Data Compression Framework for ALICE O?

Matthias Richter

Offline Week Nov 04 2016

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 1/17

Preface

Standard data compression algorithms applied to raw data can only
provide compression factors up to ~ 2; higher factors can be reached by
using knowledge about the data model.

We have a solution for TPC data currently in production in the HLT.

Steps in the processing flow:
@ Reconstruction of Clusters from raw data
@ Transformation to reduced precision with negligible impact to physics

@ Entropy coding - lossless data compression

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 2/17

Goal for the new Compression Framework Prototype

Two challenges:

Efficiency Performance
Meet requirements for Processing time has to fit
data reduction factor into available resources

o Significant part of the HLT cluster resources is today used for data
compression, the implementation has never been optimized
— check what can be optimized, in particular what can be done
already at compile time

o Current implementation builds heavily on virtual inheritance and
overloaded functions for sake of flexibility
— requires runtime dispatch

o Overcome some structural limitations, e.g. more flexible alphabets,
better integration of arithmetic coding

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 3/17

Data Flow

While 1st-level reconstruction of raw data with required precision is

detector dependent, the lossless entropy coding and storage in optimized

format is suited for a generic framework.

Sequence of ;
runtime objects Algorithm Buffer/Memory

-

Linear storage ‘ - I:- | - ‘
J

\.

Fixed register bit length

—
ey - ‘ Stream deflater ‘-p | |
@z . 4

Fixed member hit length

~

—_
> Stream deflater
‘ with Codec

- [

s

Variable bit length

Matthias.Richter@scieq.net Data Compression Framework for ALICE 0? Nov 04 2016

4 /17

Requirements and Boundary Conditions

o Sequence of runtime objects of identical type needs to be stored in
data stream

o Each object has multiple parameters with individual characteristics
and probability models

o Framework has to support multiple codec types, e.g Huffman and
Arithmetic coding

= need a polymorphic solution in the framework, i.e. decide which
piece of code to execute based on the type of something J

o Innermost functions of the processing loop are called O(10°) per TF

= even a minor performance optimization allows for big effects J

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 5/17

A Word on Polymorphism

Runtime polymorphism: the actual binding of the type of an object is
deferred until runtime, usually realized using classes with virtual functions.

Static polymorphism: completely resolved at compile time

- type checks at compile time

- select among code branches which would not compile in all cases
- generic algorithms

- generic handling of multiple types

- compiler has a lot more information for code optimization

Tools for implementation of static polymorphism

Template programming and meta programming allow to move a significant
part of computation and code dispatch from runtime to compile time.

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 6 /17

Software modules

Policy-based design - Decomposing Processing into small entities

o Input/Output policy

are small functional entities

mbled from

Policies _
> Alphaber (c\asses) which take care of S:g:as
o Probability Model rate behavioral or structural asp .

o sse
o Parameter model Complex entities are °
several small policies.
o Codec (Huffman, Arithmetic)
Alphabet fixed at compile time
Probability Model | runtime dependent
Codec algorithm fixed at compile time

Challenge: need a runtime object which holds the state
(pure types do not have a state)

Runtime object has to follow the type definition at compile time

Matthias.Richter@scieq.net

Data Compression Framework for ALICE 02

Nov 04 2016

7/17

Defining Alphabets

Individual Alphabets:
o An alphabet is a set of symbols to be treated by a data compression
algorithm
o The alphabet is fixed at compile time
o A contiguous alphabet of integral numbers of type T between a
minimum and maximum value can be defined like
template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};
o Specializations for distinct cases: alphabet from 0 to some maximum,
alphabet for an n-bit field
Multiple Parameters:
o Runtime objects have multiple parameters with individual probability
models, the parameters need to be stored in a continuous data stream.
o Sets of parameter types defined at compile time, the framework
makes use of the boost Metaprogramming Library.

Note: these are types, not runtime objects; all information is available at compile time)

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 8 /17

Alphabet examples

o Alphabet of contiguous range of symbols between [min, max]

template<typename T, T _min, T _max, typename NameT> class ContiguousAlphabet {...};

o Alphabet of contiguous range of symbols between [0, max]

template<typename T, T _max, typename NameT> class ZeroBoundContiguousAlphabet {...};

o Alphabet for an n-bit field, contiguous range [0, 2"]

template<typename T, std::size_t n, typename NameT> class ZeroBoundContiguousAlphabet {...};

Examples (omitting name template parameter):

typedef ContiguousAlphabet<int, -16384, 16383 > MyContiguousAlphabetType;
typedef ZeroBoundContiguousAlphabet<int16_t, 1000 > MyZeroBoundAlphabetType;

typedef BitRangeContiguousAlphabet<int8_t, 6 > My6BitAlphabetType;

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016

9/17

Multiple parameters

The runtime objects have multiple parameters with individual probability

models, the parameters need to be stored in a continuous sequence.

To define sets of parameter types at compile time, the framework makes

use of the boost Metaprogramming Library.

typedef boost::mpl::vector<
BitRangeContiguousAlphabet<inti6_t,
ContiguousAlphabet<int16_t, -16384,
ContiguousAlphabet<int16_t, -32768,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,
BitRangeContiguousAlphabet<int16_t,

ZeroBoundContiguousAlphabet<int16_t,

> tpccluster_parameter;

16383
32767
8

8

16
1000

boost:
boost:
boost:
boost:
boost:
boost:
boost:

@ Can mix different types of alphabets.

cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:
cmpl:

@ Again, this is a data type without a state.

