Precision Calculations for FCC-ee EW Observables

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Vidyo, 10/2016

Co-convenor/editor: Ayres Freitas

Contributors (so far): M. Beneke, A. Blondel, A. Hoang, P. Janot, J. Reuter, C. Schwinn, S. Weinzierl, ...

1. Introduction

- 2. Electroweak Precision Observables
- 3. Higgs Observables
- 4. Conclusions

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Theory situation:

- Measurements are performed using theory predictions
- measured observables have to be compared with theoretical predictions (in various models: SM, MSSM, ...)

Full uncertainty is given by the (linear) sum of experimental and theoretical uncertainties!

Theoretical uncertainties for electroweak and Higgs-boson precision measurements at the FCC-ee

Conveners: A. Freitas¹, S. Heinemeyer², Contributors: M. Beneke³, A. Blondel⁴, A. Hoang⁵, P. Janot⁶, J. Reuter⁷, C. Schwinn⁸, and S. Weinzierl⁹

 \Rightarrow will go into CDR ?!

 \Rightarrow should be taken into account by other (exp) groups!

Where we need theory prediction:

- 1. Prediction of the measured quantity Example: M_W
 - \rightarrow at the same level or better as the experimental precision
- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Where we need theory prediction:

1. Prediction of the measured quantity Example: M_W

 \rightarrow at the same level or better as the experimental precision

- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Two types of theory uncertainties:

- 1. intrinsic: missing higher orders
- 2. parametric: uncertainty due to exp. uncertainty in SM input parameters Example: m_t , m_b , α_s , $\Delta \alpha_{had}$, ...

Options for the evaluation of intrinsic uncertainties:

- 1. Determine all prefactors of a certain diagram class (couplings, group factors, multiplicities, mass ratios) and assume the loop is $\mathcal{O}(1)$
- 2. Take the known contribution at *n*-loop and (n-1)-loop and thus estimate the n + 1-loop contribution:

$$\frac{(n+1)(\text{estimated})}{n(\text{known})} \approx \frac{n(\text{known})}{(n-1)(\text{known})}$$

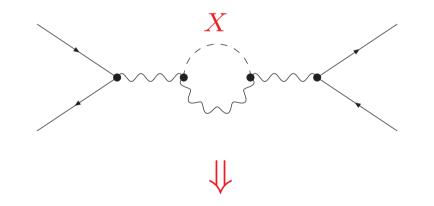
⇒ simplified example! Has to be done "coupling constant by coupling constant"

3. Variation of $\mu^{\overline{\text{DR}}}$ (QCD!, EW?)

- 4. Compare different renormalizations
- \Rightarrow Mostly used here: 1 & 2

- assume to go substantially beyond what is known now
- assume that many theorists will put many² hours of work into it (motivation?)
- do not assume that magically new calculational methods are invented
- are overall optimistic

 \Rightarrow they should be taken seriously!


Saying "Ah, theorists will have to work a bit harder and solve this" is not a realistic option!

2. Electroweak Precision Observables

Comparison of observables with theory:

Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}, M_h$$
Theory:
 ${\rm SM, MSSM}, \ldots$ \downarrow

Test of theory at quantum level: Sensitivity to loop corrections, e.g. \boldsymbol{X}

SM: limits on M_H , BSM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed \Rightarrow only models "ready" so far: SM, MSSM

The EWPO:

 M_W

$$\sigma_{had}^{0} = \sum_{q} \sigma_{q}(M_{Z}^{2}),$$

$$\Gamma_{Z} = \sum_{f} \Gamma[Z \to f\bar{f}], \quad (\text{from a fit to } \sigma_{f}(s) \text{ at various values of } s)$$

$$R_{\ell} = \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right] / \sigma_{\ell}(M_{Z}^{2}), \quad (\ell = e, \mu, \tau)$$

$$R_{q} = \sigma_{q}(M_{Z}^{2}) / \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right], \quad (q = b, c)$$

$$A_{FB}^{f} = \frac{\sigma_{f}(\theta < \frac{\pi}{2}) - \sigma_{f}(\theta > \frac{\pi}{2})}{\sigma_{f}(\theta < \frac{\pi}{2}) + \sigma_{f}(\theta > \frac{\pi}{2})} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f},$$

$$A_{LR}^{f} = \frac{\sigma_{f}(P_{e} < 0) - \sigma_{f}(P_{e} > 0)}{\sigma_{f}(P_{e} < 0) + \sigma_{f}(P_{e} > 0)} \equiv \mathcal{A}_{e} |P_{e}|$$

$$\sin^{2} \theta_{eff}^{\ell} \text{ from } A_{FB}^{f} \text{ and } A_{LR}^{f}$$

