

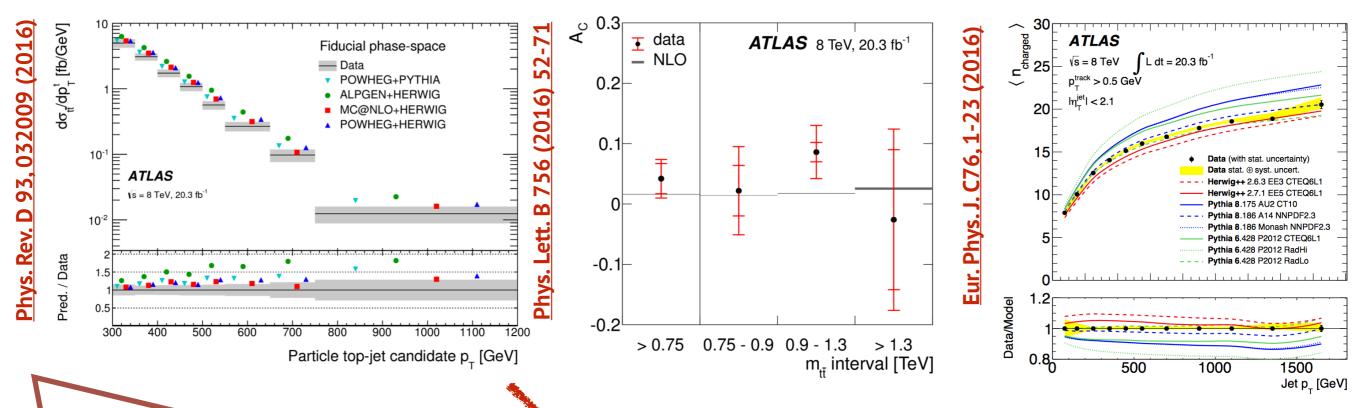
# ATLAS Measurements Using Jet Grooming and Substructure



Giulia Ucchielli

(INFN and University of Bologna)

