

EuCARD2 4th Annual Meeting Report on WP11

Collimator Materials for Fast High Density Energy Deposition

EuCARD-2 Annual Meeting, Glasgow, 28 – 30 Mar 2017

Adriana Rossi on behalf of

Starting from the end ...

ARIES PowerMat WP17 coordinators

Marilena Tomut (GSI)

Alessandro Bertarelli (CERN)

Milestones :

MS69 Irradiation of first samples	M12
MS70 Present results on material damage from irradiation	M24
MS71 Show new material development status	M24
MS72 Present results on material damage from simulation and	
compare to experiments	M45

Deliverables :

11.1 Result on simulations of new materials and compositesM3611.2 Report on comparative assessment of beam simulation codesM4011.3 Irradiation test resultsM4611.4 Results on characterisation of new materials and compositesM46

Deliverable reports

Grant Agreement No: 312453

EuCARD-2

Enhanced European Coordination for Accelerator Research and Development

Seventh Framework Programme, Capacities Specific Programme, Research Infrastructures, Combination of Collaborative Project and Coordination and Support Action

DELIVERABLE REPORT

IRRADIATION TESTS RESULTS DELIVERABLE: D11.3

Document identifier:	EuCARD2-Del-D11-3-MT_EQ_FC_AR_AL
Due date of deliverable:	End of Month 46 (February 2017)
Report release date:	27/02/2017
Work package:	WP11
Lead beneficiary:	GSL CERN
Document status:	Draft

Abstract:

This document presents the results of the irradiation experiments for studies on radiation hardness and on response to proton beam-induced high energy density deposition of the new Molybdenum Carbide - Graphite (MoGr) and Copper-Diamond (CuCD) materials developed within the EuCARD-2 WP.11. The irradiations were performed at GSI, BNL, Kurchatov Institute and at the HiRadMat facility at CERN using ion and proton beams with energies between 35 MeV and 440 GeV.

Doc. Identifier: EuCARD2-Del-D11-4v1FC_JG_FCv2 Date: 20/02/2017

Grant Agreement No: 312453

EuCARD-2

Enhanced European Coordination for Accelerator Research and Development

Seventh Framework Programme, Capacities Specific Programme, Research Infrastructures, Combination of Collaborative Project and Coordination and Support Action

DELIVERABLE REPORT

RESULTS ON CHARACTERISATION OF NEW MATERIALS AND COMPOSITES DELIVERABLE: D11.4

Document identifier:	EuCARD2-Del-D11-4-v1FC_JG_FCv2
Due date of deliverable:	End of Month 46 (February 2017)
Report release date:	20/02/2017
Work package:	WP11
Lead beneficiary:	[Short name of participant e.g. WUT]
Document status:	Draft

Abstract:

This document summarizes the characterization done on the novel materials developed at CERN for low-impedance and high-robustness LHC collimators. Results of the measurements done at CERN, GSI and Kurchatov Institute are presented.

27 pages

Grant Agreement 312453

1/2

63 pages

Beam intercepting devices

Collimator Design (HL-LHC)

composite psorber

What motivates our studies on materials

- But also brings to other applications (space and electronics industry are showing an interest)
 - See also Marilena's talk on Novel applications of Diamond-based materials

EUCARD²

- **1. R&D, theoretical studies**: *Jorge. Guardia Valenzuela*, PhD University of Zaragoza Structural and compositional analyses for the optimization of graphite-based composites used in the LHC collimation system
- **2. Experimental characterization**: *Elena Quaranta*, PhD Politecnico di Milano Investigation of collimator materials for the High Luminosity Large Hadron Collider
- **3. Simulations**: *Federico Carra*, PhD Politecnico di Torino Thermomechanical Response of Advanced Composite Materials under Quasi-Instantaneous Heating
- 4. Radiation effects: Bachelor thesis
 - Yuan Xu, TU Darmstadt Effects of Swift Heavy Ion Irradiation on Molybdenum Carbide Graphite (MoGR) Composite
 - *Philipp Bolz,* TU Darmstadt Nanoindentation characterization of ion induced degradation of mechanical properties of carbon materials
 - *Carsten Porth,* TU Darmstadt Ion-induced microstructural and functional properties changes in Molybdenum-Carbide-Graphite composites
 - *Katja Bunk,* University of Frankfurt Structural transformation of Molybdenum Carbide – Graphite composites induced by irradiation with Au-ions
 - Florian Kopietz, TU Darmstadt XRD and Raman spectroscopy study of structural transformation induced by irradiation with light and heavy ions in Molybdenum Carbide – Graphite composites