Quantity	FCC-ee	Current intrinsic unc.		Projected unc.	
M_W [MeV]	1	4	$(\alpha^3, \alpha^2 \alpha_s)$	1	
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	0.6	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5	
Γ_Z [MeV]	0.1	0.5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.2	
$R_b \ [10^{-5}]$	6	15	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$	7	
$R_l \ [10^{-3}]$	1	5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$	1.5	

These calculations are required for the projection:

- complete $\mathcal{O}\left(\alpha\alpha_s^2\right)$ corrections
- fermionic $\mathcal{O}\left(\alpha^2 \alpha_s\right)$ corrections
- double-fermionic $\mathcal{O}\left(\alpha^{3}\right)$ corrections
- leading four-loop corrections enhanced by the top Yukawa coupling

For these calculations, qualitatively new developments of existing loop integration techniques will be required, but no conceptual paradigm shift.

Parametric uncertainties:

- 1. M_H : better than 50 MeV \Rightarrow negligible
- 2. M_Z : ~ 0.1 MeV with negligible theory uncertainties \Rightarrow negligible
- 3. $\alpha_s(M_Z)$: from (mainly) R_ℓ $\delta \alpha_s^{\text{exp}} \sim 10^{-4}$, $\delta \alpha_s^{\text{theo}} \sim 1.5 \times 10^{-4}$
- 4. m_t : from threshold scan $\delta m_t^{\text{exp}} \sim \mathcal{O} (10 \text{ MeV})$ $\delta m_t^{\text{theo}} \sim 50 \text{ MeV} (\text{NNNLO/NNLL} \oplus 1S \to \overline{\text{MS}} \oplus \delta \alpha_s)$
- 5. m_b : from lattice calculations $\delta m_b \sim 10 \text{ MeV}$ (still under discussion, too optimistic?)
- 6. $\Delta \alpha_{had}$: BES III and Belle II: $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ better from measurements "around the Z pole?

SM input: $\Delta \alpha_{had} \Rightarrow$ could be limiting factor!

From $e^+e^- \rightarrow$ had. using dispersion relation

today: $\delta(\Delta \alpha_{had}) \sim 10^{-4}$ possible improvement in the future: $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$

Direct determination at FCC-ee from $e^+e^- \rightarrow f\bar{f}$ off the Z peak [P. Janot '15] possible improvement in the future: $\delta(\Delta \alpha_{had}) \sim 2 \times 10^{-5} \Rightarrow TU$ neglected

Calculation of $e^+e^- \rightarrow f\bar{f}$ needed at 3-loop and beyond: [A. Freitas '16] current techniques (2L/3L): corrections of ~ 10⁻³ new calculation methods (2L/3L): corrections of ~ 10⁻⁴ unknown methods 3L: $\leq 10^{-5}$ unknown methods 4L: ~ 10⁻⁵ (+ higher-orders in real photon emission) \Rightarrow improvement unclear $\Rightarrow \delta(\Delta \alpha_{had}) \sim 3 \times 10^{-5}$ Additional uncertainty for M_W from threshold scan:

Not only $e^+e^- \rightarrow W^{(*)}W^{(*)}$, but $e^+e^- \rightarrow WW \rightarrow 4f$ needed

<u>Current status:</u> full one-loop for $2 \rightarrow 4$ process [*A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '99-'02*] \Rightarrow extraction of M_W at the level of ~ 6 MeV

Most recent improvement:

leading 2L corrections from EFT

[Actis, Beneke, Falgari, Schwinn '08]

 \Rightarrow impact on M_W at the level of $\sim 3 \text{ MeV}$

 \Rightarrow full 2L for 2 \rightarrow 4 process not foreseeable

Potentially possible:

2L resummed higher-order terms for $e^+e^- \rightarrow WW$ and $W \rightarrow ff'$ \Rightarrow extraction of M_W at $\sim 1 \text{ MeV}$?

