
Data Compression Framework for ALICE O2

Matthias Richter

Offline Week Nov 04 2016

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 1 / 17



Preface

Standard data compression algorithms applied to raw data can only

provide compression factors up to ∼ 2; higher factors can be reached by

using knowledge about the data model.

We have a solution for TPC data currently in production in the HLT.

Steps in the processing flow:

1 Reconstruction of Clusters from raw data

2 Transformation to reduced precision with negligible impact to physics

3 Entropy coding - lossless data compression

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 2 / 17



Goal for the new Compression Framework Prototype
Two challenges:

Efficiency

Meet requirements for

data reduction factor

Performance

Processing time has to fit

into available resources
to

pic
of

th
is

ta
lk

Significant part of the HLT cluster resources is today used for data

compression, the implementation has never been optimized

→ check what can be optimized, in particular what can be done

already at compile time

Current implementation builds heavily on virtual inheritance and

overloaded functions for sake of flexibility

→ requires runtime dispatch

Overcome some structural limitations, e.g. more flexible alphabets,

better integration of arithmetic coding

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 3 / 17



Data Flow

While 1st-level reconstruction of raw data with required precision is

detector dependent, the lossless entropy coding and storage in optimized

format is suited for a generic framework.

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 4 / 17



Requirements and Boundary Conditions

Sequence of runtime objects of identical type needs to be stored in

data stream

Each object has multiple parameters with individual characteristics

and probability models

Framework has to support multiple codec types, e.g Huffman and

Arithmetic coding

⇒ need a polymorphic solution in the framework, i.e. decide which

piece of code to execute based on the type of something

Innermost functions of the processing loop are called O(109) per TF

⇒ even a minor performance optimization allows for big effects

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 5 / 17



A Word on Polymorphism

Runtime polymorphism: the actual binding of the type of an object is

deferred until runtime, usually realized using classes with virtual functions.

Static polymorphism: completely resolved at compile time

- type checks at compile time

- select among code branches which would not compile in all cases

- generic algorithms

- generic handling of multiple types

- compiler has a lot more information for code optimization

Tools for implementation of static polymorphism

Template programming and meta programming allow to move a significant

part of computation and code dispatch from runtime to compile time.

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 6 / 17



Software modules

Policy-based design - Decomposing Processing into small entities

Input/Output policy

Alphabet

Probability Model

Parameter model

Codec (Huffman, Arithmetic)

Policies are small functional entities

(classes) which take care of sepa-

rate behavioral or structural aspects.

Complex entities are assembled from

several small policies.

Alphabet fixed at compile time

Probability Model runtime dependent

Codec algorithm fixed at compile time

Challenge: need a runtime object which holds the state
(pure types do not have a state)

Runtime object has to follow the type definition at compile time

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 7 / 17



Defining Alphabets
Individual Alphabets:

An alphabet is a set of symbols to be treated by a data compression

algorithm

The alphabet is fixed at compile time

A contiguous alphabet of integral numbers of type T between a

minimum and maximum value can be defined like
template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};

Specializations for distinct cases: alphabet from 0 to some maximum,

alphabet for an n-bit field

Multiple Parameters:

Runtime objects have multiple parameters with individual probability

models, the parameters need to be stored in a continuous data stream.

Sets of parameter types defined at compile time, the framework

makes use of the boost Metaprogramming Library.

Note: these are types, not runtime objects; all information is available at compile time

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 8 / 17



Alphabet examples

Alphabet of contiguous range of symbols between [min, max]
template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};

Alphabet of contiguous range of symbols between [0, max]
template<typename T, T _max, typename NameT> class ZeroBoundContiguousAlphabet {...};

Alphabet for an n-bit field, contiguous range [0, 2n]
template<typename T, std::size_t n, typename NameT> class ZeroBoundContiguousAlphabet {...};

Examples (omitting name template parameter):
typedef ContiguousAlphabet<int, -16384, 16383 > MyContiguousAlphabetType;

typedef ZeroBoundContiguousAlphabet<int16_t, 1000 > MyZeroBoundAlphabetType;

typedef BitRangeContiguousAlphabet<int8_t, 6 > My6BitAlphabetType;

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 9 / 17



Multiple parameters

The runtime objects have multiple parameters with individual probability

models, the parameters need to be stored in a continuous sequence.

