

Luminosity Measurement at FCC-ee

FCC-Week, Roma 11-15 April 2016

Mogens Dam
Niels Bohr Institute
Copenhagen, Denmark

Luminosity Measurement

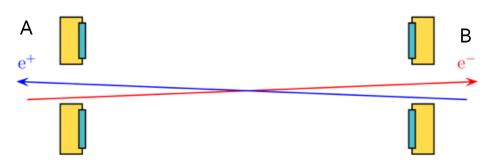
◆ Normalization of cross section of physics process i to a standard "lumi" process with known cross section:

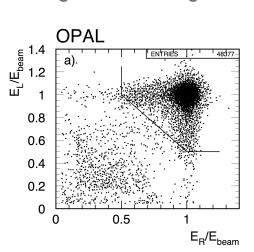
$$\sigma_i = rac{N_i}{L}$$
 with $L = rac{N_{
m lumi}}{\sigma_{
m lumi}}$

- Requirements for lumi process
 - □ Must have *calculable cross section* with minimal model dependence
 - Basically QED dominated
 - Should provide sufficient statistics to not dominate uncertainty

$$N_{\text{lumi}} \gg N_i \qquad \Rightarrow \qquad \sigma_{\text{lumi}} \gg \sigma_i$$

Main FCC-ee physics processes:

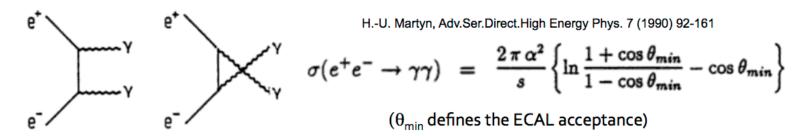

Energy	Process	Cross Section	Statistics
90 GeV	$e^+e^- \rightarrow Z$	40 nb	10 ¹²
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	108
240 GeV	$e^+e^- \rightarrow ZH$	200 fb	10 ⁶
350 GeV	e⁺e⁻ → tt	500 fb	10 ⁶


Lumi processes (i)

- ◆ Standard lumi process is small angle elastic e⁺e⁻ (Bhabha) scattering
 - Dominated by t-channel photon exchange
 - Very strongly forward peaked

$$\sigma^{\text{Bhabha}} = \frac{1040 \text{ nb GeV}^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\min}^2} \right)$$

□ Measured with set of two calorimeters; one at each side of the IP

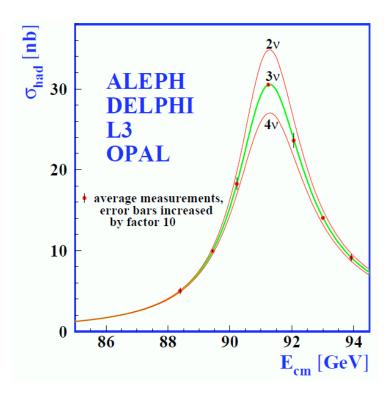


- * Typically between θ_{min} = 30-50 mrad and θ_{max} = 50 100 mrad ; $\sigma \simeq O(50 \text{ nb})$ @ 90 GeV
- * Minimize dependence on beam parameters: define loose and tight fiducial volumes $acceptance = tight A \cap loose B + tight B \cap loose A$
- * With finite beam crossing angle: Center acceptances around outgoing beam lines
- □ Important systematics from acceptance definition: *minimum scattering angle*

$$rac{\delta \sigma^{
m acc}}{\sigma^{
m acc}} \simeq rac{2\delta heta_{
m min}}{ heta_{
m min}} = 2 \left(rac{\delta R_{
m min}}{R_{
m min}} \oplus rac{\delta z}{z}
ight)$$

Lumi processes (ii)

- ◆ Possible alternative lumi process: Large angle photon-pair production
 - Only "one" graph at lowest order very poor literature at NNLO and beyond

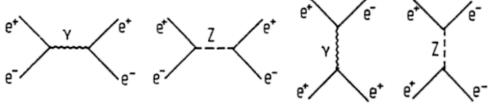


- □ Pure QED process with few radiative corrections between initial legs and propagator
- □ Cross section is much smaller than small angle Bhabha, but adequate everywhere but at Z-pole running
- □ Main experimental background: Large angle Bhabha scattering ($e^+e^- \rightarrow e^+e^-$)
- \Box Example: $\theta_{v} > 20^{\circ}$ (cos $\theta_{v} < 0.94$) with respect to the beam axis:

