

Results of Feather_M0.4 test

Hugo Bajas

Eucard² 4th Annual meeting Glasgow, 28-30 March 2017

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Quench detection
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Feather_M0.4 and its integration in the SM18 variable temperature facility

- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Quench detection
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Conductor and coil

Coil instrumentation

Voltage tap

Spot Heater 2

Spot Heater 3

Voltage tap

Other instrumentation...

...Carbon Ceramic Sensors (CCS), Hall Probes, Fiber Bragg Grating sensors (FBG), Pick – up coils

Magnet assembly

Coil leads

Roebel extension

Coil case

H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

Magnet inside the magnetic laminated yoke

Roebel to Roebel splice

instrumented with voltages taps,

enclosed the copper box supported to by the copper extension

EUCARD² Connection to the cryostat insert

Roebel/Cu-sheet clamped with copper flag to the current leads

EUCARD² The Diode/Lead, now HTS coil, test bench

1) Variable temperature gas supply cryostat.

- 2) Magnet test cryostat.
- 3) Variable temperature Helium gas supply line.
- 4) Connection to the 20 kA power supply, warm leads limited to 12 kA.
- 5) Instrumentation shielded cables between magnet and protection system.
- 6) Instrumentation electronics racks.
- 7) 13 kA current leads.
- 8) Fischer instrumentation connector box.

EUCARD² The 4 different Data Acquisition Systems

Splice resistance

High precision DMM

- current-voltage
- 10 channels
- Low Frequency 0.2-1 Hz
- Pick Up coil and hall probe cRIO FPGA DAQ System
 - 24 VDC P.S
 - 126 Used channels from 256 channels (120 AI + 5 DO)
 - 3 Tb Hard disk.
 - 10 kHz (fast Acq.) and 100Hz (Slow Acq.)
 - FPGA + RT Processor

H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

• Quench monitoring and protection

SM18-DAQ

- voltage, I, trigger
- High Frequency 200-5 kHz
- Archive 2 mV threshold

- Local strain and temperature monitoring
 Fiber Optic Sensors DAQ
 - Micron Optics Optical Interrogator
 - 4 channels
 - 1 kHz
 - Trigger from the cRio
 - Ethernet connection (CERN NTP)
 - Enlight Software for data recording

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Quench detection
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Run 2: Splices thermal runaway prevents from testing the coil

Resistance increase: drift and thermal runaway

Resistance

- increase with the current
- decrease with the temperature

H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

Run 2: Splices thermal runaway prevents from testing the coil

- no quench if the current is ramped down soon enough
- Mind the scale... minutes to react

Run 2: Splices thermal runaway prevents from testing the coil

Run3: Modification of the set up

- Need a way to sub cool the splice and connection zones with respect to the magnet itself
- Profit from the test bench capacity to feed independently GHe and LHe in the cryostat
- Deviation of the LHe pipe

Run4: New modification

• Used of a pierced tube for the LHe to better spread the quenching zone (higher in the connection wrt. Run3)

EUCARD² Splice stabilisation with sub-cooling

Run 2: over high resistance (< 3 kA)

Run 4: stable splice up to 12.3 kA

Splice resistance as function of current and temperature

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Quench detection
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Quench current as function of the temperature

Run & (024092.5pepst-2016)

Newlifitadifipatifatheccladigg Sib 304 up Tested current range: 0-3200 A Tested temperature range: 80-20 K Testestoprætterange: 0-92900Atic quench of "splice 2" Eirstropherscinethierapito 12270 A

Tesis step vit 1900 en addit to be for the plate 12900 A. come cotthes mal gradient in the cryostat. (not "splice 2")

Nominal performance at

12 kA at 20 K achieved

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Quench detection
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Example of natural quench

Voltage signals as function of time... a slow transition

H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

- Clean signals from the voltages taps in the mV range
- Quench detection based on voltage taps is OK (10 mV, 10 ms) to protect the magnet

EUCARD² Example of Spot heater induced quench

- Minimum quench energy... hard to quench! At 38 K, 6 kA, MQE=1.2 kJ
- The HTS conductor appears very stable!