To define sets of parameter types at compile time, the framework makes

use of the boost Metaprogramming Library.

typedef boost::mpl::vector<

BitRangeContiguousAlphabet<int16_t, 6 , boost::mpl::string < ’r’,’o’,’w’ > >,

ContiguousAlphabet<int16_t, -16384, 16383 , boost::mpl::string < ’p’,’a’,’d’,’d’,’i’,’f’,’f’ > >,

ContiguousAlphabet<int16_t, -32768, 32767 , boost::mpl::string < ’t’,’i’,’m’,’e’,’d’,’i’,’f’,’f’>>,

BitRangeContiguousAlphabet<int16_t, 8 , boost::mpl::string < ’s’,’i’,’g’,’m’,’a’,’Y’,’2’ > >,

BitRangeContiguousAlphabet<int16_t, 8 , boost::mpl::string < ’s’,’i’,’g’,’m’,’a’,’Z’,’2’ > >,

BitRangeContiguousAlphabet<int16_t, 16 , boost::mpl::string < ’c’,’h’,’a’,’r’,’g’,’e’ > >,

ZeroBoundContiguousAlphabet<int16_t, 1000 , boost::mpl::string < ’q’,’m’,’a’,’x’ > >

> tpccluster_parameter;

Can mix different types of alphabets.

Again, this is a data type without a state.

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 10 / 17



Probability Model

The probability model describes the statistical occurrence of the symbols

of an alphabet

Usually not fixed at compile time; statistics is gathered from a runtime data sample

A type-safe runtime-container

Need a combination of compile time type definitions and runtime objects,

an interface between compile time and runtime domains

A solution: Mixin-Based Programming technique

A recursive definition of identical templates, each wrapping one

data type from the list

The container comprises a recursive definition of types where

each type includes the previous ones

The compiler can walk through the container levels by static cast

No virtual inheritance https://github.com/matthiasrichter/gNeric

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 11 / 17

https://github.com/matthiasrichter/gNeric


Runtime Dispatch to Container Levels
Access to each data type level through static cast at compile time.
static_cast<level&>(containerobject).doSomething();

The operation is either implemented as specific method in the runtime

container or passed to the runtime container level through a functor.

Two options:

1 Dynamic dispatch: compiler creates

recursive list of compiled functions

from a meta function template

2 Static dispatch: loop unrolling in a

specific dispatcher function

What the compiler can do:

Without optimization: the explicitly unrolled version is faster than the generic

recursive approach.

With optimization: both versions show effectively equal performance, one to two

orders of magnitude faster (note x10 scaling in the figure to make them visible)

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 12 / 17



Optimization of Runtime Dispatch

static cast<TypeA>(object)

static cast<TypeB>(object)

...

Runtime container wraps objects of

different data types

Individual levels of the container can

be accessed by type casts

static cast is evaluated already at

compile time

⇒ Generic, 100% type-safe access to

multiple data types

Access patterns:

Recursive access

Generic method;

Recursive loop of

meta functions,

level as parameter

Unrolled access

Generic method;

Direct cast to required

level in a runtime switch;

no recursive function calls

Bulk access

Specific method for the runtime

object to be processed; direct cast

to individual levels; no additional

runtime switch

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 13 / 17



Data Compression Framework Prototype in Operation

Testing the framework in the three modes recursive, unrolled, and bulk operation

with different compiler optimization levels: -O0, -O1, -O2, -O3.

Testing Huffman coding as example operation

Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz

⇒ Compiler optimization leads automatically to unrolled code

⇒ Bulk operation is the most performant option

⇒ Static polymorphism: faster operation than runtime polymorphism

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 14 / 17



Comparison with existing Implementation

Time per operation for compiler optimization level 2

Current implementation of

Huffman compression in

AliRoot for ALICE Run 1 and 2

uses runtime polymorphism,

base class interfaces and virtual

inheritance.

ALICE O2 framework uses

static polymorphism for both

generic recursive method and

specializations. Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 15 / 17



Next steps

Ongoing work:

Individual parts of prototype development tested separately so far,

integration underway

Development fork:

https://github.com/matthiasrichter/AliceO2/tree/dev-datacompression

commits are currently being squashed and pull requests are prepared

Migration of all individual test programs into unit tests

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 16 / 17

https://github.com/matthiasrichter/AliceO2/tree/dev-datacompression


Summary

A generic framework prototype has been developed to facilitate

different applications

Meta programming allows for flexibility AND compile time

optimization

A type-safe interface between compile time and runtime domain has

been developed, backbone of polymorphism in the framework

Encouraging results, method is neither restricted to data compression

framework nor bound to particular detector

Matthias.Richter@scieq.net Data Compression Framework for ALICE O2 Nov 04 2016 17 / 17