On Behalf of the



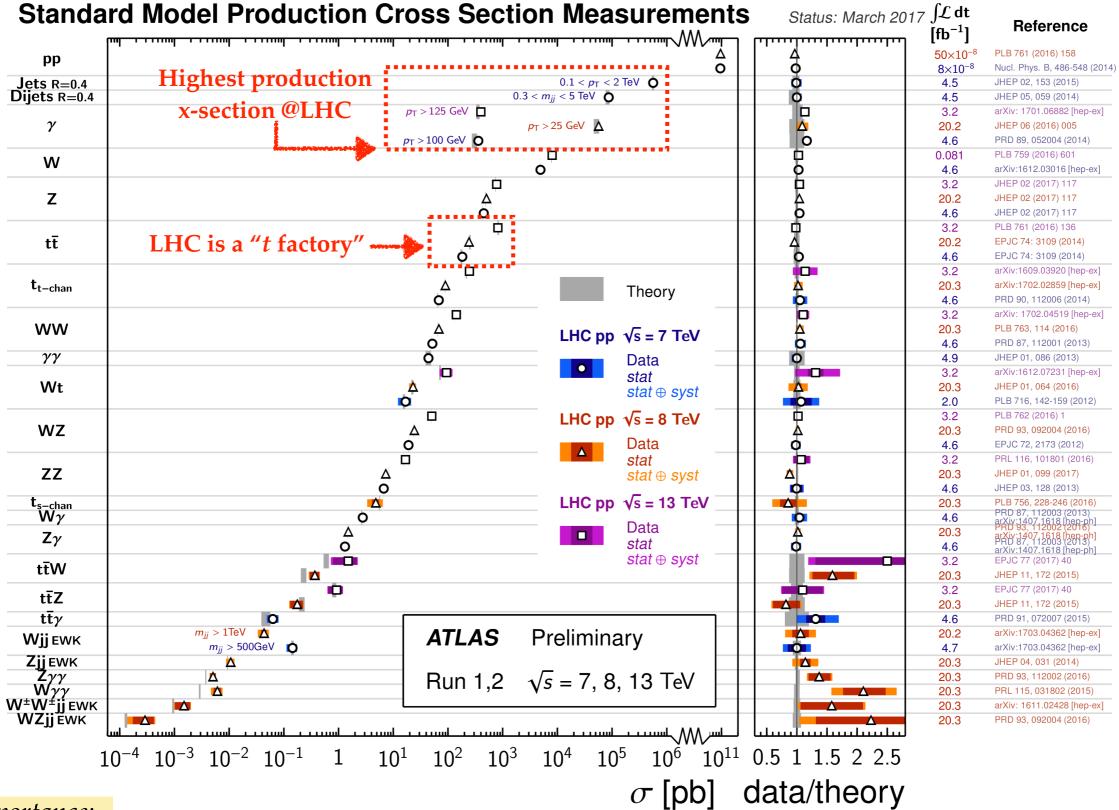

**Collaboration** 



# **Introduction:**

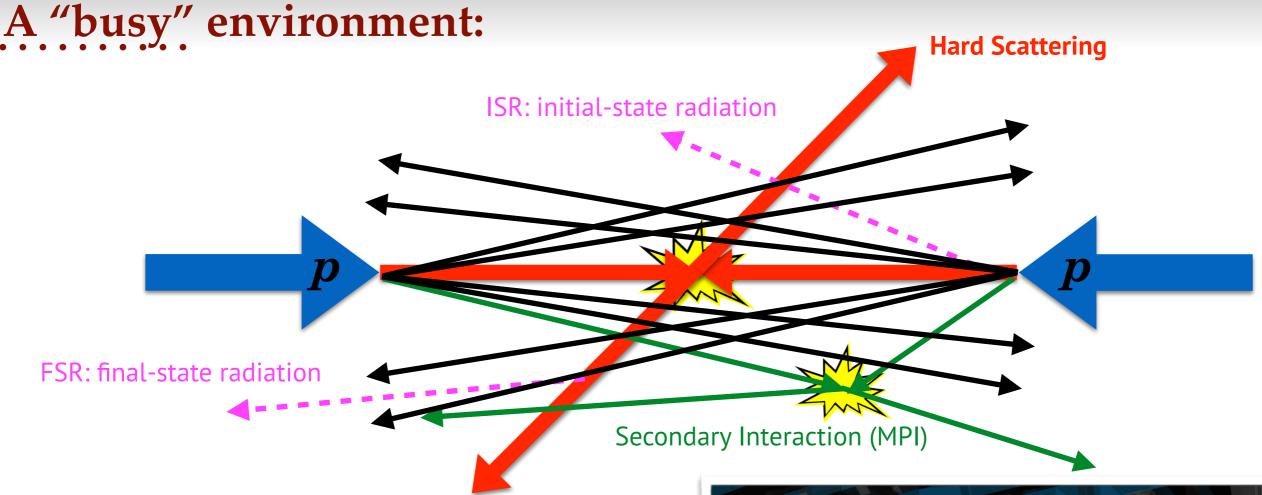
Many interesting ATLAS measurements using jet substructure @ 8 TeV already presented at BOOST (\*)!




## **Outline of the talk:**

- tt differential  $\sigma$  production  $\rightarrow$  now at 13 TeV first time at BOOST!
- W collinear  $\sigma$  production  $\rightarrow$  *first measurement of the weak structure!*
- ♣ To be published soon/ongoing efforts:
  - $\star$  ttH  $\rightarrow$  first boosted channel in ttH
  - ♣ trigger → new triggers using jet substructure

(\*) some of them here:


https://indico.cern.ch/event/439039/contributions/2223299/attachments/1311086/1961864/boost16\_negrini.pdf https://indico.cern.ch/event/439039/contributions/2223300/attachments/1310580/1962242/BOOST16.pdf