Energy	Process	Cross Section	e⁺e⁻ → γγ	e+e- → e+e-
90 GeV	e⁺e⁻ → Z	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	e⁺e⁻ → ZH	200 fb	5600 fb	134000 fb
350 GeV	e⁺e⁻ → tt	500 fb	2600 fb	60000 fb

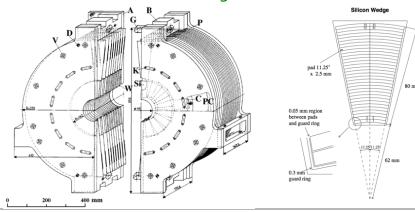
Tera-Z Luminosity Measurement

- Let's set aside the higher energy running points, where large angle $e^+e^- \rightarrow \gamma\gamma$ production could be the way to go, and concentrate for the time being on Tera-Z
- Types of luminosity measurement
 - □ **Absolute:** Determination of peak cross section; Number of neutrino species
 - ullet Relative point-to-point: Determination of line-shape parameters M_Z and Γ_Z



Tera-Z Absolute Normalisation (i)

• After much effort, precision on absolute luminosity at LEP was dominated by theory (example OPAL):

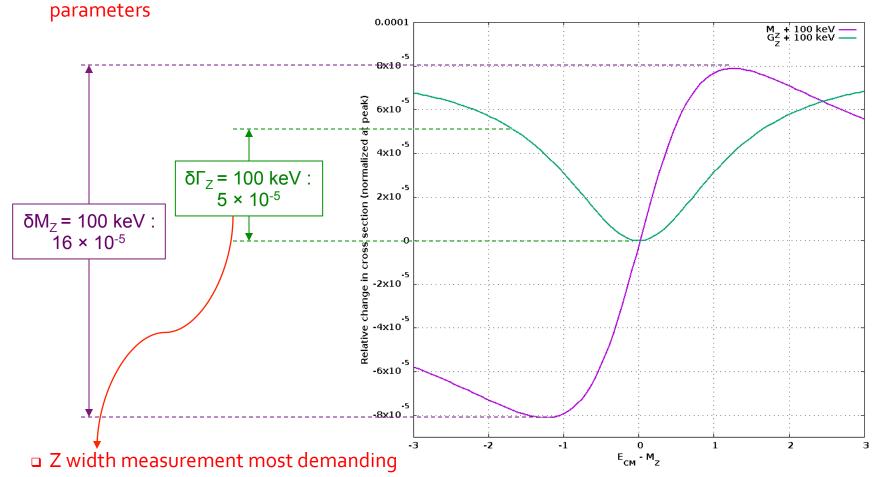

Theory:
$$5.4 \times 10^{-4}$$
 Experiment: 3.4×10^{-4}

- ◆ Ambitious FCC-ee goal: Total uncertainty to precision of order 10⁻⁴
 - Will require major effort within theory
 - Four graphs already at lowest order

- Dependence on Z parameters (increasing with angle)
- Lots of radiative corrections involved between initial and final legs
- □ Will require major effort **experimentally**
 - * Second generation LEP luminosity monitors constructed and aligned to tolerances better than 5 μm

Opal luminosity calorimeter Tungsten/silicon

Tera-Z Absolute Normalisation (ii)

