TIMESLICES © 1 ©

RunLis
Run 264261
Basic QA
— Run 264261 started at approximately Tuesday, 25 Oct 2016 11:18:59 (CERN
time zone).
S 5 a e Gamma Trigger Low Logbook entry
‘AmpEdgePosEMCGALOnline:
AmpEdgePosEMCGALOnline

MaxEdgePosEMCGALOnline
Integrated ampiitude EMCGAL patch Oniine

Gamma Trigger High
== I
100
\mpEdgep: Hoffin oo rEem— -]
\mpEdgep i £
=
‘AmpEdgePosEMCGAHRecalc E
L =, B
60 — 0 — —
E = -
= =
= o
e, = =l | oS
Jet Trigger Low = 10
i B |
E -
[

ALICE OVERWATCH

Online detector monitoring and basic QA via the HLT

Raymond Ehlers!, James Mulligan®

1Yale University

Oct 26, 2016



ALICE OVERWATCH

» Provides the processing and interface for online (expert) detector
monitoring and basic QA using data from the HLT.

» |t began as a project to provide online real-time feedback on the
EMCal during the 2015 PbPb run.

» Has since expanded to support additional detectors with additional
features.

» OVERWATCH handles spectra, 2D histograms (for example,
EMCal cell amplitudes), etc.

» Code available at:
https://github.com/raymondEhlers/0VERWATCH


https://github.com/raymondEhlers/OVERWATCH

OVERWATCH Architecture

OVERWATCH




OVERWATCH Architecture

» OVERWATCH is python and ROOT based.

» Split into two main parts:

» Processing
» The Web App

» Depends on the processing module for user requested processing.
Receiver from HLT written in C4++ and utilizes ZMQ.

» Data is received approximately every minute and time stamped.
» Large, but not unreasonably large, amount of volume. (= 100
GB/year for EMCal + HLT + ~ 3 months of TPC data).

Designed to run as micro-service, so can start instances as needed.

Since OVERWATCH processes data from the HLT, our architecture
is similar to data processing for Run 3 when the HLT->Event
Processing Node.

v

v

v



OVERWATCH Processing

» Processing utilizes PYROOT and runs every minute on newly
received data.

» Manages run and subsystem data via ZODB (Zeo Object
Database)

» Makes management of python objects straightforward.
» Also used by Indico.
» We aren't strongly attached to this DB.

> Any appropriate SQL or NoSQL database would be fine.
» Code is not really reliant on ZODB - easy to switch elsewhere.

» Structure is hierarchical.
» Run->Subsystems->HistogramGroups->Histograms.

» Actual data is just stored on disk in root files.

» Output of processing is stored in json files.



OVERWATCH Processing

» Additional processing available per detector/histogram.

» Can check values in particular histograms, stack hists, create
additional hists to summarize, etc.
» Can also handles alarms.

» Time slices

» Can make arbitrary selections in time (0-10 minutes, 5-17,
whatever, etc) within a run*

» Can also select processing options. Hot channel thresholds, scale by
number of events, etc.

» Caches result - only reprocess if absolutely necessary.

» Basic trending support for extracted values. More to come.

* - subject to intrinsic time resolution of HLT of 2 minutes encompassing ~ 3 mins.



OVERWATCH Web App

» The Web App is built on Flask.

>
| 2

>

Interface built using Google's Polymer.

Pages are built using the Jinja2 template engine. Each detector can
build their own.

JSROOT used for presenting histograms, with fall back to static
images.

Navigation handled by AJAX, with fall back to full page reloads.

» Display histograms according to detector specification.




» Per detector display, sorting.
» Time slices.

» Time dependence.
» Processing options.




Status and Outlook

» Previous version running for almost all of 2016 with few issues.
> Previous version available at:
https://aliceoverwatch.physics.yale.edu/monitoring
> Login information available at: https://twiki.cern.ch/twiki/
bin/view/ALICE/L1TriggerMonitoring.

v

Update ready and currently being rolled out.
We support a micro-services architecture - should support
straightforward scaling.

> Tested for Web App.
» Still to be tested for processing, but no known show stoppers.

v

v

In discussion with Offline about them hosting the interface.

v

Can test yourself using our docker image. See slide in backup.

v

Code available at:
https://github.com/raymondEhlers/0VERWATCH


https://aliceoverwatch.physics.yale.edu/monitoring
https://twiki.cern.ch/twiki/bin/view/ALICE/L1TriggerMonitoring
https://twiki.cern.ch/twiki/bin/view/ALICE/L1TriggerMonitoring
https://github.com/raymondEhlers/OVERWATCH

Thank You

» Thanks to Salvatore Aiola, Markus Fasel, and the HLT!




Backup



Try it yourself using docker

» Docker image available at
https://hub.docker.com/r/rehlers/overwatch/.

» Can be tested using the following procedure (to be streamlined -
we don't deploy processing like this at the moment).

>

>
>
| 4

Download test data from: https:
//aliceoverwatch.physics.yale.edu/testingDataArchive
docker run -it -v data:/overwatch/data -e
deploymentOption=devel overwatch /bin/bash

cd /overwatch && python runProcessRuns.py

cd deploy && python updateDBUsers.py

cd /overwatch && python runWebApp.py

» Still testing some cases - please let us know if you run into any
trouble!


https://hub.docker.com/r/rehlers/overwatch/
https://aliceoverwatch.physics.yale.edu/testingDataArchive
https://aliceoverwatch.physics.yale.edu/testingDataArchive

OVERWATCH

Online Visualization of Emerging tRends and Web Accessible deTector
Conditions using the HLT




Additional improvements

» Improve time series summary support.