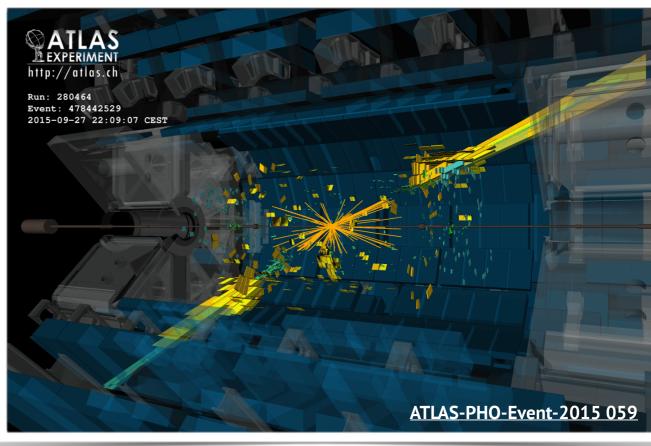




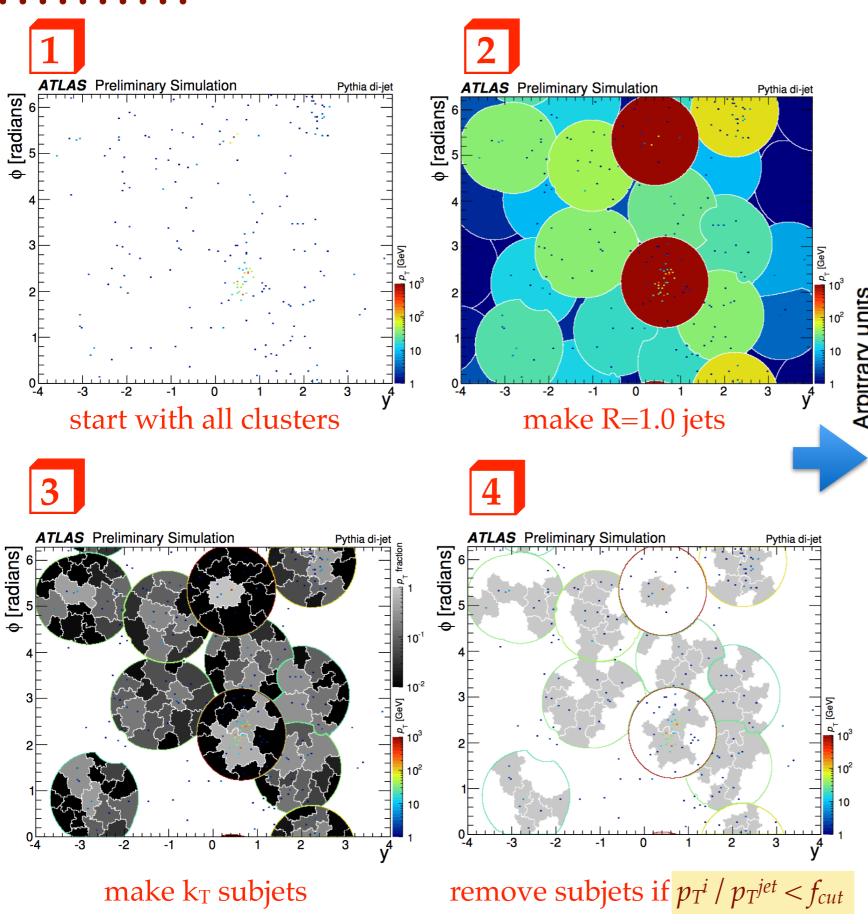
#### *Jets importance:*

- **SM:** test of QCD and QED theoretical calculations
- ♣ Beyond SM: many topologies involving hadronic final states (as seen in <u>Jonathan's</u> & <u>Junpei's</u> talks).




#### <u>LHC @ √s=13 TeV:</u>

- ✓ Hard Scattering Event
- **★** Underlying Event (UE):
  - **≭** ISR/FSR
  - \* Multiple interactions per bunch crossing
  - **★** Pile-up (up to ~50 in 2016)