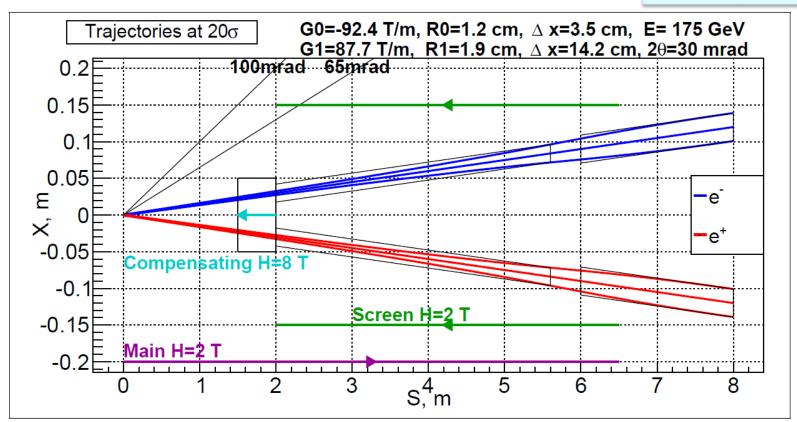

- With 10¹² Zs, will have 10⁹ e⁺e⁻ \rightarrow $\gamma\gamma$ events
 - □ Statistical precision of 3×10^{-5}
 - Systematic precision?
 - * Theoretical situation of the $e^+e^- \rightarrow \gamma\gamma$ will need to be reviewed
 - * Have to control the 100 times larger large angle Bhabha scattering cross section background to a relative precision of O(10⁻⁷)
 - Electron/photon separation controlled to O(10³ 10⁴)
 - Remember that large angle Bhabha scattering has large Z dependence
 - \square Possibly $e^+e^- \rightarrow \gamma \gamma$ is our best bet to get precise **absolute** normalisation ??
 - ❖ To be pursued...
- ◆ But we still need relative normalisation...

Tera-Z Relative Normalisation (i)

◆ FCC-ee goal: Determine Z parameters to precisions:

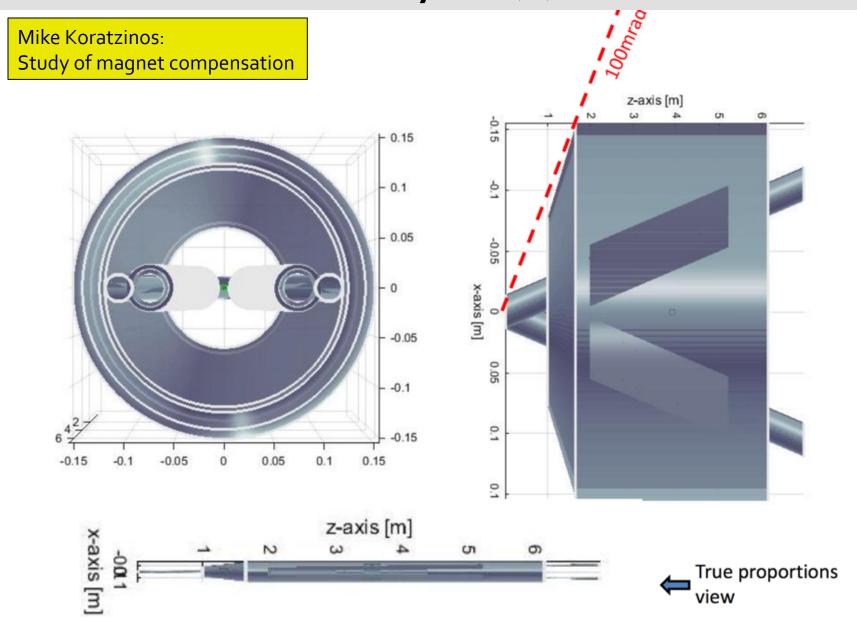
$$\delta M_Z = 100 \text{ keV}$$
; $\delta \Gamma_Z = 100 \text{ keV}$

ullet Plot shows relative change in cross section across Z resonance for variation of this size in these

