

#### **EOS developments and AFS retirement plan**

**Elvin Sindrilaru** - on behalf of the EOS team and IT Storage Group

ALICE Offline Week – 02.11.2016



## Outline

- EOS architecture
- Releases process and branches
- EOS FUSE status and improvements
- Kinetic Ethernet drives as diskserver backend
- Future namespace architecture
- AFS replacement
  - Motivation and plan
  - Impact and opportunities



# **EOS** architecture

xrdcp

- Disk only physics file storage
- In memory hierarchical namespace
- File layouts (default 2 replicas)
- Physics data & others
- Low latency access





### **EOS ALICE instance**



- No. files / no. directories ratio: **3500 : 1**
- Annual growth rate: files ~ 61%, directories ~ 1%
- Disk read / write:
  - **6.9 GB/s** avg. read
  - 330 MB/s avg. write
- Namespace bootup time: ~ 60 min
- Namespace size in memory: ~ 390 GB



### **EOS releases and branches**

- Production version
  - Branch: beryl\_aquamarine
  - Release number: >= 0.3.210
  - Requires XRootD 3.3.6



- **Development** version (master)
  - Branch: citrine
  - Release number: >= 4.1.9
  - Requires **XRootD** 4.4.0



• Feature branches get merged into master e.g. kinetic, geo-scheduling, namespace devel. etc.



### **EOS FUSE status**

- **Goal:** Help AFS retire gracefully
- Improved meta-data caching using the Kernel buffer cache
- Faster directory listing using bulk meta-data queries
- Multi-user mount supporting user private Kerberos and X509 authenticated connections
  - Already deployed on lxplus and lxbatch
  - Supports **user** and **session** bindings
  - Use **autofs** for better user experience







### **EOS FUSE multi-user mount**





## **EOS FUSE latency optimisations**

- Write-back cache with request aggregation
- Lazy-open implementation RO/RW
  - Separate meta-data and data paths
  - Data-server open happens on the first I/O operation
  - Hide latency using asynchronous open on data-server





### **EOS FUSE future**

- Separate data and meta-data paths inside the FUSE module
- Use a **plugin-like model** for caching, local storage, authorization etc.
- Capitalize on the lessons learned concerning latency optimizations





## **EOS Kinetic integration**

- Kinetic Open Storage Project
  - HDDs with Ethernet interface
  - Key-value instead of block interface
  - Multi-vendor support: Seagate, Dell, Toshiba, RedHat, Cisco etc.





SEAGATE

#### Benefits

- Reduced total cost of ownership (TCO)
  - **Robustness & scalability** built-in replication, compression and
- Robustness & scalability built-in replication, compression and CRC
- Simple **abstract interface** future proof against storage technology changes. Supported operations: put, get, delete, getnext etc.
- EOS integration done by **Paul Hermann Lensing**, **Seagate**



### **How EOS uses Kinetic?**



- Local cluster
  - Attached to each individual data-server
  - Add Kinetic as a new **IO Plugin**
  - EOS is completely agnostic of the underlying IO access type



















## **EOS Kinetic multi-path**



- One Kinetic cluster shared by many dataservers
- Requires load-balancing and concurrency resolution → Kinetic aware-scheduling
- Fewer data-server can supply higher storage capacity
  - Data-server  $\rightarrow$  Kinetic gateway
  - Fully utilize the combined data-server network capacity







# What is the EOS namespace?

- C++ library used by the EOS MGM node single-threaded
- Provides API for dealing with hierarchical collections of files
- Filesystem elements
  - Containers & files
- Views
  - Aggregate info about filesystem elem.
  - E.g QuotaView, FileSystemView etc.
- Persistence objects
  - Objects responsible for reading and storing filesystem elements
  - Implemented as binary change-logs





### Namespace architecture pros/cons

- Pros:
  - Using hashes all in memory → extremely fast
  - Every change is logged → low risk of data loss
  - Views rebuilt at each boot → high consistency
- Cons:
  - For big instances it requires **a lot** of RAM
  - Booting the namespace from the change-log takes long



