
Summary of Mesos
investigations

Giulio Eulisse

See also:

This is a summarised version of the O2 CWG10 talk I gave in the
(Configuration and Control) context: http://cern.ch/go/hT6Q

CHEP2016 presentation by Dario: http://cern.ch/go/X9bC

2

http://cern.ch/go/hT6Q
http://cern.ch/go/X9bC

Our investigations so far
Run the build infrastructure on top of Mesos

Understand how to install it

Understand how to operate it

Understand how to extend Mesos to fit our custom use-cases:

Prototype of a Mesos DDS plugin

mesos-workqueue

Understand how much we can rely on pre-existing solutions on top of Mesos:

Evaluate Mesosphere DC/OS

Evaluate Cisco Mantl

3

Architectural shift from
statically partitioned

silos...
QA & analytics build cluster release validation

VAF DAQ

D
A

Q

4

...to an undifferentiated set
of resources which
can be reassigned

dynamically depending on
load (horizontal scalability)

and failures (high
availability).

What is Mesos?
"Program against your datacenter like it’s a single pool

of resources"
A data-center kernel 
Mesos is to the datacenter what the kernel is to the desktop: resource
management and scheduler at large.

Apache Foundation project 
Initially developed by AMPLab at UC Berkley [1], now under the Apache
Foundation umbrella since a few years. Shares commonalities (and authors) with
Google's known architecture papers [2].

Used in production by big players  
Twitter, Apple, Netflix, AirBnB, Uber, NASA JPL and many others use Mesos in
production [3]. Claimed to scale linearly to 10'000s of machines.

Large ecosystem  
Thanks to the efforts of companies like Mesosphere, Cisco, Rancher, and many
others a large ecosystem of pre-packaged solutions are available for most
common "big data" tools (e.g. Spark, Elasticsearch).

5

http://mesos.apache.org/documentation/latest/powered-by-mesos/

Masters
• Track application state
• Distribute resource offers
• Provide High Availability
• Accounting and authorisation
• Service discovery
• Monitoring / Debugging GUI

Agents
• "Cattle" like.
• Provide computational / storage

resources
• Run (optionally containerised)

applications
• Provide isolation

Frontends
• Routing
• Authentication

Mesos Components

6

Mesos Features
High Availability  
Zookeeper based ensemble which allows you to lose (N-1)/2 Masters before scheduler
goes down. Agents can be restarted (or die) and can reconciliate and adopt orphaned
tasks.

Resource Management 
Allocate CPU, memory, GPU, disk space to given tasks.

Resource Isolation 
First class isolation support for CPU, memory, disk, ports, GPU, and modules for custom
resource isolation.

APIs  
Native C++ or HTTP REST based API for scheduling, operating the clusters (e.g.
scheduled downtimes), monitoring.

Fine grained authentication and authorisation 
E.g. only operators can delete volumes, only application X can access certain resources,
application X has at least Y resources associated to it.

Containers  
(Optional) native support for running containers. Can run Docker or AppC (without the
need for their runtime).

7

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.docker.com
https://github.com/appc/spec

How do I use Mesos?
Mesos by itself only fulfils the "resource manager" needs and provides a very raw
monitoring / debugging GUI. In order to have a full blown solution one has three ways:

Generic OpenSource PaaS: Using one of the several opensource "Platform as a
Service" (PaaS) already available, e.g. Mesosphere's Marathon or Twitter's Aurora.
We use Marathon at large in or build cluster and we started looking into Aurora.

Write a custom application (Framework): this is what we did for the release
validation, in order to integrate with the existing Workqueue code.

• C++ / Python / Java API (requires linking / JNI against libmesos.so and Protobuf)

• HTTP REST API (preferred choice nowadays, no direct dependency)

Ad hoc PaaS: e.g. Apple J.A.R.V.I.S., or "mesos-dds" plug-in for DDS (https://
github.com/alisw/mesos-dds kudos to Kevin).

By design you are not forced to select one single solution. Mesos is based on the
assumption that different problems require different solutions and makes sure those
solutions can coexist.

8

https://github.com/alisw/mesos-dds
https://github.com/alisw/mesos-dds

Running builds on top of Mesos

In production since over 1 year, it gave us:

Platform abstraction 
We keep doing production builds on slc5, while managing an
slc7 / ubuntu infrastructure (thanks to docker support).