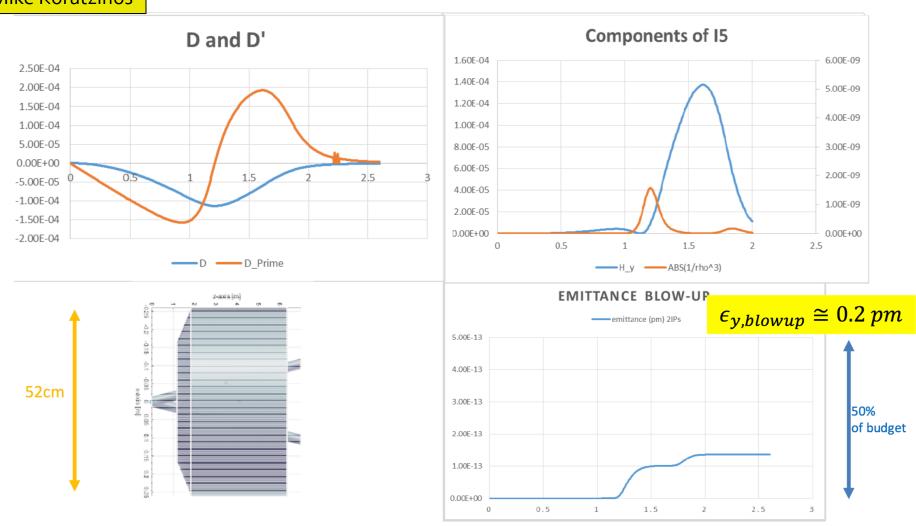

❖ Need relative normalisation to about 2 × 10⁻⁵

Tera-Z Relative Normalisation (ii)

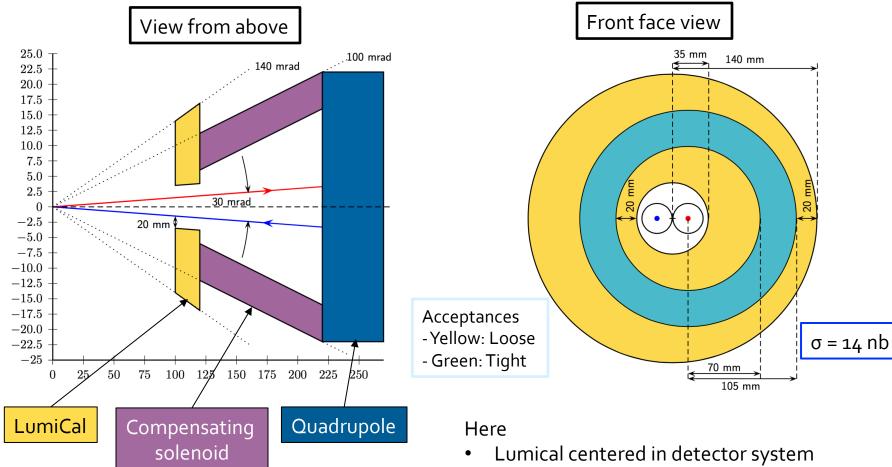
- Relative normalisation to 2 × 10⁻⁵
 - \square Need statistics of order 10⁹ 10¹⁰
 - □ To optimize sensitivity of off-peak running, aim for cross section ≥ Z production; i.e ≥ 15 nb
 - □ We are back to small angle Bhabha scattering
- ◆ Let's take a look at the experimental situation...


IR Layout (i)

Anton Bogomyagkov

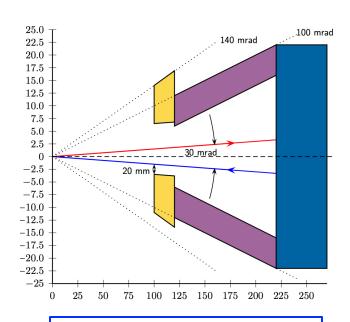

- □ Beams cross at an angle of 30 mrad
- □ Quadrupoles are close to IP: L* ≃ 2 m
- □ Need compensation for detector solenoid due to non-zero crossing angle

IR Layout (ii)



New proposal, 140mrad cone, solenoids start at 1.2m, 2 IPs

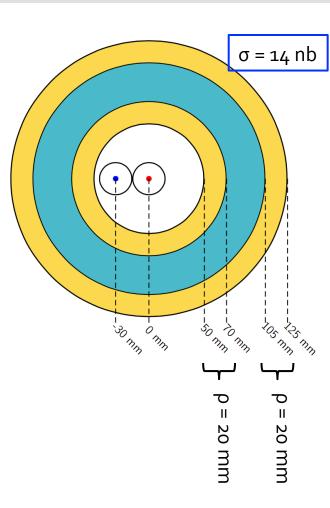
Mike Koratzinos


Trying to squeeze in a LumiCal ...