EUCARD² MoGr and CuCD being investigated

Molybdenum-Graphite (MoGr) = composite of graphitic matrix reinforced with molybdenum carbide. Here MG6403Fc cross-section obtained by ion-polishing. Note the graphite planes oriented vertically in the image.

BREVETTI BIZZ

Production sketch

EuCARD-2 Annual Meeting, Grasgow, 20 - 50 War 2017

Thermo-mechanical characterisation of materials

Thermo-mechanical characterisation of

materials

Name		MG-6530-Aa		MG-6403-Fc		
Directio	on	I	\perp		T	CuCD
Density (g/cm ³)		2.505		2.55		5.252
Electrical conc (MS/m	luctivity)	0.905	0.048	0.965	0.071	~10 - 58
Thermal	20°C	325.4	31.4	465.5	31.3	188.7
$(\text{mm}^2/\text{s})^*$	500°C	76.9	5.8	79.4	5.9	64.0
Specific Heat	Specific Heat 20°C		0.601		524	0.340
(J/g/K)	500°C	1.3	327	1.3	304	0.680
Thermal	20°C	489.9	47.2	740.1	49.8	337.3
(W/m/K)	500°C	255.6	19.2	263.9	19.5	228.6
	200°C	1.65	11.64	2.67	7.93	9.34
CTE (µm/K)	500°C	1.78	12.85	2.87	8.86	10.57
from RT to:	1000°C	1.74	15.33	2.82	11.16	-
	1900°C	1.76	18.88	2.76	16.30	-
Residual deformation (%) Flexural Strength (MPa) Flexural strain to rupture (µm/m)		0.04	0.17	0.00	0.12	0.11
		70.9±3	12±0	58.1±8	10±1	100±11
		2501±547	7244±1771	2430±498	4344±1010	4245±1702

D11.4 Results on characterisation of new materials and composites

EUCARD² Overview of irradiation tests on MoGr

EUCARD² Irradiation campaigns at BNL

- 1st irradiation campaign (2013-2014):
 - 200 MeV proton irradiation at BLIP (up to 1.1 x 10²¹ p/cm²)
 - Spallation neutrons from 112 MeV protons at BLIP
 - Tightly focused 28 MeV proton beam at TANDEM

Irradiated materials:

- Glidcop AL-15 (SCM Metals, USA)
- Mo (Plansee, Austria)
- CuCD (RHP Tech., Austria)
- MoGr (Brevetti Bizz, Italy), 3rd generation grade
- 2nd irradiation campaign (2016):
 - 200/160 MeV protons at BLIP (~ 2 x 10²⁰ p/cm²)

Irradiated materials:

- MoGr, 6th and 7th generation grades
- CFC (current material of LHC primary and secondary collimators)

Courtesy of N.Simos (BNL) & E. Quaranta (CERN)

1st irradiation campaign: 2014

Mo, Glidcop and CuCD survived. MG-1110E seriously damaged at high fluences (1.1 x 10²¹ p/cm²)

Open points after 1st irradiation campaign:

EUCARD²

- MoGr still not optimised (possible unreleased internal stresses from production cycle)? Are the new grades better?
- Fluence threshold where structural damage start to appear?

Courtesy of N.Simos (BNL) & E. Quaranta (CERN)

First visual inspection after 2nd campaign

Late April 2016:

2 MoGr capsules opened after 1st step in fluence (~5x10¹⁹ p/cm²)

June - July 2016:

All capsules opened (max fluence > 2x10²⁰ p/cm²)

- No macroscopic damage of any sample observed after first visual inspection when irradiated capsules where opened remotely in the Hot Cells
- Further micro/macro analyses are planned to assess response of the material to possible irradiation-induced damage.