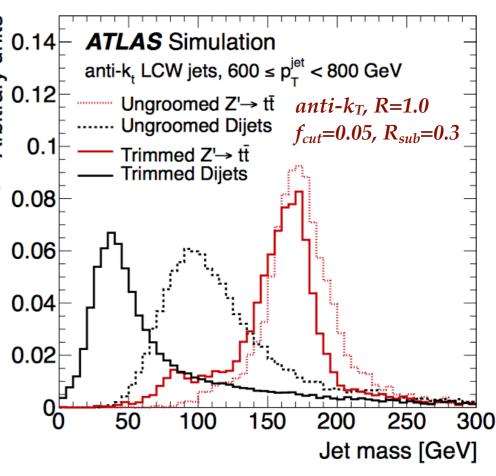

**✔** Boosted objects:

**Exploit jet substructure properties** 

Jet "cleaning"
or
grooming
=" trimming"
ATLAS
standard
procedure



# Jet Trimming - ATLAS Large-R jets:

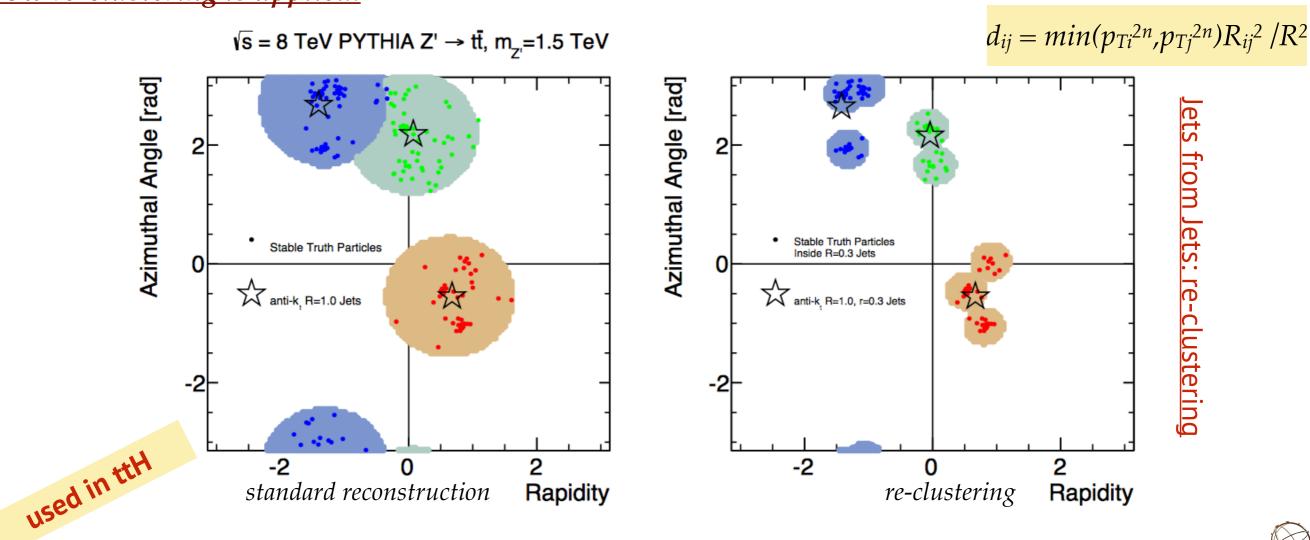



#### **Grooming:**

- **♦** *Trimming* → ATLAS standard procedure for many SM analysis
- mass-drop filtering
- pruning

alternatives

#### CERN-PH-EP-2013-069

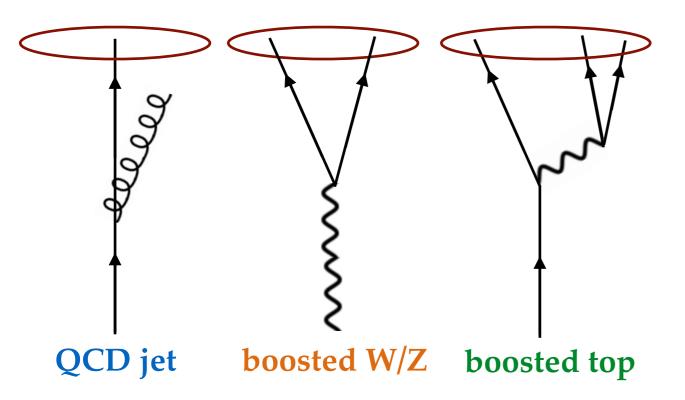



more in Joe's talk!

# Jet re-clustering:

- ❖ jet radius might be not optimized for specific physics scenarios
- **♦** *in situ* calibration
- ❖ enhance the availability of large-R jet configurations
  - $\rightarrow$  intermediate *scale r* < *R* input to reconstruct large-R jets
- \* calibrated small-R jets can make *calibration of re-clustered large-R jets automatic*
- →any large-R, any clustering algorithm, and many grooming strategies can be used!
- N.B. does not mean uncertainty on re-clustered jet necessarily smaller than correspondent large-R jet.

