-equation

$$1 + 2\mathbf{y}_{12}\mathbf{y}_{23}\mathbf{y}_{13} = \mathbf{y}_{12}^2 + \mathbf{y}_{23}^2 + \mathbf{y}_{13}^2$$

$$\textbf{y}_{\textbf{i}\textbf{j}} = \left(\textbf{m}_{\textbf{i}}^2 + \textbf{m}_{\textbf{j}}^2 - \left(\textbf{p}_{\textbf{i}} + \textbf{p}_{\textbf{j}}\right)^2\right) / 2\textbf{m}_{\textbf{i}}\textbf{m}_{\textbf{j}}$$

Rescattering: hadronic loops

[PRD92(2015)071502]

Nonrelativistic loop integral:

$$\mathbf{G}_{\Lambda}(\mathbf{E}) = \int \frac{\mathbf{d}^{3}\mathbf{q}}{\left(2\pi\right)^{3}} \frac{\vec{\mathbf{q}}^{2} \, \mathbf{f}_{\Lambda}(\vec{\mathbf{q}}^{2})}{\mathbf{E} - \mathbf{m}_{1} - \mathbf{m}_{2} - \vec{\mathbf{q}}^{2}/2\mu}$$

with a form factor $f_{\Lambda}(\vec{q}^2)$.

Triangle Singularity given by Landau-equation

$$1 + 2\mathbf{y}_{12}\mathbf{y}_{23}\mathbf{y}_{13} = \mathbf{y}_{12}^2 + \mathbf{y}_{23}^2 + \mathbf{y}_{13}^2$$

$$\mathbf{y}_{ij} = \left(\mathbf{m}_{i}^{2} + \mathbf{m}_{j}^{2} - \left(\mathbf{p}_{i} + \mathbf{p}_{j}\right)^{2}\right)/2\mathbf{m}_{i}\mathbf{m}_{j}$$

LHCb