

EOS developments and AFS retirement plan

Elvin Sindrilaru - on behalf of the
EOS team and IT Storage Group

ALICE Offline Week – 02.11.2016

Outline
• EOS architecture

• Releases process and branches

• EOS FUSE status and improvements

• Kinetic Ethernet drives as diskserver backend

• Future namespace architecture

• AFS replacement

• Motivation and plan
• Impact and opportunities

EOS developments and AFS retirement plan 3

EOS architecture

• Disk only physics file storage

• In memory hierarchical
namespace

• File layouts (default 2 replicas)

• Physics data & others

• Low latency access

4EOS developments and AFS retirement plan

EOS ALICE instance

5EOS developments and AFS retirement plan

• No. files / no. directories ratio: 3500 : 1
• Annual growth rate: files ~ 61%, directories ~ 1%
• Disk read / write:

• 6.9 GB/s avg. read
• 330 MB/s avg. write

• Namespace bootup time: ~ 60 min
• Namespace size in memory: ~ 390 GB

EOS releases and branches
• Production version

• Branch: beryl_aquamarine
• Release number: >= 0.3.210
• Requires XRootD 3.3.6

• Development version (master)
• Branch: citrine
• Release number: >= 4.1.9
• Requires XRootD 4.4.0

• Feature branches get merged into master e.g.
kinetic, geo-scheduling, namespace devel. etc.

6EOS developments and AFS retirement plan

EOS FUSE status
• Goal: Help AFS retire gracefully

• Improved meta-data caching using the Kernel
buffer cache

• Faster directory listing using bulk meta-data
queries

• Multi-user mount supporting user private Kerberos and X509
authenticated connections

• Already deployed on lxplus and lxbatch
• Supports user and session bindings
• Use autofs for better user experience

7EOS developments and AFS retirement plan

EOS FUSE multi-user mount

8EOS developments and AFS retirement plan

EOS FUSE latency optimisations
• Write-back cache with request aggregation

• Lazy-open implementation RO/RW
• Separate meta-data and data paths
• Data-server open happens on the first I/O operation
• Hide latency using asynchronous open on data-server

9EOS developments and AFS retirement plan

EOS FUSE future

10EOS developments and AFS retirement plan

• Separate data and meta-data paths inside the FUSE module
• Use a plugin-like model for caching, local storage, authorization etc.
• Capitalize on the lessons learned concerning latency optimizations

• Kinetic Open Storage Project
• HDDs with Ethernet interface
• Key-value instead of block interface
• Multi-vendor support: Seagate, Dell, Toshiba,

RedHat, Cisco etc.

• Benefits
• Reduced total cost of ownership (TCO)

• Robustness & scalability – built-in replication, compression and
CRC

• Simple abstract interface – future proof against storage technology
changes. Supported operations: put, get, delete, getnext etc.

• EOS integration done by Paul Hermann Lensing, Seagate

EOS Kinetic integration

11EOS developments and AFS retirement plan

How EOS uses Kinetic?

• Local cluster

• Attached to each individual data-server

• Add Kinetic as a new IO Plugin

• EOS is completely agnostic of the underlying IO
access type

12EOS developments and AFS retirement plan

EOS with Kinetic local clusters

13EOS developments and AFS retirement plan

EOS with Kinetic local clusters

14EOS developments and AFS retirement plan

EOS Kinetic multi-path
• One Kinetic cluster shared by many data-

servers

• Requires load-balancing and concurrency
resolution  Kinetic aware-scheduling

• Fewer data-server can supply higher storage
capacity

• Data-server  Kinetic gateway
• Fully utilize the combined data-server network

capacity

15EOS developments and AFS retirement plan

EOS Kinetic multi-path

16EOS developments and AFS retirement plan

What is the EOS namespace?
• C++ library used by the EOS MGM node single-threaded
• Provides API for dealing with hierarchical collections of

files

• Filesystem elements
• Containers & files

• Views
• Aggregate info about filesystem elem.
• E.g QuotaView, FileSystemView etc.

