
Containers for ATLAS
Andrej Filipcic

Motivations to use containers
● Similar concept to virtual machines, but much more flexible and “zero”

performance loss
○ chroot done properly

● Independence of execution environment vs host OS
● Can provide custom development, testing environment on grid
● Much easier and flexible to use
● Can make site maintenance and central image/software management

much more transparent

2

Benefits for ATLAS and sites
● Sites can use any host OS of their preference

○ Minimal OS (eg CoreOS), bleeding edge (Fedora), latest enterprise OS

● Site OS major upgrades not affecting ATLAS production
○ OS upgrades can be done on the fly

● Many images can be used simultaneously on the same site, eg
○ SL6 for rel 21 production
○ SL7 for rel 22 testing and validation
○ SL5,4,3 for analysis of old data, data preservation

● Sites can only provide basic OS on the nodes
● Much more flexible and secure from site point of view

○ Isolation and traceability - replacing glexec functionality

● Common approach for execution, software distribution for all sites,
including HPCs and ATLAS@Home 3

Singularity and Docker
● Many containers technologies (shifter, LXC, LXD…). Focus on

○ Singularity - for production
○ Docker - for development, custom workflow, mainly requested by ATLAS software

development

● Docker - more difficult to deploy, usage foreseen on few proactive sites
○ Docker daemon on the nodes, authorized users
○ Root privileges in the container - might not be suitable for large scale deployments

● Singularity - tuned for batch systems (HPCs as well)
○ Simple to install - one rpm, straightforward configuration
○ Non-privileged - UID is kept while starting the container

Deployment
● Already decided (last ATLAS S&C Workshop) for large scale singularity

deployment, starting with all modern OS sites
○ SL7 and equivalent
○ Debian, ubuntu, SUSE, … if recent kernel (support for overlay FS and shared mounts)

● Some sites already using it:
○ SiGNET, ARNES, HPC2N, LRZ, MWT2, …

● Experience:
○ No issues, very robust in the last few months
○ Native performance (as compared to VM)
○ One image can serve them all

● Support for older sites (eg SLES11, or SLC6)
○ Img needs to have bind mount directories created in advance - they can be requested on

per site basis and provided in the common image

CVMFS Image(s)
● Bootstrap:

○ Singularity or docker def file, start with singularity for simplicity
○ rpm installation only, no configuration

● Singularity can use local img file, remote (http) files, directory (eg.
/cvmfs/cernvm-prod.cern.ch/cvm3)
○ Start with img files in cvmfs (~2GB)

■ May be a problem with sites using very small cvmfs caches, especially if we plan to use several
images in the future: we'll have to enforce our requirements

○ Image repository in /cvmfs/atlas.cern.ch/repo/images/singularity/…
○ Multiple versions of the same images? Probably not needed

● How many images?
○ Default (fat) SLC6, SL7 - including grid middleware, development tools

■ Need to understand if we need some autoconfiguration for grid mw tools
○ Start with SLC6
○ We'll need to rebuild the images whenever a security patch is available

Bind mounts
● Two types - default and site specific
● Default:

○ /cvmfs
○ /sys/fs/cgroup
○ /etc/grid-security/certificates

● Site specific:
○ Local scratch
○ Shared FS

● Other singularity options:
○ Isolation: --ipc, --pid, ...

AGIS settings
● All the site specific settings will be stored in AGIS
● Start with catchall parameter, eg

○ catchall="singularity_bindmounts=/data0,/var/spool/slurmd,/ceph/grid"

● Later on, proper AGIS entries will be defined for full flexibility, eg
○ Supported images
○ Default image for jobs not specifying the container

● Should be enough for pilot to execute the job inside the singularity
container

pilot
● If singularity is in catchall, the pilot executes the payload by default in the

SLC6 container
● Should call singularity as soon as possible, eg right after getting the

payload description
○ To support sites with minimal host OS (eg CoreOS)
○ Many sites expressed the wish to have basic, minimal host OS, everything else (grid MW)

can be deployed in container images

● Final goal: PanDA should set the container in the job description for every
payload
○ Flexibility to execute the payload in any OS (eg, SLC5, SLC6, SL7)
○ Eventually support for non-Intel platforms...

ATLAS longer-term perspective
● ALL the ATLAS jobs will use containers

○ There might be exceptions with specific sites (eg. some HPCs)

● The basic OS on host should be enough - the libs, MW should be provided
in containers
○ Easier for sites
○ Centralized SW deployment

● cvmfs will be used as the main distribution point for container images
● Isolation will be used

Points of wider interest
● Image management:

○ Bootstrapping (for both singularity and docker) and deployment - how to manage?
○ Official (signed?) images, private images, approved images?

● Common images:
○ Simplified middleware deployment
○ Staged bootstrapping - eg common core + VO specific part

● Security:
○ Procedure to deal with security vulnerabilities
○ Tracing the container activity - clear instructions for sysadmins
○ Guidelines for site deployment, in particular for docker (eg avoid access to shared FS

inside the container)

Implications for WLCG
● Minimal host OS - not compatible with WLCG site requirements

○ Eg, middleware is missing, needs to be provided through the container

● Need to agree on default deployment model for VOs not using the
containers, singularity
○ Default container
○ image/directory location and maintenance (can it be cvm3?)
○ How to integrate it in CEs?

● Check with others, (eg Belle2 Dirac) for preferred deployment model and
execution strategy

● Agree on recommendations:
○ Traceability and isolation

Conclusions
● ATLAS is moving towards full containerization for production and analysis

○ Simplifies site maintenance and centralizes deployment

● Several details to be addressed, many are ATLAS specific
● WLCG needs to decide whether to keep containers at VO level, or rather

fully embrace it and adapt the distributing computing model to work
transparently

● Many sites are proactive and interested in containers, some wish to have
minimal host OS

● Time for a Task Force?

