Containers: Security point of view

Vincent BRILLAULT, CERN/EGI-CSIRT

GDB April 2017, CERN

Containers: direct benefits

- De-couple provisioning and VOs:
 - OS/library independent* from VOs
 - No extended validation required
 - Less breakage from updates
 - No VOs libraries leaking to provisioning
 - No HEP_OSlibs package
- Better isolation than UID switch:
 - WN processes invisible/not accessible
 - WN files invisible/not accessible
 - cgroups for memory management

Containers: not a perfect solution

- Young/recent technology
 - New classes of bugs in kernel, missing support
 - Ecosystem changing fast (esp. docker)

- Most kernel bugs can still be exploited
 - Local privilege escalation kernel bugs still critical
 - Emergency updates still required...
- No migration possible (not like VMs)
 - Draining still required for reboots

Replacing GLExec using Singularity?

- Better isolation (container VS UID switch)
- Singularity SUID could disappear with RHEL 7.4
 - One sysctl configuration might be needed
 - Would rely on kernel security updates
- Simpler configuration (single RPM)
- No central callout/service required:
 - Simpler configuration & less failures
 - No traceability on end-user!

Retaining user traceability

- Re-build local traceability:
 - Pilot job could "tell" site which user is running
 - Feature present in HTCondor CE:
 - Missing audit logs: only current situation is available
- Use central VO services
 - If central service contain enough data & reliable
 - Incident response would need to be adapted
- Combine both?
 - Simple/small sites need less local features
 - Large sites can still react independently of VOs

Thanks for your attention!

Any questions?