#### How re-clustering is applied:



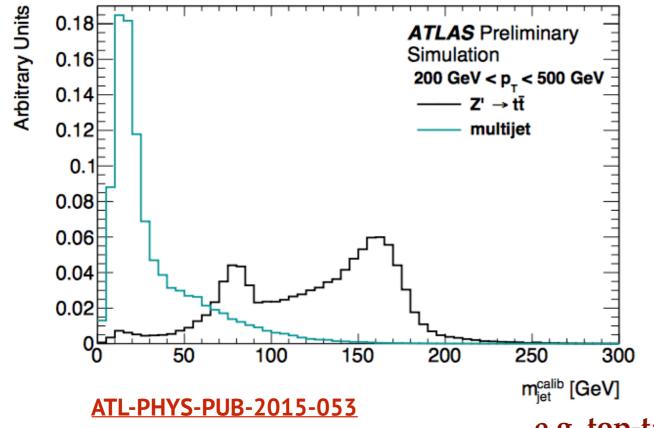

improving potential

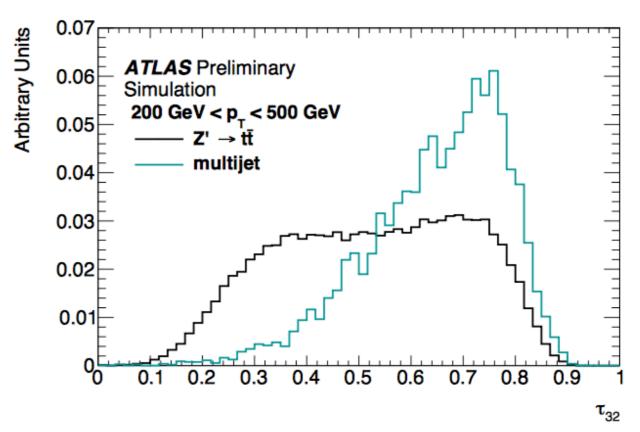
discovery for NP

# Jet tagging using substructure variables:

In the decays of massive resonances, boosted prongs can be collimated into a single jet:




#### Tagging on:

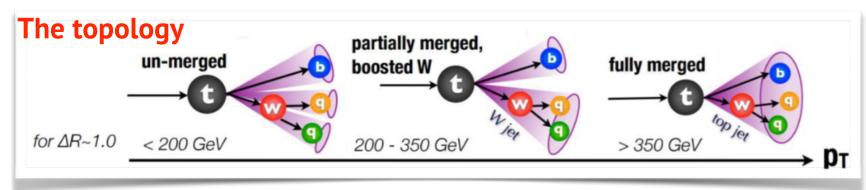

- ♣ Jet mass: calibrated mass (\*)
- **♦** N-subjettiness ratio (\*\*):

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, \dots, \delta R_{Nk})$$

 $\tau_{32}=\tau_3/\tau_2$ 

- $\tau_2$ : 2 prong decay
- $\tau_3$ : 3 prong decay
- splitting scale
- \* minimum dijet mass from three subjects






e.g. top-tagging (\*), (\*\*)

## Measurements of tt differential cross-section:

#### The importance of tt:

- **♦** high production cross section:  $\sigma(13 \text{ TeV}) = 3.3 \times \sigma(8 \text{ TeV}) \rightarrow \sim 800 \text{ pb}$ ,
- ❖ test of SM up to the *TeV scale*,
- ❖ differential measurements **sensitive to BSM** scenarios, not detectable in inclusive ones.

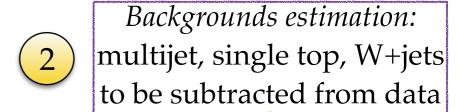


#### Final states:

- ♣ l+jets: resolved and boosted (LJ)
- \* *all-hadronic*: boosted (AH)
- ♣ High Lorentz boosted top-quark ( $p_T>300$  GeV) decay products increasingly difficult to resolve → merged into a *large-R jet*
- $\clubsuit$  Both analysis define two types of anti- $k_T$  jets:
  - **♦** *Small-R jets:* R=0.4, |η| < 2.5,  $p_T$ > 25 GeV (LJ and AH)
  - **\*** *Large-R jets:* R=1.0,  $|\eta| < 2.0$ ,  $p_T > 300$  GeV (**LJ** and **AH**)

#### Large-R jet reconstruction:

- **Trimming:**  $R_{sub}$ = 0.2 ,  $f_{cut}$  = 0.05 (LJ and AH)
- ❖ Trimmed jet mass corrected to particle top jet using MC

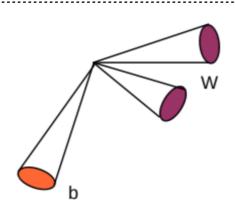

#### Top-tagging based on substructure variables:

- **❖** *Large-R jet mass*
- **❖** N-subjettiness

chosen because of low correlation, strong performance and robustness across pT range