• Persistence objects
• Objects responsible for reading and storing filesystem elements
• Implemented as binary change-logs

17EOS developments and AFS retirement plan

Namespace architecture pros/cons

• Pros:
• Using hashes all in memory  extremely fast
• Every change is logged  low risk of data loss
• Views rebuilt at each boot  high consistency

• Cons:
• For big instances it requires a lot of RAM
• Booting the namespace from the change-log

takes long

18EOS developments and AFS retirement plan

EOS Namespace Interface
• Prepare the setting for different namespace implementations
• Abstract a Namespace Interface to avoid modifying other parts

of the code

• EOS citrine 4.*

• Plugin manager – able not only to dynamically load but also stack
plugins if necessary

• libEosNsInMemory.so – the original in-memory namespace
implementation

• libEosNsOnRados.so – possible implementation on top of libRados

• libEosNsOnFilesystem.so – possible implementation on top of a
Linux filesystem

19EOS developments and AFS retirement plan

Why Redis?
• Redis – in-memory data structure store
• Separate data from the application logic and user interface
• Supports various data structures: strings, hashes, lists,

sets, sorted sets etc.

• Namespace implementation: libEosOnRedis.so
• Light-weight EOS MGM node that can easily be restarted

or updated

20EOS developments and AFS retirement plan

XRootD and Redis

21

• Replace Redis backend with XRootD

• Implemented as an XRootD protocol plugin – to be
contributed upstream

• XRootD can use RocksDB as persistent key-value store

EOS developments and AFS retirement plan

Namespace HA

22

• Ensure high-availability using the Raft
consensus algorithm

EOS developments and AFS retirement plan

AFS retirement plan

23EOS developments and AFS retirement plan

AFS status

24

• In use since 1990
• 35k users (5k active/day), 450 TB data, 3.5B files/dirs, 3.5B

accesses/day
• Last year growth: +80TB, +500M files
• Infrastructure: 50 (old=small) fileservers, 5DB servers, 1.2 FTE / 3

people

• Split into
• Personal $HOME (2..10GB volumes)

• Automatically created for every (UNIX) account
• Personal workspace (10..100GB)

• Self-service
• Shared project space (1GB..10TB – vol. capped at 100GB)

• Delegated admin powers
• Group shell environments

• “HEPIX” scripts (but apparently only remaining user …)

EOS developments and AFS retirement plan

AFS usage at CERN (2)

25

• AFS is basis for local “Compute” workflow (non-grid)

• Services: Twiki, SVN, LXPLUS etc.

EOS developments and AFS retirement plan

desktop LXPLUS
(interactive) LXBATCH

AFS
code results

remote
(non-SLC)

AFS

server

client client client

HEPIX 2016, J.Iven

Why phase out?

26

• OpenAFS project is in (slow) decline
• Various “soft” indicators: releases, traffic, people, conferences,..
• Pent-up changes: IPv6, DES (backward compat ... ®?)
• Funding worries → ecosystem (2 companies, little else)
• Ongoing client upkeep (including signed binaries on Win+Mac)

• Technical - widening gap
• Single point of failure (per-volume) architecture vs ever-

bigger machines
• RX protocol vs “long fat pipes” - volmove, replication, backup..
• Odd limitations (32k files in directory)

• But … project is still “functional” - new releases, slow changes

EOS developments and AFS retirement plan

Where to go?

27

• AFS is very good:
• Many small files – decentralized = scalable namespace
• Rapid create/delete on single client = writeback cache
• POSIXy enough for many applications (locks etc.)
• Cache and read-only replicas can cope with (moderately) high

loads
• Secure (enough) for access from untrusted clients and remote
• Multiplatform and free

• No single ready-made drop-in replacement …

=>> Need to go over use cases one-by-one

EOS developments and AFS retirement plan

Where to go?