# **EOS Namespace Interface**

- Prepare the setting for different namespace implementations
- Abstract a **Namespace Interface** to avoid modifying other parts of the code
- EOS citrine 4.\*
  - **Plugin manager** able not only to dynamically load but also stack plugins if necessary
  - **IibEosNsInMemory.so** the original in-memory namespace implementation
  - **IibEosNsOnRados.so** possible implementation on top of libRados
  - **libEosNsOnFilesystem.so** possible implementation on top of a Linux filesystem



# Why Redis?

- Redis in-memory data structure store
- Separate data from the application logic and user interface
- Supports various data structures: strings, hashes, lists, sets, sorted sets etc.
- Namespace implementation: libEosOnRedis.so
- Light-weight EOS MGM node that can easily be restarted or updated





# **XRootD and Redis**

- Replace Redis backend with XRootD
- Implemented as an XRootD protocol plugin to be contributed upstream
- XRootD can use **RocksDB** as persistent key-value store





# **Namespace HA**

 Ensure high-availability using the Raft consensus algorithm





## **AFS retirement plan**



# **AFS** status

- In use since 1990
  - 35k users (5k active/day), 450 TB data, 3.5B files/dirs, 3.5B accesses/day
  - Last year growth: **+80TB**, **+500M files**
  - Infrastructure: 50 (old=small) fileservers, 5DB servers, 1.2 FTE / 3 people
- Split into
  - **Personal \$HOME** (2..10GB volumes)
    - Automatically created for every (UNIX) account
  - Personal workspace (10..100GB)
    - Self-service
  - Shared project space (1GB..10TB vol. capped at 100GB)
    - Delegated admin powers
  - Group shell environments
    - "HEPIX" scripts (but apparently only remaining user ...)



# AFS usage at CERN (2)

• AFS is basis for local "Compute" workflow (non-grid)



• Services: Twiki, SVN, LXPLUS etc.





HEPIX 2016, J.Iven

# Why phase out?

- OpenAFS project is in (slow) decline
  - Various "soft" indicators: releases, traffic, people, conferences,..
  - Pent-up changes: IPv6, DES (backward compat ... ®?)
  - Funding worries  $\rightarrow$  ecosystem (2 companies, little else)
  - Ongoing client upkeep (including signed binaries on Win+Mac)
- Technical widening gap
  - **Single point of failure** (per-volume) architecture vs everbigger machines
  - RX protocol vs "long fat pipes" volmove, replication, backup..
  - Odd limitations (32k files in directory)
- But ... project is **still "functional"** new releases, slow changes



# Where to go?

- AFS is very good:
  - Many small files decentralized = scalable namespace
  - Rapid create/delete on single client = writeback cache
  - POSIXy enough for many applications (locks etc.)
  - Cache and read-only replicas can cope with (moderately) high loads
  - Secure (enough) for access from untrusted clients and remote
  - Multiplatform and free
- No single ready-made drop-in replacement ...

#### =>> Need to go over use cases **one-by-one**



# Where to go?

#### • **CERN Migration targets**

- **CERNBOX** human-generated content
- EOS-FUSE filesystem access
- EOS live data
- **CVMFS** (massive) software distribution
- **CASTOR** archive + dead data
- **Delete (?)** machine-generated junk & obsolete
- Special cases: cluster-level filesystems (NFS, CEPHFS, HDFS)
- **Review:** Some use cases {c|sh}ould change: (after 26 years...)
  - Interactive analysis: SWAN
  - Temp files : use local disk or memory
  - Browsers, Mail: stay local
  - "defined" OS+compiler: VM / containers









# Why EOS?

- Strategic:
  - EOS already holds most physics data at CERN
  - Building block for several new services
    - CERNBOX very popular
    - SWAN huge interest
    - Disk subsystem of future tape archive (CTA)
  - **EOS-FUSE** (single-user) is widely used in experiments
    - Despite not really being encouraged ...
- Full control over implementation
  - Flexibility
  - Non-standard can extend at will