#### **Analysis Flow:**

Grooming + substructure:
Analysis jets definition

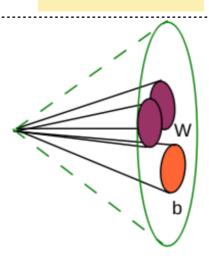



 $\frac{\textit{Unfolding:}}{\textit{differential } \sigma \textit{ measurement}}$ 

common to LJ and AH analysis

#### Event Selection: $\sqrt{s}=13$ TeV, $\mathcal{L}=3.2$ fb<sup>-1</sup>

#### **Resolved**




 $\geq 4 \ small-R \ jets \ (\geq 2 \ b\text{-tagged})$ 

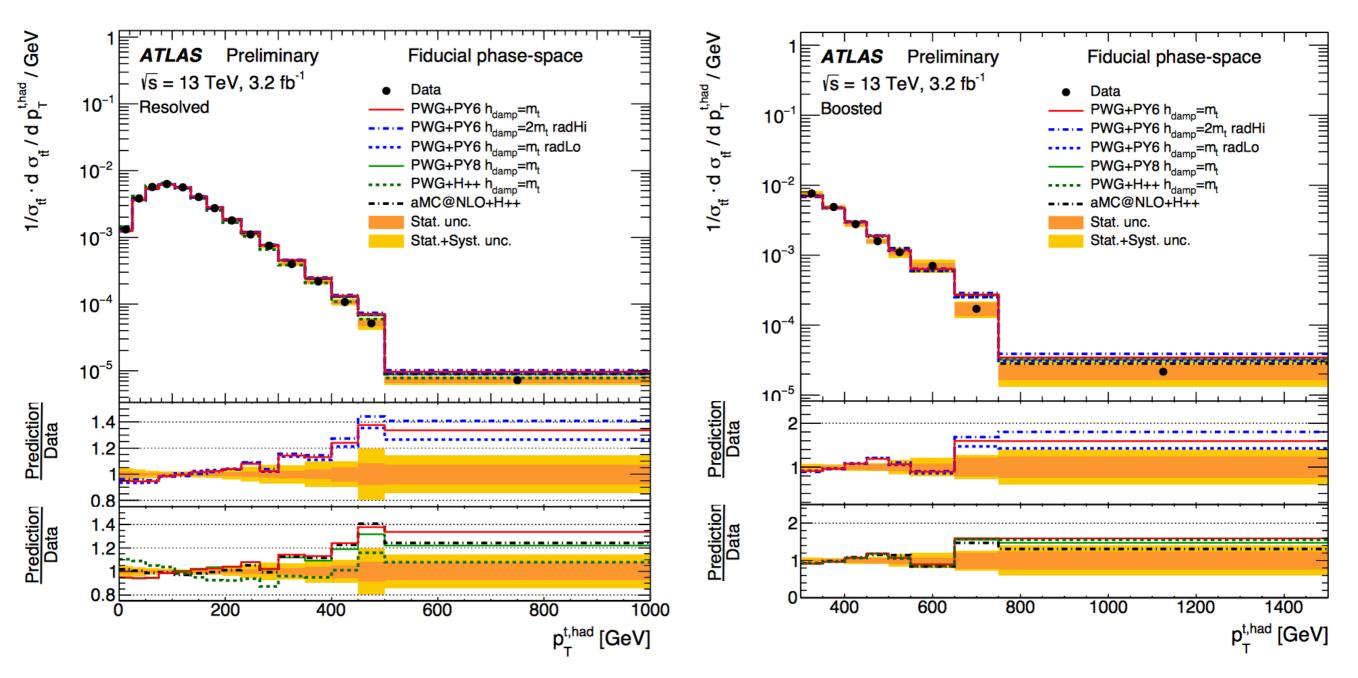
- **❖** Leptonic t:
  - imposes W-mass constraint to solve for  $v \mid p_Z \mid$
  - ❖pairs W and b-jet closest in  $\Delta$ R to lepton
- **❖** Hadronic t:
- ♣pairs non b-tagged jets closest to m<sub>W</sub> with remaining second hardest b-tagged jet

Variables: p<sub>T</sub><sup>t,had</sup>, | y<sup>t,had</sup>|, p<sub>T</sub><sup>tt</sup>, m<sup>tt</sup>, | y<sup>tt</sup>|

