
DDS
Dynamic Deployment System

Andrey Lebedev
Anar Manafov

GSI
2016-11-04

The Dynamic Deployment System
is a tool-set that automates and significantly simplifies a

deployment of user defined processes and their dependencies on
any resource management system using a given topology

2

 Highlights since last meeting

1.  Shared memory communication.
2.  New dds-intercom library API.
3.  Versioning in key-value propagation.
4.  Runtime topology update.
5.  LSF and PBS plugins.
6.  dds-octopus: test DDS using DDS.

… many more other fixes and stability improvements
more details here: https://github.com/FairRootGroup/DDS/blob/master/ReleaseNotes.md

3

Shared memory communication [1]
Motivation. Problem.

4

Server

dds-commander

WN
dds-agent

network

dds-intercom
library

Task

network

Shared
memory

1.  Because of the network connection there was no guarantee that key-
value update notification will be delivered to the user.

2.  That’s why shared memory was used as a cache and network was used
to notify the library that something was changed in the cache or to
update the cache.

3.  dds-intercom API was adapted to such usage pattern: getValues()
method returned current values in the cache.

Shared memory communication [2]

Implementation:
1.  boost::message_queue: message transport via

shared memory;
2.  dds-protocol: message encoding and decoding;
3.  boost::asio: proactor design pattern, thread pool.

Shared memory channel:
•  Similar API as DDS network channel;
•  Two way communication;
•  Asynchronous read and write operations;
•  dds-protocol.

5

key-value and custom commands

2x better performance for our test case: !
40 tasks intensively exchanging key-values on a
single node with 40 logical cores.

Shared memory communication
between dds-agent and user task

No need to cache messages in the dds-intercom-lib – we guarantee
that the message will be delivered. Messages are stored directly in the
shared memory and managed by the message queue.

6

Server

dds-commander

WN
dds-agent

network

dds-intercom
library

Task

shared
memory

queue

New DDS intercom API

getValues() method removed from API:
user’s task has to cache key-value messages if required

7

Versioning in key-value propagation [1]
Single property in the topology –

multiple keys at runtime.
A certain key can be changed only

by one task instance.

Property
defined in the topology

Keys

Property.3783782
Property.6847347
Property.8843434
Property.8398223

Property
name

Task instance
ID

Why do we need versioning?!

Task1

Task1

dds-
commander

Starts, sends key-value and dies

Restarts, sends key-value again

Value_one

Value_two

If Value_two arrives first, than it will be
overwritten by Value_one and all tasks will

be notified with the wrong value.

8

Versioning in key-value propagation [2]
Versioning is completely hidden from the user.

1.  Task sets key-value using dds-intercom-lib.
2.  dds-agent sets version for key-value and sends it to dds-commander.
3.  dds-commander checks version:

a) if version is correct than it updates version in storage and
broadcasts the update to all related dds-agents;

b) in case of version mismatch it sends back an error containing
current key-value version in the storage. dds-agent receives error, updates
version cache and forces the key update with the latest value set by the user.

9

dds-commander
manages runtime key-value storage dds-intercom-lib

Task
dds-agent

WN

caches key-value
versions

Runtime topology update [1]
Update of the currently running topology without stopping the whole system.

Limitation: !
Declaration of tasks and
collections can’t be changed.

10

Steps:
1.  Get the difference between current and new topology. The

algorithm calculates hashes for each task and collection in the
topology based on the full path and compares them. As a result a list
of removed tasks and collections and a list of added tasks and
collections are obtained.

2.  Stop removed tasks and collections.
3.  Schedule and activate added tasks and collections.

<decltask id="task1"> !
 <exe>/Users/andrey/DDS/task1.sh</exe>!

 <properties> !
<id access=”write">property1</id> !

</properties>!
</decltask>!

Runtime topology update [2]

11

Runtime topology update [3]
dds-topology --update new_topology.xml

12

dds-octopus
Motivation: Growing complexity of DDS requires powerful functional tests.

