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Outline
• EOS architecture

• Releases process and branches

• EOS FUSE status and improvements

• Kinetic Ethernet drives as diskserver backend

• Future namespace architecture

• AFS replacement

• Motivation and plan
• Impact and opportunities
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EOS architecture

• Disk only physics file storage

• In memory hierarchical 
namespace

• File layouts (default 2 replicas)

• Physics data & others

• Low latency access
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EOS ALICE instance
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• No. files / no. directories ratio: 3500 : 1
• Annual growth rate: files ~ 61%, directories ~ 1%
• Disk read / write: 

• 6.9 GB/s avg. read
• 330 MB/s avg. write

• Namespace bootup time: ~ 60 min
• Namespace size in memory: ~ 390 GB



EOS releases and branches
• Production version

• Branch: beryl_aquamarine
• Release number: >= 0.3.210
• Requires XRootD 3.3.6

• Development version (master)
• Branch: citrine
• Release number: >= 4.1.9
• Requires XRootD 4.4.0

• Feature branches get merged into master e.g. 
kinetic, geo-scheduling, namespace devel. etc.
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EOS FUSE status
• Goal: Help AFS retire gracefully

• Improved meta-data caching using the Kernel
buffer cache

• Faster directory listing using bulk meta-data
queries

• Multi-user mount supporting user private Kerberos and X509
authenticated connections

• Already deployed on lxplus and lxbatch
• Supports user and session bindings
• Use autofs for better user experience
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EOS FUSE multi-user mount
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EOS FUSE latency optimisations
• Write-back cache with request aggregation

• Lazy-open implementation RO/RW
• Separate meta-data and data paths
• Data-server open happens on the first I/O operation
• Hide latency using asynchronous open on data-server

9EOS developments and AFS retirement plan



EOS FUSE future
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• Separate data and meta-data paths inside the FUSE module
• Use a plugin-like model for caching, local storage, authorization etc.
• Capitalize on the lessons learned concerning latency optimizations



• Kinetic Open Storage Project
• HDDs with Ethernet interface
• Key-value instead of block interface
• Multi-vendor support: Seagate, Dell, Toshiba,

RedHat, Cisco etc.

• Benefits
• Reduced total cost of ownership (TCO)

• Robustness & scalability – built-in replication, compression and 
CRC

• Simple abstract interface – future proof against storage technology 
changes. Supported operations: put, get, delete, getnext etc.

• EOS integration done by Paul Hermann Lensing, Seagate

EOS Kinetic integration
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How EOS uses Kinetic?

• Local cluster

• Attached to each individual data-server

• Add Kinetic as a new IO Plugin

• EOS is completely agnostic of the underlying IO 
access type
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EOS with Kinetic local clusters
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EOS with Kinetic local clusters
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EOS Kinetic multi-path
• One Kinetic cluster shared by many data-

servers

• Requires load-balancing and concurrency 
resolution  Kinetic aware-scheduling

• Fewer data-server can supply higher storage 
capacity

• Data-server  Kinetic gateway
• Fully utilize the combined data-server network 

capacity
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EOS Kinetic multi-path
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What is the EOS namespace?
• C++ library used by the EOS MGM node single-threaded
• Provides API for dealing with hierarchical collections of 

files

• Filesystem elements
• Containers & files

• Views
• Aggregate info about filesystem elem.
• E.g QuotaView, FileSystemView etc.

• Persistence objects
• Objects responsible for reading and storing filesystem elements
• Implemented as binary change-logs
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Namespace architecture pros/cons

• Pros:
• Using hashes all in memory  extremely fast
• Every change is logged  low risk of data loss
• Views rebuilt at each boot  high consistency

• Cons:
• For big instances it requires a lot of RAM
• Booting the namespace from the change-log 

takes long
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EOS Namespace Interface
• Prepare the setting for different namespace implementations
• Abstract a Namespace Interface to avoid modifying other parts 

of the code

• EOS citrine 4.*

• Plugin manager – able not only to dynamically load but also stack 
plugins if necessary

• libEosNsInMemory.so – the original in-memory namespace 
implementation

• libEosNsOnRados.so – possible implementation on top of libRados

• libEosNsOnFilesystem.so – possible implementation on top of a 
Linux filesystem
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Why Redis?
• Redis – in-memory data structure store
• Separate data from the application logic and user interface
• Supports various data structures: strings, hashes, lists, 

sets, sorted sets etc.