Matthias.Richter@scieq.net

:string
:string
:string
:string
:string
:string
:string

’r’,’0’,’w’ > >,
PP o Dar? o Il? o DG P9 RO ORY B g
’t?,’i%,°’m’,%e’,’d’, %1%, £, £0>>,
’s?,’i%,’g’,’m’,’a’,’Y7, 027 > >,
’s7,0i0,0g7 'm0 ,02,02 > >
2cr,0h e, 00,0, e > >,
g7, m,0a, 0% > >

Data Compression Framework for ALICE 02

Nov 04 2016 10 / 17

Probability Model

The probability model describes the statistical occurrence of the symbols
of an alphabet

Usually not fixed at compile time; statistics is gathered from a runtime data sample

A type-safe runtime-container

Need a combination of compile time type definitions and runtime objects,
an interface between compile time and runtime domains

A solution: Mixin-Based Programming technique

Type D

O A recursive definition of identical templates, each wrapping one

data type from the list

@ The container comprises a recursive definition of types where
each type includes the previous ones

@ The compiler can walk through the container levels by static cast

Base X i i
@ No virtual inheritance https://github.com/matthiasrichter/gNeric

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 11 /17

https://github.com/matthiasrichter/gNeric

Runtime Dispatch to Container Levels
Access to each data type level through static cast at compile time.
static_cast<level&>(containerobject).doSomething() ;

The operation is either implemented as specific method in the runtime
container or passed to the runtime container level through a functor.

Two options: T rooMasa A Iy X Y
@ Dynamic dispatch: compiler creates Lo
. . . . Rl . v v v v
recursive list of compiled functions sofy
. C A recursive -00
from a meta function template - ¥ et 00
. . . . C recursive -O3 (x10)
@ Static dispatch: loop unrolling in a 201 + urcted 080010
ific di her f . e * * ® |
specific dispatcher tunction IR <10

760 800
N operations
What the compiler can do:

@ Without optimization: the explicitly unrolled version is faster than the generic
recursive approach.

@ With optimization: both versions show effectively equal performance, one to two
orders of magnitude faster (note x10 scaling in the figure to make them visible)

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 12 /17

Optimization of Runtime Dispatch

Type D
— O Runtime container wraps objects of
s different data types

= static_cast<TypeA>(object) ..)
e] | O Individual levels of the container can
e be accessed by type casts
[ypec 3)

T O static_cast is evaluated already at

compile time

static_cast<TypeB>(object) .

== = Generic, 100% type-safe access to

multiple data types

Access patterns:

Recursive access Unrolled access Bulk access

Generic method; Generic method; Specific method for the runtime
Recursive loop of Direct cast to required object to be processed; direct cast
meta functions, level in a runtime switch; to individual levels; no additional
level as parameter no recursive function calls runtime switch

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 13 /17

Data Compression Framework Prototype in Operation

Testing the framework in the three modes recursive, unrolled, and bulk operation
with different compiler optimization levels: -00, -01, , —03.

Testing Huffman coding as example operation

o E 7y E
L o+ Rl + S 4570 4 A A a &
S E 4 RECURSIVE Of S E.
Seoro © P R I . R
2% 4 necunsne.os ¢ S5, A o &
50 0 uwouoo aE
£ & uolLor E
40 oL o2 2.5
= O uwowon E
soE" 4 A& B A sooromones | D 2
E A\ su-opemamon o1 156
20 BuLK opERATION 02 i
£ [\ BULK-OPERATION 08 E
10E¢ EI #| maen # 05E J——
C A A A A A E
G*A B LSt £ L L L2 x10° G: L L L L L L L L L x10°
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000

N operations N operations
Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz

= Compiler optimization leads automatically to unrolled code
= Bulk operation is the most performant option
= Static polymorphism: faster operation than runtime polymorphism

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 14 /17

Comparison with existing Implementation

Time per operation for compiler optimization level 2

o Current implementation of

35

Huffman compression in
AliRoot for ALICE Run 1 and 2
uses runtime polymorphism,
base class interfaces and virtual

30

toporation (18]

2

o

2

=)

inheritance. o PP
o ALICE O? framework uses 5 owouos
static polymorphism for both b | | . L xiof
) . 200 400 600 800 N 100%
generic recursive method and operations
specializations. Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 15 / 17

Next steps

Ongoing work:
o Individual parts of prototype development tested separately so far,

integration underway

o Development fork:
https://github.com/matthiasrichter/Alice02/tree /dev-datacompression
commits are currently being squashed and pull requests are prepared

o Migration of all individual test programs into unit tests

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 16 / 17

https://github.com/matthiasrichter/AliceO2/tree/dev-datacompression

Summary

o A generic framework prototype has been developed to facilitate
different applications

o Meta programming allows for flexibility AND compile time
optimization
o A type-safe interface between compile time and runtime domain has

been developed, backbone of polymorphism in the framework

o Encouraging results, method is neither restricted to data compression
framework nor bound to particular detector

Matthias.Richter@scieq.net Data Compression Framework for ALICE 02 Nov 04 2016 17 / 17