High availability  
Builders are really "cattle" by now, we do not care if they get lost
by CERN Openstack, migrated from one Hypervisor to another
in 10 hours, or if Costin updates to the latest Ubuntu. ;-)

Resource sharing  
Release validation and builds (and a few other services) happily
coexists on the same set of machines.

9

Installing Mesos
By now I think I can deploy a Mesos cluster in less than a day, starting from 0...

Deploy with different tools:

• Custom script: it is really a bunch of scp and ssh.

• Puppet: it is really needed for all the parts which need to integrate with
CERN/IT services (e.g. SSO, DNS Load balancing, secrets storage).

• Ansible: It is IMHO the best of the tools. Given the Mesos configuration is
actually small, even ansible "client mode" can deploy few hundreds of
machines quickly.

• docker-compose: it is very good for play-testing on your laptop, see
https://github.com/alisw/ali-bot/blob/master/docker-compose.yml.

Docker very valuable to deploy on resources we do not control.

Future investigation: deploy via CVMFS? You would still need to customise the
configuration on a per-machine basis, but in principle it could be done.

10

https://github.com/alisw/ali-bot/blob/master/docker-compose.yml

Operating Mesos
Operate as a Service  
The idea is really that a Mesos cluster is provided to you as a service, like
Condor or SWAN would. You can run your own Mesos setup on your laptop,
but it's clearly not the way it's intended to be used.

Pick a pre-existing solution 
Mesos by itself only provides primitives to write your own distributed
architecture. Unless you have a specific use-cases, best option is to pick one
or more of the already available "frameworks" (e.g. Mesosphere Marathon, the
Mesos Jenkins plugin) and start building on top of it.

High availability  
Everything in Mesos is thought with redundancy in mind and once you get
used to it, anything which is not annoys you. A lot.

Rolling upgrades  
Most / all changes can be done in a rolling upgrade mode. One can even
update and restart the Mesos agent, without having to lose the actual job /
service.

11

An off the shelf solution for long running jobs  
Marathon is an "init.d for your cluster" by Mesosphere, a commercial
company focused on providing a Mesos based solution for the
datacenter (a.k.a. DC/OS).

• Especially thought for long running jobs (hence the name).

• Easy to use GUI + complete REST based API + command line
client.

• Provides High Availability, support for stateful applications (e.g.
MySQL databases), flexible constrains, service discovery, health
checks, metrics, (optional) Docker support.

• Used in the Offline Build and QA cluster (250 cores, 20 machines)

12

Operating Mesos: using Marathon

https://mesosphere.com
https://dcos.io

Marathon: Top level view

Marathon: fine grained resources

Fine grained re
source

specific
ations

Marathon: health checks

A given endpoint of the
application can be used to

retrieve health conditions and act
accordingly

Marathon: configuring application through the GUI

16

Marathon: fine grained task details

You get a list of all the

processes running, their health

and output logs

Marathon: scaling applications with a click

18

Apache Aurora
What Twitter runs  
Aurora is the PaaS developed at Twitter (now Open Source) to
run all of their workloads. Oldest Mesos based project to my
knowledge. They disclosed* it scales for their 250,000 containers
running on 30,000 nodes.

• Both for long-running and cron jobs

• Tasks described in a Python based DSL. Command-line based
interaction. Monitoring GUI.

• Multi role / environment support, with associated quotas and
preemption. E.g. online / offline role, development / production
environment.

• Supports multiple deployment updates strategies (e.g. canary)
*: https://youtu.be/FU7wrqsRj3o?t=21m11s

19

http://aurora.apache.org/documentation/latest/reference/configuration/
https://youtu.be/FU7wrqsRj3o?t=21m11s

Apache Aurora: toplevel view

20

Apache Aurora: task updates view

21

Mesos difference: application aware

Agent Master Framework
Scheduler

resource offer
pluggable resource scheduling

e.g. fair share. Supports quotas, etc.