Here, have assumed that compensating solenoid stops at z=120 cm as proposed by M. Koratzinos

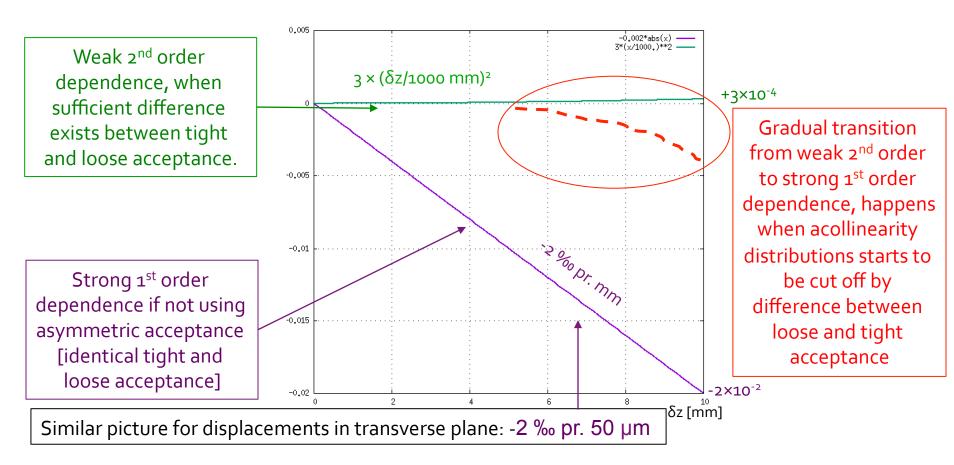
 Tight acceptance centered around outgoing beam

Symmetric detector placed around outgoing beam


This gives asymmetric coverage in detector system

 $\sigma = 14 \text{ nb}$ σ = 24 nb L25 MM

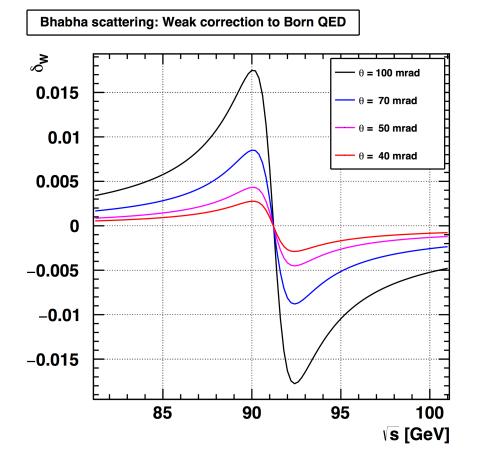
Can gain some cross section by going to non-circular acceptance


Fiducial volume

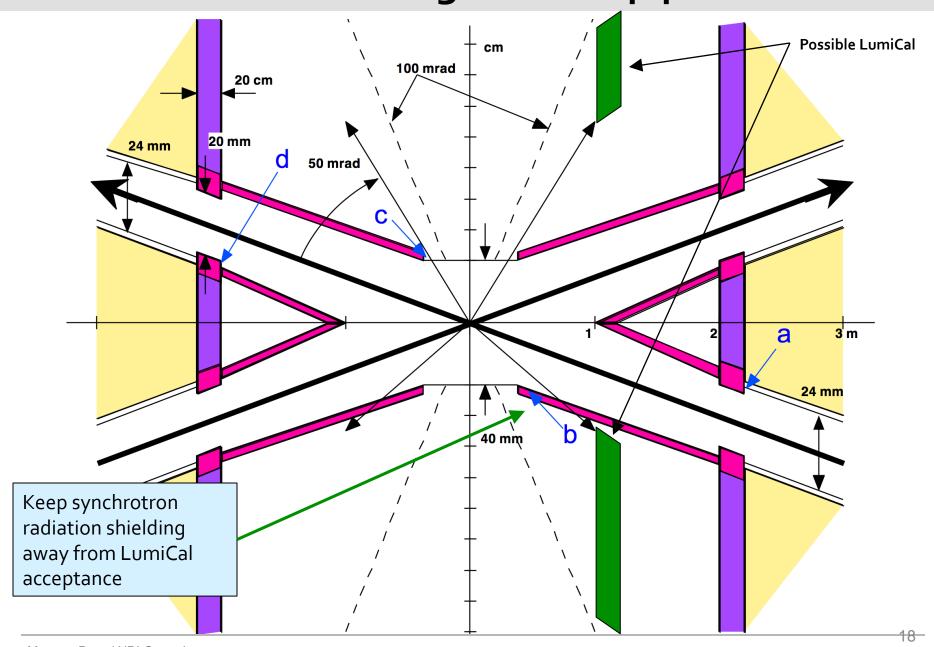
- Effective lumi cross section depends critically on ρ, the assumed difference between loose and tight fiducial volume
 - □ Here assumed ρ = 20 mm (20 mrad @ z = 100 cm)
 - Is this a safe tolerance?
 - OPAL used 100 mm (~40 mrad @ z = 240 cm)
- Effects to take into account when choosing tolerance ρ
 - Moliere radius of calorimeter (~14 mm)
 - Acceptance definition based also on precise energy measurment
 - 2. Possible displacements of IP w.r.t. nominal
 - 3. Bhabha event acollinearity distribution