Quantity	FCC-ee	future parametric unc.	Main source
M_W [MeV]	1 - 1.5	1 (0.6)	$\delta(\Delta lpha_{\sf had})$
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	0.6	2(1)	$\delta(\Delta lpha_{\sf had})$
Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$R_b \ [10^{-5}]$	6	< 1	$\delta lpha_s$
R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$

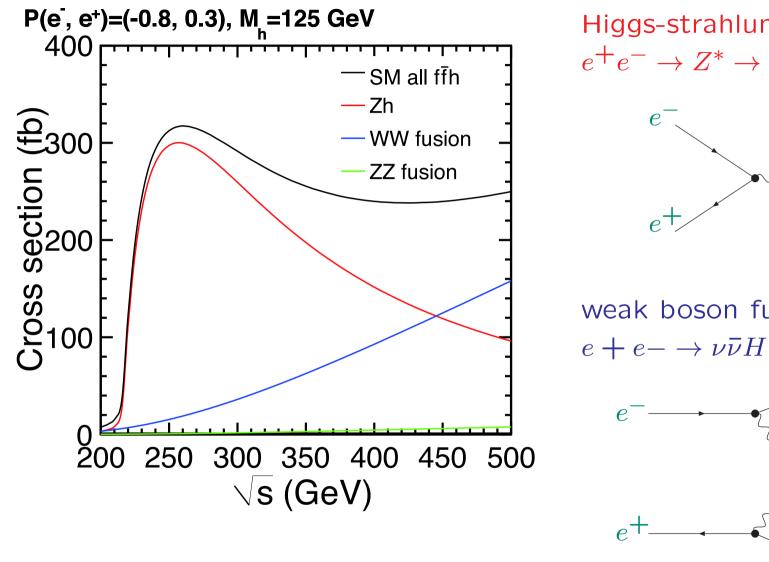
 $\delta(\Delta \alpha_{had}) = 5(3) \times 10^{-5}$

 \Rightarrow add quadratic to experimental uncertainties!

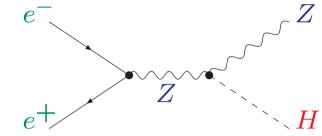
 \Rightarrow add linearly to intrinsic uncertainties!

3. Higgs observables: Higgs couplings

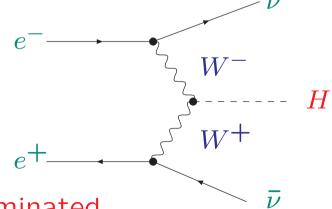
Initial measurement: $\sigma \times BR$


recoil method: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-, \ \mu^+\mu^-$

 \Rightarrow measurement of the Higgs production cross section


⇒ NO additional theoretical assumptions needed for absolute determination of partial widths

 \Rightarrow indirect measurement of total width


⇒ direct extraction of partial widths (couplings)

Higgs-strahlung: $e^+e^- \to Z^* \to ZH$

weak boson fusion (WBF):

FCC-ee: $\sqrt{s} \sim 250$ GeV, Higgs-strahlung dominated

Sven Heinemever FCC-ee physics meeting, Vidyo, 31.10.2016

$$e^+e^- \to ZH$$
:

 $\delta\sigma_{HZ}^{\mathrm{exp}}\sim 0.4\%$

full one-loop available, corrections of 5-10%

rough estimate: $\delta \sigma_{HZ}^{\text{theo}} \sim 1\%$ from missing two-loop corrections

Two-loop corrections for $2 \rightarrow 2$ can in principle be done . . .

\Rightarrow theory uncertainties sufficiently small

 $e^+e^- \rightarrow \nu \bar{\nu} H$:

small contribution ...

Partial two-loop calculation (with closed fermion loops) can in principle be done . . .

\Rightarrow theory uncertainties sufficiently small

Decay width theoretical uncertainties: General recipe:

[LHCHXSWG BR group '15]

- 1. Parametric Uncertainties: $p \pm \Delta p$
 - Evaluate partial widths and BRs with p, $p + \Delta p$, $p \Delta p$ and take the differences w.r.t. central values
 - Upper $(p + \Delta p)$ and lower $(p \Delta p)$ uncertainties summed in quadrature to obtain the Combined Parametric Uncertainty

2. Theoretical Uncertainties:

- Calculate uncertainty for partial widths and corresponding BRs for each theoretical uncertainty
- Combine the individual theoretical uncertainties linearly to obtain the Total Theoretical Uncertainty
- \Rightarrow estimate based on "what is included in the codes"!
- 3. Total Uncertainty:

Linear sum of the Combined Parametric Uncertainty and the Total Theoretical Uncertainties

Intrinsic uncertainties for decay widths:

"FCC-ee" = expected precision on g_{Hxx}^2

Partial width	QCD	electroweak	total	future	FCC-ee
$H \to b\overline{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	$\sim 0.2\%$	$\sim 1.0\%$
$H \to c \overline{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	$\sim 0.2\%$	$\sim 1.7\%$
$H \to \tau^+ \tau^-$	—	< 0.3%	< 0.3%	< 0.1%	$\sim 1.3\%$
$H \to \mu^+ \mu^-$	—	< 0.3%	< 0.3%	< 0.1%	$\sim 15\%$
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$	$\sim 1\%$	$\sim 2\%$
$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!1\%$	< 1%	$\sim 3.6\%$
$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$	$\sim 1\%$	
$H \to WW \to 4f$	< 0.5%	< 0.3%	$\sim 0.5\%$	$\lesssim 0.4\%$	$\sim 0.5\%$
$H \rightarrow ZZ \rightarrow 4f$	< 0.5%	< 0.3%	$\sim 0.5\%$	$\lesssim 0.3\%$	$\sim 0.4\%$
Γ _{tot}				$\sim 0.3\%$	$\sim 1\%$

\Rightarrow non-negligible for $H \rightarrow WW/ZZ \rightarrow \rm 4f$

Sven Heinemeyer FCC-ee physics meeting, Vidyo, 31.10.2016

Future parametric uncertainties for decay widths:

decay	fut. intr.	fut. para. m_q	para. α_s	para. M_H	FCC-ee
$H \to b\overline{b}$	$\sim 0.2\%$	0.6%	< 0.1%	_	$\sim 1.0\%$
$H \to c \overline{c}$	$\sim 0.2\%$	$\sim 1\%$	< 0.1%	—	$\sim 1.7\%$
$H \to \tau^+ \tau^-$	< 0.1%	_	—	—	$\sim 1.3\%$
$H \to \mu^+ \mu^-$	< 0.1%	_	—	—	$\sim 15\%$
$H \to gg$	$\sim 1\%$		0.5%	—	$\sim 2\%$
$H\to\gamma\gamma$	< 1%	_	_	_	$\sim 3.6\%$
$H \to Z\gamma$	$\sim 1\%$	_	—	$\sim 0.1\%$	
$H \to WW$	$\lesssim 0.4\%$	_	—	$\sim 0.1\%$	$\sim 0.5\%$
$H \to ZZ$	$\lesssim 0.3\%$	_	—	$\sim 0.1\%$	$\sim 0.4\%$
Γ _{tot}	$\sim 0.3\%$	$\sim 0.4\%$	< 0.1%	< 0.1%	$\sim 1\%$

 Γ_{tot} applies "to all" (partial cancelations . . .) \Rightarrow non-negligible in particular for $H \rightarrow WW/ZZ \rightarrow 4f$ (δm_b optimistic?) The above numbers have all been obtained assuming the SM as calculational framework.

The SM constitutes the model in which highest theoretical precision for the predictions of EWPO/ Γ_H can be obtained.

We know that BSM physics must exist! (DM, gravity, ...)

As soon as BSM physics will be discovered, an evaluation of the EWPO/ Γ_H in any preferred BSM model will be necessary.

The corresponding theory uncertainties, both intrinsic and parametric, can then be larger (as known for the MSSM).

A dedicated theory effort (beyond the SM) would be needed in this case.

4. Conclusions

- The full uncertainty of a measured quantity is given by the (linear) sum of experimental and theoretical uncertainties!
- We give (realistic/optimistic) estimates for future intrinsic and parametric uncertainties
- <u>EWPO</u>: intrinsic unc. larger than anticipated experimental unc. parametric unc. often larger than experimental uncertainties \Rightarrow particularly true for M_W and $\sin^2 \theta_{eff}$
- <u>Higgs:</u> cross section calculations can be under control intrinsic unc. can be relevant for $H \rightarrow WW/ZZ \rightarrow 4f$ parametric unc. can be relevant, in particular for $H \rightarrow WW/ZZ \rightarrow 4f$
- Write-up is in preparation, will go into CDR Uncertainties should be taken into account by other (exp) groups!