Unit tests can’t cover all cases. Most of issues can be only detected during run-
time when multiple agents are in use.

dds-octopus: A full blown functional test machinery for DDS.
Test DDS using DDS.

dds-octopus: core components
dds-octopus-start - a steering script. Starts DDS, deploys agents and
activates predefined topologies. It validates return values of all used DDS
commands and timeouts on each of them.�
dds-octopus-task - an executable. Acts as a regular “user” task. This the
same task is part of all test topologies.�
dds-octopus - an executable. Acts as external test manager. It is not a part of
topology.

13

dds-octopus architecture

DDS
commander

server

dds-octopus-start

dds-octopus-taskdds-octopus-task

-  dds-octopus implements a set of test cases,
-  tests cases send commands to tasks,
-  tasks are expected to react according to some defined pattern,
-  a test case fail if: a timeout is reached, task reacted with unexpected pattern.

dds-octopus

two-way communication �
DDS octopus protocol over DDS core protocol

deploys DDS on a localhost and initiates dds-octopus

two-way communication �
DDS octopus protocol over DDS core protocol

14

dds-octopus key features
1.  Rapid development of test cases with minimum code duplication.

2.  Flexible communication protocol (json over DDS custom command API).

3.  Developers when creating test cases use commands from a predefined list
to form a call chain. List can be extended with new commands.

4.  dds-octopus-task doesn’t aware of test cases, rather it just simply knows
what to do when a certain command is received. Combing different
commands in a chain we can create different test cases expecting some
certain behaviour from the task or the whole system.

5.  Test cases use responses from tasks to decide whether the test succeeded
or failed. Test cases can also use dds-commander’s info API to query states
of the DDS deployment from the main source.

6.  Each test case must define a timeout. When dds-octopus detects that the
timeout is reached it marks the test case as failed.

7.  The toolchain is designed to run fully automatic without human
intervention. Since DDS 1.4 it will run as a part of continues integration
builds.

15

RMS plug-ins

1.  localhost,
2.  ssh,
3.  slurm,
4. Mesos,
5.  PBS,
6.  LSF.

16

•  Releases - DDS v1.4�
(http://dds.gsi.de/download.html),

•  DDS Home site: http://dds.gsi.de

•  User’s Manual: http://dds.gsi.de/documentation.html

•  Continues integration:
http://demac012.gsi.de:22001/waterfall

•  Source Code:�
https://github.com/FairRootGroup/DDS�
https://github.com/FairRootGroup/DDS-user-manual�
https://github.com/FairRootGroup/DDS-web-site�
https://github.com/FairRootGroup/DDS-topology-editor

17

BACKUP

18

Basic concepts
DDS:

•  implements a single-responsibility-principle command line tool-set and APIs,

•  treats users’ tasks as black boxes,

•  doesn’t depend on RMS (provides deployment via SSH, when no RMS is present),

•  supports workers behind FireWalls (outgoing connection from WNs
required),

•  doesn’t require pre-installation on WNs,

•  deploys private facilities on demand with isolated sandboxes,

•  provides a key-value properties propagation service for tasks,

•  provides a rules based execution of tasks.

19

CRMSPluginProtocol prot("plugin-id");

prot.onSubmit([](const SSubmit& _submit) {
 // Implement submit related functionality here.

 // After submit has completed call stop() function.
 prot.stop();
});

prot.onMessage([](const SMessage& _message) {
 // Message from commander received.
 // Implement related functionality here.
});

prot.onRequirement([](const SRequirement& _requirement) {
 // Implement functionality related to requirements here.
});

// Let DDS commander know that we are online and start listen for messages.
prot.start(bool _block = true);

(1)

(2)

(3)

// Report error to DDS commander
proto.sendMessage(dds::EMsgSeverity::error, “error message here”);

// or send an info message
proto.sendMessage(dds::EMsgSeverity::info, “info message here”);

20

New RMS plug-in architecture

DDS
commander

server

RMS X RMS Y

dds-submit -r rmsx

dds-submit-rmsydds-submit-rmsx

start plug-in’s executablestart plug-in’s executable

dds-submit -r rmsy

two-way communication �
DDS plug-in protocol over DDS core protocol

21

Lobby based deployment

1.  DDS Commander will have one connection per host (lobby),
2.  lobby host agents (master agents) will act as dummy proxy services,

no special logic will be put on them except key-value propagation
inside collections,

3.  key-value will be either global or local for a collection

commander
server

agents tasks

22