Resource acceptance
and task(s) description

Task submission

Mesos is a two level scheduler. The first level being some generic resource
scheduling done by the master, the second level being the application
(Framework) itself taking finer grained, application-aware, decisions.

http://mesos.berkeley.edu/mesos_tech_report.pdf22

http://mesos.berkeley.edu/mesos_tech_report.pdf

Why writing your own framework?

Don't: Think twice before writing your own framework, writing a
Mesos framework is easy. Writing a good Mesos framework is hard
and one should have a pretty good reason for doing so.

Automatic scaling: your applications needs to scale up and down
quickly as response to its own internal state.

Dynamic resource management: your applications has the need to
allocate / deallocate resources (e.g. storage) as part of its life-cycle.

Complex task placement: e.g. your application needs to run only
once on every node of the cluster every day, but only when the
machine is idle.

Interface with your own scheduler: you already have a working
scheduler and you want to share resources with others, but you do
not want to give up ownership of the scheduling to a third party.

Adapting Mesos to our specific needs

Mesos Workqueue
Integrate legacy system into new one  
Old release validation used workqueue, so we decided to keep things
unchanged and plug workqueue on top of Mesos.

https://github.com/alisw/mesos-workqueue  
Total work to do it, roughly 1 week, 362 C++ SLOC. Nothing
particularly smart, but it works and runs in production.

Scales dynamically  
Depending on the needs of the release validation it can dynamically
scale workers.

Missing features  
Task reconciliation (if the master dies, all the workers do), high
availability.

DDS Mesos
DDS plugin to use Mesos as a RMS  
By design DDS does not do any resource management, but it
delegates it to external Resource Management Systems. Mesos is a
perfect fit there.

https://github.com/alisw/mesos-dds  
Work done by Kevin Napoli (University of Malta) for his master thesis.

Client - Server architecture  
By separating the part which talks to mesos to a separate server-side
component, allows multiple DDS to share the same Mesos cluster.

Future developments  
Resource constrains, e.g. run task on a node which has a GPU (was
discussed in the last DDS workshop). Integrate with Aurora to get all
the nice multi-user / multi-tier features?

End-to-End Mesos solutions

26

Mesosphere DC/OS
A Mesos Distribution 
End to end solution for Mesos. If Mesos is the kernel and a
Framework is an application, DC/OS is a Linux distribution.
Developed by Mesosphere, recently OpenSourced (Apache
Licensed).

Brainless Mesos Setup 
Provides easy installation, user management, prepackaged
applications, nicer monitoring GUI, CLI and fully integrated GUI.
Built around Marathon.

Too brainless?  
DC/OS is extremely nice to quickly deploy and operate well known
tools like Hadoop, Spark, Storm. Not clear what is the added value
w.r.t. Marathon / Aurora, if you do not need those, and you need to
package your own tools.

27

Mesosphere DC/OS: dashboard

Mesosphere DC/OS: cluster monitoring

Mesosphere DC/OS: GUI based installation

CISCO mantl.io
• Similar concept as DC/OS: a "curated" Mesos

distribution.

• Works with Centos / Ubuntu

• Can provision servers to OpenStack (albeit CERN/IT
setup is a cumbersome), using Hashicorp Terraform [4].

• Deploys configuration via RedHat Ansible [5].

• Tested by Kevin Napoli during his Summer Studentship,
not particularly impressed, compared to DC/OS.

31

http://mantl.io
https://www.terraform.io
http://www.apple.com

mantl.io

32

http://mantl.io

What's next?
Provide a demonstrator for a multi-user, multi-tier, cluster

which can be used to deploy tasks via DDS (e.g. O2
Devices) or Aurora / Marathon (e.g. cronjobs, non O2

services).

Aurora / Marathon

Mesos

Mesos DDS

References

• [1]: Mesos: https://people.eecs.berkeley.edu/~alig/papers/
mesos.pdf

• [2]: Omega: flexible, scalable schedulers for large
compute clusters http://research.google.com/pubs/
pub41684.html

• [3] Powered by Mesos: http://mesos.apache.org/
documentation/latest/powered-by-mesos/

• [4]: Terraform: https://www.terraform.io

• [5]: Ansible: https://www.ansible.com

35

http://research.google.com/pubs/pub41684.html
http://research.google.com/pubs/pub41684.html
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
https://www.terraform.io
https://www.ansible.com