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Example of natural quenches and spot heater induced quenches
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Coil thermo-mechanics study with FOS for different T and I cycles

EUCARD²

- Stable current: 1 K temperature variation seen by the FGB for induced thermal strain
 - H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

• **Stable temperature**: mechanics can be followed be the FBG during the current ramp

Large data management and synchronisation

Manage to get signals from the 4 different systems and 96 sensors with:

- Data formating agreement
- Signals synchronisation OK
- Data base feeding
- FPGA program needs to be reviewed for the next test (under development).

- Feather_M0.4 and its integration in the SM18 variable temperature facility
- Issue with the connections cooling and solutions
- History of the four runs of powering test
- Example of natural quenches and spot heater induced quenches
- Optical fiber measurement and other sensors
- Lessons learnt and future tests

Lessons learnt and future tests

- Unlike LHe working condition, a thermal gradient exists in the cryostat when using GHe, with higher temperature at the top where the magnet to lead connections stands.
- In consequence:
 - → the performance are limited by the connections if nothing is done, splices delicate in gas...
 - \rightarrow a sub cooling of the connections and the splices solved the problem of quench in splice.
- The splice resistance can be lowered to value below 50 nOhm for which splices are stable, avoiding thermal runaway
- The method reached limit during Run 4 at I > 12.4 kA when connection quenches again.
- The magnet reached the nominal current (12 kA @ 20 K).
- The magnet can be protected using classic voltage taps with typical (10 mV, 10 ms detection parameters).
- The pick coils, the thermometer and the fiber optic are not able to detect the quench so far...
 → these are most likely not well placed along the winding.
- More Feather-M0 and Feather-M2 to come with improved joint design.
- H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

In preparation for Feather-M2

In preparation for Feather-M2

• Thank you very much for your attention

Splice 2 largely exceed 100 n Ω

EUCARD² Resistance as function of current and temperature Run 3

EUCARD² Resistance as function of current and temperature

Run 4-A

Run 4-B

EUCARD² Run3: Protection parameters adaptation

Voltage taps	Segment	Gain	Threshold	Time window
			[mV]	[ms]
EE0.4U3-EE0.4L4-EE0.4L6	Vdiff 0	0.1	11	20
EE0.4U1-EE0.4L4-EE0.4L8	Vdiff 1	0.1	10	20
EE0.4U2-EE0.4L3-EE0.4L7	Vdiff 2	10	1160	30
EE0.4U1EE0.4L8	Vsum 1	4	71	30
EE0.4U2EE0.4L7	Vsum 2	0.04		10
EE0.4U2EE0.4U3	Splice 1	40	10	10
EE0.4L6EE0.4L7	Splice 2	40	20	20
EE0.4L4EE0.4L5	cable 1	40	5	20
EE0.4L3EE0.4L4	cable 2	40	3	10
EE0.4L2EE0.4L3	cable 3	40	3	10
EE0.4L1EE0.4L2	cable 4	40	3	10
EE0.4U4EE0.4L1	cable 5	40	3	10
VleadA+RF8_1_1	Vgaz A	40	60	10
RF8_1_2VleadB	Vgaz B	40	60	10
RF8_1_1EE0.4U1	Vcon A	40	10	10
EE0.4L8RF8_1_2	Vcon B	40	10	10

10/09/2016 TE-MSC-TF H. Bajas

H. Bajas, Eucard2 4th Annual meeting, 2017, Glasgow

AQA_DIAdem

current

-MIITS 0

s

2

◄

MIITs[M

H. Bajas, Eucard2 4tMQt (473 Km 4000) €0072 Gta8g 576 J

Separated Helium inlet for either gas or liquid cryostat feeding

- 10 Cernox T_sensors (2 on the copper leads, 2 on the Cu. Extension, 4 for the cryostat T monitoring)
- 38 Carbon Ceramic T-sensors (2 arrays (11 & 25) and 2 independent calibrated)
- 4 Optical fibers with 1 FBG T-ε-sensors
 (2 glued on winding (T-ε) and 2 for the gas monitoring)
- 14 voltage taps (2 for lead, 2 per splices, 5 for the cable)
- 20 Pick Coils for quench detection (10 per side)
- 2 Hall Probe for magnetics field measurement
- 3 Spot heaters

GHe inlet