Courtesy of N.Simos (BNL) & E. Quaranta (CERN)

EUCARD² Irradiation of novel composite - GSI

Ion irradiation: C – U Energies: 70 MeV – 1 GeV Fluence: up to 1×10^{14} i/cm² ~ 10^{-4} dpa

Functional properties degradation:

Material optimization

Radiation damage effect on properties degradation

Irradiation induced hardening – dynamic harness:

- Hardness and Young's modulus increased with accumulated dose.
- Samples annealed at higher temperatures show less degradation

Increase of electrical resistivity - online measurements during irradiation

- Defect accumulation results in gradual resistivity increase
- Presence of carbon fibers reduce material's resistivity degradation

31 January 2017

Marilena Tomut

Irradiation induced deformation and mitigation

 Macroscopic bending was observed around 5×10¹² Au ions/cm² • Optimization of the material to avoid swelling and deformation

31 January 2017

Marilena Tomut

Irradiation induced hardeninglatest measurements

• MoGr – better behaviour than isotropic graphite and CFC

D11.3 Irradiation tests results

FLUKA simulations

MoGr (6400, 6530, 6541)

E. Skordis

DPA induced by heavy Ions in MoGR

These simulations studies provide a link between DPA values achieved in the experiments and the DPA expected in LHC collimators

HiRadMat tests (440GeV p⁺)

2012 HRMT-14: test of specimens from 6 different materials, including novel composites

- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations

HRMT-14: Material Sample Holder

2012: test of specimens from 6 different materials, including novel composites

- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations

Federico Carra

July 2015: proton beam impacts on three LHC and HL-LHC jaws (CFC, MoGr, CuCD)

Elastic Constants	CFC	MoGr	CuCD
E_x [GPa]	2.8	7.1	160.5
E_y [GPa]	57.5	74.0	160.5
E, [GPa]	93.0	74.0	160.5
G_{xy} [GPa]	3.5	4.3	75.1
G_{xz} [GPa]	6.4	4.3	75.1
G_{yz} [GPa]	10.6	31.3	75.1
V _{xy}	0.11	0.13	0.07
V _{xz}	0.10	0.13	0.07
ν _{yz}	0.10	0.19	0.07

NGINEERING

Federico Carra

CuCD Modelling

- HRMT shot #124: CuCD 24 bunches, σ 0.61 mm, impact 5σ
- Pseudo-plasticity of the material taken into account!

Why observed decrease in amplitude with time? Damping?

31 January 2017

Federico Carra

MoGr Modelling

- HRMT shot #200: MoGr 24 bunches, σ 0.6 mm, impact 5σ
- Orthotropic elasticity simulated up to now, can evolve into orthotropic viscoelasticity (similarly to what done on isotropic graphite with L. Peroni, M. Scapin for <u>DAMAS 2013</u>)

Halo cleaning simulations with advanced collimator materials

- SixTrack material DB updated with new composites materials.
 - Main simulation parameters:
 - Energy: 7 TeV
 - Beam 1, Hor. halo
 - Statistics: 6.4 x 10⁶ SixTrack particles
 - Nominal 7 TeV optics and post LS1 LHC layout
 - All CFC secondary collimators in IR7 replaced by new materials: MoGr, CuCD, Inermet180.

Note: the high-Z Inermet180 is not part of any LHC upgrade plan, due to its limited robustness. It was included in the study for comparison.

Collimator settings				
at 7 TeV [σ]				
IR7	ТСР	6		
	TCSG	7		
	TCL	10		
IR6	TCSG	7.5		
	TCDQ	8		
IR3	ТСР	15		
	TCSG	18		
	TCL	20		
IR1/5	тст	8.3		
IR2/8	тст	25		

IR7 DS → highest loss location
Not largely affected by TCSG materials, losses dominated by single diffractive events in primary collimators.

Courtesy of E. Quaranta

- It's been a very intense 4y programme executed magnificently by all collaborators
- Tangible results that are promising both for accelerator applications and beyond
- A collaborative team built over the years

Thank you and thanks the WP11 collaboration