Dependence on beam parameters

Example: Position of IP along z w.r.t. nominal



For relative normalisation, worry "only" about differences in beam parameters between energy points Should attempt to stay away from strong 1st order dependence


- Gut feeling: ρ=20 mm may be rather aggresive need to increase?
 - Need to fire up the bhlumi Bhabha event generator for study

Relative cross section measurement

- ◆ The weak correction to the Bhabha cross section is of order 1% for the small angle region considered here
- ◆ Have to understand this correction to a relative precision of ~10⁻³
 - Probably ok, but should check...

SR shielding of beam pipe

Another reason to measure small angle Bhabha

Talk Tuesday:

It is stated, that by measuring Bhabha cross section at 3° (~50 mrad) to precision of 10^{-4} one can extract information on α_{OFD}

Need to normalize Bhabha by other process, e.g. large angle $e^+e^- \rightarrow \gamma\gamma$.

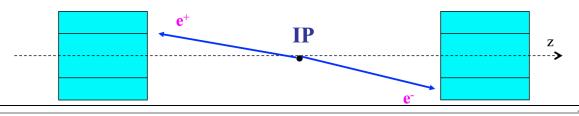
Observation: If there is interesting physics information in Bhabha scattering measured to 10⁻⁴, then how can the same process be used to normalize to 10⁻⁴

Measuring α_{em} in the spacelike region

C.M.C. Calame¹, F. Jegerlehner², M. Passera³, L. Trentadue⁴, G. Venanzoni⁵

$\Delta\alpha_{had}(-s_0)$ spacelike measurement at FCCee

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta\alpha$:


$$\left(\frac{\alpha(t)}{\alpha(0)}\right)^{2} \sim \frac{d\sigma_{ee \to ee}(t)}{d\sigma_{MC}^{0}(t)}$$

Where $d\sigma^0_{MC}$ is the MC prediction for Bhabha process with $\alpha(t)$ = $\alpha(0)$, and there are corrections due to RC...

$$\Delta \alpha_{had}(t) = 1 - \left(\frac{\alpha(t)}{\alpha(0)}\right)^{-1} - \Delta \alpha_{lept}(t)$$
 $\Delta \alpha_{lep}(t)$ theoretically well known!

 $\delta\Delta\alpha_{had}$ (-(2 GeV)²) at 0.5% \rightarrow d σ (t)/d σ^0_{MC} (t) ~10⁻⁴! Very challenging measurement (one order of magnitude improvement respect to date) for systematic error.

At Z peak small-angle detector needed (θ ~3°)

Conclusion / Summary

- ◆ To match the fabulous statistics of FCC-ee need very precise normalisation
 - □ Absolute to 10⁻⁴
 - \square Relative (point-to-point in energy scan) to few \times 10⁻⁵
- Available physics processes
 - Small angle Bhabha scattering
 - High rate: necessary for relative luminosity (at least on Z peak)
 - □ Large angle photon pairs
 - ❖ Rate exceeds that of WW, HZ, and tt
 - May also be interesting for absolute luminosity at Z pole
- ◆ Nevertheless, a small angle LumiCal remains extremely important
 - □ For relative normalisation at Z pole
 - Keep also as goal for precise absolute normalisation
 - Main problem is to get adequate space in forward busy region
- ◆ ...work to be done...