## **Access method: Sync**







## **Access method: Share**





## Access method: Web & Mobile





## **Access method: FUSE**



| [[mascett@lvo                                       | 1082815                       | 10 40                        |             |                          |                      |                                  |                                      |
|-----------------------------------------------------|-------------------------------|------------------------------|-------------|--------------------------|----------------------|----------------------------------|--------------------------------------|
| Filesystem                                          | Sire                          | Used                         | Avail       | Usets                    | Mo                   | inted a                          | an.                                  |
| eosuser                                             | 506T                          | 781                          | 437T        | 14%                      | /et                  | s/use                            |                                      |
| eosatlas                                            | 36P                           | 17P                          | 28P         | 45%                      | /=                   | s/atl                            | 15                                   |
| essalice                                            | 28P                           | 11P                          | 8.5P        | 57%                      | /et                  | su/ali                           | -                                    |
| eoscas                                              | 28P                           | 14P                          | 15P         | 49%                      | /=                   | s/cms                            |                                      |
| eoslhcb                                             | 13P                           | 7.6P                         | 4.6P        | 63%                      | /et                  | s/lhc                            |                                      |
| eospublic                                           | 16P                           | 5.80                         | 11P         | 36%                      | /=                   | s/pub                            | lie                                  |
| [lmascett@lxp                                       | Lus2015                       | -10                          |             |                          |                      |                                  |                                      |
| [lmascett@lxp                                       | Lus2015                       | -1# Ls                       | -le /       | eos/                     | ise                  | /1/1m                            | scett/                               |
| total 6644                                          |                               |                              |             |                          |                      |                                  |                                      |
|                                                     | Imagnet                       | t cl                         | 5           | Dec                      | 18                   | 15:58                            | CERN                                 |
| drex 1                                              |                               |                              |             |                          |                      |                                  |                                      |
| drwx, 1<br>drwx, 1                                  | Imascet                       | t c3                         |             | Jan                      | 26                   | 18:18                            | debug                                |
| drux 1<br>drux 1<br>drux 1                          | Imascet<br>Imascet            | t c3<br>t c3                 | :           | Jan<br>Dec               | 26<br>11             | 18:18                            | debug<br>download                    |
| drux, 1<br>drux, 1<br>drux, 1<br>drux, 1            | Lmascet<br>Lmascet<br>Lmascet | t c3<br>t c3<br>t c3         | :           | Jan<br>Dec<br>Oct        | 26<br>11<br>31       | 18:18<br>09:43<br>18:24          | debug<br>download<br>pdf             |
| drux, 1<br>drux, 1<br>drux, 1<br>drux, 1<br>drux, 1 | Lmascet<br>Lmascet<br>Lmascet | t c3<br>t c3<br>t c3<br>t c3 | 0<br>0<br>1 | Jan<br>Dec<br>Oct<br>Dec | 26<br>11<br>31<br>11 | 18:18<br>09:43<br>18:24<br>09:44 | debug<br>download<br>pdf<br>personal |





# Looks promising but ...

- \$HOME directories
- Multi-role LXPLUS:
  - External SSH access gateway
  - LSF submission machine
  - "default" SLC6/CC7 validated environment
  - Analysis compile, debug, run
  - 'acrontab' recipient, mail reading, browsing..
    - $\rightarrow$  disentangle from "AFS"
- BATCH: LSF  $\rightarrow$  CONDOR migration
  - Opportunity for better efficiency
  - (CONDOR will have AFS access)

#### Future Computing@CERN

- Account: split "UNIX" account from "AFS" account
  - Home directory is optional
- WEBAFS  $\rightarrow$  WEBEOS: same setup. Try it out!
- AFS-the-free-backup: make people aware we have tapes!



# **Phase out ~ timeline**





# **Phase out ~ timeline**





# Summary

#### EOS FUSE

 Strategic development to satisfy as many use-cases as possible

#### EOS Namespace

- Meet scalability and growth demands
- Prototype on top of Redis/XRootD and HA using Raft

#### • **AFS phase out** slowly starting

- But not in "panic" mode
- Attractive new tools & services use them
- Rethink use-cases, no 1-to-1 mapping

https://twiki.cern.ch/twiki/bin/viewauth/IT/AfsPhaseout





www.cern.ch