• Namespace implementation: libEosOnRedis.so
• Light-weight EOS MGM node that can easily be restarted 

or updated
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XRootD and Redis
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• Replace Redis backend with XRootD

• Implemented as an XRootD protocol plugin – to be 
contributed upstream

• XRootD can use RocksDB as persistent key-value store
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Namespace HA
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• Ensure high-availability using the Raft 
consensus algorithm
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AFS retirement plan
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AFS status
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• In use since 1990
• 35k users (5k active/day), 450 TB data, 3.5B files/dirs, 3.5B 

accesses/day
• Last year growth: +80TB, +500M files
• Infrastructure: 50 (old=small) fileservers, 5DB servers, 1.2 FTE / 3 

people

• Split into
• Personal $HOME (2..10GB volumes)

• Automatically created for every (UNIX) account
• Personal workspace (10..100GB)

• Self-service
• Shared project space (1GB..10TB – vol. capped at 100GB)

• Delegated admin powers
• Group shell environments

• “HEPIX” scripts (but apparently only remaining user …)
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AFS usage at CERN (2)
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• AFS is basis for local “Compute” workflow (non-grid)

• Services: Twiki, SVN, LXPLUS etc.
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HEPIX 2016, J.Iven



Why phase out?
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• OpenAFS project is in (slow) decline
• Various “soft” indicators: releases, traffic, people, conferences,..
• Pent-up changes: IPv6, DES (backward compat ... ®?)
• Funding worries → ecosystem (2 companies, little else)
• Ongoing client upkeep (including signed binaries on Win+Mac)

• Technical - widening gap
• Single point of failure (per-volume) architecture vs ever-

bigger machines
• RX protocol vs “long fat pipes” - volmove, replication, backup..
• Odd limitations (32k files in directory)

• But … project is still “functional” - new releases, slow changes
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Where to go?
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• AFS is very good:
• Many small files – decentralized = scalable namespace
• Rapid create/delete on single client = writeback cache
• POSIXy enough for many applications (locks etc.)
• Cache and read-only replicas can cope with (moderately) high 

loads
• Secure (enough) for access from untrusted clients and remote
• Multiplatform and free

• No single ready-made drop-in replacement …

=>> Need to go over use cases one-by-one
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Where to go?

28

• CERN Migration targets
• CERNBOX – human-generated content
• EOS-FUSE – filesystem access
• EOS – live data
• CVMFS – (massive) software distribution
• CASTOR – archive + dead data
• Delete (?) – machine-generated junk & obsolete
• Special cases: cluster-level filesystems (NFS, CEPHFS, HDFS)

• Review: Some use cases {c|sh}ould change: (after 26 years...)
• Interactive analysis: SWAN
• Temp files : use local disk or memory
• Browsers, Mail: stay local
• “defined” OS+compiler: VM / containers
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Why EOS?
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• Strategic:
• EOS already holds most physics data at CERN
• Building block for several new services

• CERNBOX – very popular
• SWAN – huge interest
• Disk subsystem of future tape archive (CTA)

• EOS-FUSE (single-user) is widely used in experiments
• Despite not really being encouraged ...

• Full control over implementation
• Flexibility
• Non-standard – can extend at will
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Access method: Sync
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Access method: Share

31EOS developments and AFS retirement plan



Access method: Web & Mobile
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Access method: FUSE
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Looks promising but …
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• $HOME directories
• Multi-role LXPLUS:

• External SSH access gateway
• LSF submission machine
• “default” SLC6/CC7 validated environment                              Future 
• Analysis compile, debug, run                                           Computing@CERN
• 'acrontab' recipient, mail reading, browsing..   

→ disentangle from “AFS”
• BATCH: LSF → CONDOR migration

• Opportunity for better efficiency
• (CONDOR will have AFS access)

• Account: split “UNIX” account from “AFS” account
• Home directory is optional

• WEBAFS → WEBEOS: same setup. Try it out!
• AFS-the-free-backup: make people aware - we have tapes!
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Phase out ~ timeline
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1998
• “look at alternatives” …

2014
• “rather bad state”

2015   

• NOISE & Discovery
• Initial communication
• Establish experiment communication
• Use case discovery



Phase out ~ timeline
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2016

• EASY
• Web -> EOSFUSE 
• Projects -> EOSFUSE
• Software -> CVMFS      + Obvious cleanup

2017

• HARDER
• Dead experiments – DPHEP?
• More elaborate use-cases
• Home directories (?)

2018-19

• HARD
• As in “die-hard” …
• No “LHC-stop-threat” in 2019

End of LS2
• ~ The end ~



Summary
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• EOS FUSE
• Strategic development to satisfy as many use-cases as 

possible

• EOS Namespace
• Meet scalability and growth demands 
• Prototype on top of Redis/XRootD and HA using Raft

• AFS phase out slowly starting
• But not in “panic” mode
• Attractive new tools & services – use them
• Rethink use-cases, no 1-to-1 mapping
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https://twiki.cern.ch/twiki/bin/viewauth/IT/AfsPhaseout

https://twiki.cern.ch/twiki/bin/viewauth/IT/AfsPhaseout
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