28

• CERN Migration targets
• CERNBOX – human-generated content
• EOS-FUSE – filesystem access
• EOS – live data
• CVMFS – (massive) software distribution
• CASTOR – archive + dead data
• Delete (?) – machine-generated junk & obsolete
• Special cases: cluster-level filesystems (NFS, CEPHFS, HDFS)

• Review: Some use cases {c|sh}ould change: (after 26 years...)
• Interactive analysis: SWAN
• Temp files : use local disk or memory
• Browsers, Mail: stay local
• “defined” OS+compiler: VM / containers

EOS developments and AFS retirement plan

Why EOS?

29

• Strategic:
• EOS already holds most physics data at CERN
• Building block for several new services

• CERNBOX – very popular
• SWAN – huge interest
• Disk subsystem of future tape archive (CTA)

• EOS-FUSE (single-user) is widely used in experiments
• Despite not really being encouraged ...

• Full control over implementation
• Flexibility
• Non-standard – can extend at will

EOS developments and AFS retirement plan

Access method: Sync

30EOS developments and AFS retirement plan

Access method: Share

31EOS developments and AFS retirement plan

Access method: Web & Mobile

32EOS developments and AFS retirement plan

Access method: FUSE

33EOS developments and AFS retirement plan

Looks promising but …

34

• $HOME directories
• Multi-role LXPLUS:

• External SSH access gateway
• LSF submission machine
• “default” SLC6/CC7 validated environment Future
• Analysis compile, debug, run Computing@CERN
• 'acrontab' recipient, mail reading, browsing..

→ disentangle from “AFS”
• BATCH: LSF → CONDOR migration

• Opportunity for better efficiency
• (CONDOR will have AFS access)

• Account: split “UNIX” account from “AFS” account
• Home directory is optional

• WEBAFS → WEBEOS: same setup. Try it out!
• AFS-the-free-backup: make people aware - we have tapes!

EOS developments and AFS retirement plan

Phase out ~ timeline

35EOS developments and AFS retirement plan

1998
• “look at alternatives” …

2014
• “rather bad state”

2015

• NOISE & Discovery
• Initial communication
• Establish experiment communication
• Use case discovery

Phase out ~ timeline

36EOS developments and AFS retirement plan

2016

• EASY
• Web -> EOSFUSE
• Projects -> EOSFUSE
• Software -> CVMFS + Obvious cleanup

2017

• HARDER
• Dead experiments – DPHEP?
• More elaborate use-cases
• Home directories (?)

2018-19

• HARD
• As in “die-hard” …
• No “LHC-stop-threat” in 2019

End of LS2
• ~ The end ~

Summary

37

• EOS FUSE
• Strategic development to satisfy as many use-cases as

possible

• EOS Namespace
• Meet scalability and growth demands
• Prototype on top of Redis/XRootD and HA using Raft

• AFS phase out slowly starting
• But not in “panic” mode
• Attractive new tools & services – use them
• Rethink use-cases, no 1-to-1 mapping

EOS developments and AFS retirement plan

https://twiki.cern.ch/twiki/bin/viewauth/IT/AfsPhaseout

https://twiki.cern.ch/twiki/bin/viewauth/IT/AfsPhaseout

	Slide Number 1
	EOS developments and AFS retirement plan
	Outline
	EOS architecture
	EOS ALICE instance
	EOS releases and branches
	EOS FUSE status
	EOS FUSE multi-user mount
	EOS FUSE latency optimisations
	EOS FUSE future
	EOS Kinetic integration
	How EOS uses Kinetic?
	EOS with Kinetic local clusters
	EOS with Kinetic local clusters
	EOS Kinetic multi-path
	EOS Kinetic multi-path
	What is the EOS namespace?	
	Namespace architecture pros/cons
	EOS Namespace Interface
	Why Redis?
	XRootD and Redis
	Namespace HA
	AFS retirement plan
	AFS status
	AFS usage at CERN (2)
	Why phase out?
	Where to go?
	Where to go?
	Why EOS?
	Access method: Sync
	Access method: Share
	Access method: Web & Mobile
	Access method: FUSE
	Looks promising but …
	Phase out ~ timeline
	Phase out ~ timeline
	Summary
	Slide Number 38