#### **Boosted**



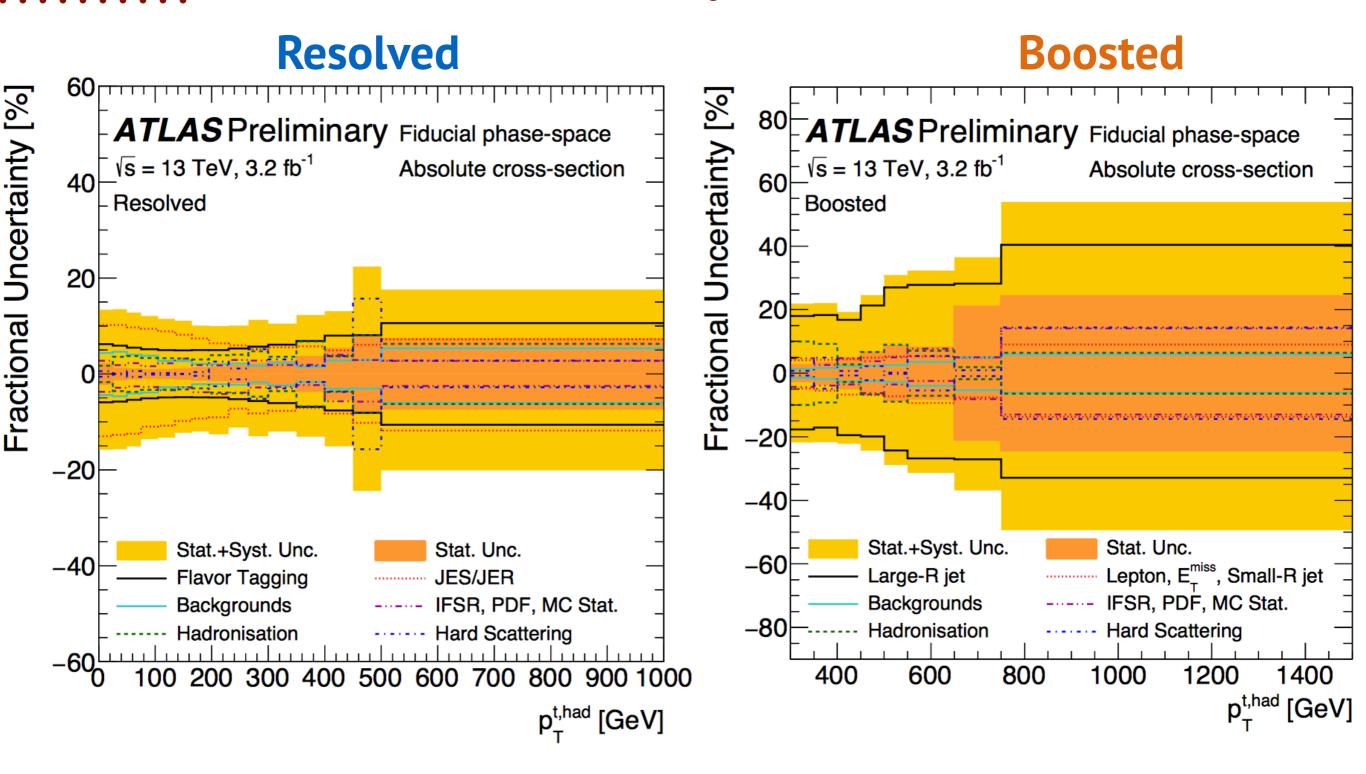
 $\geq 1$  small-R jet  $\mathcal{E} \geq 1$  large-R jets (at least one small-R b-tagged) MET > 20 GeV,  $MET + m_T^W > 60$  GeV


- **❖** Leptonic t:
  - ❖ at least one small-R jet with  $\Delta$ R(l, small-R jet) < 2.0
- **♦** Hadronic t:
  - \* top-tagged large-R jet (m>100 GeV,  $\tau_{32}$ >0.75).

Variables: p<sub>T</sub>t,had, | yt,had|

# tt differential cross-section - LJ:

## Resolved


## **Boosted**



- ❖ Data seems softer at high p<sub>T</sub> in both resolved and boosted channels
- ♣ p<sub>T</sub><sup>t,had</sup>: trends of NLO MC generators similar among generators



# tt differential cross-section - LJ - Systematics:

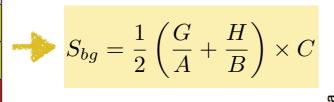


#### **Dominant uncertainties:**

- \* Resolved: Jet Energy Scale (JES) and flavour tagging
- **♦ Boosted:** Large R-jet (→JES dominant)

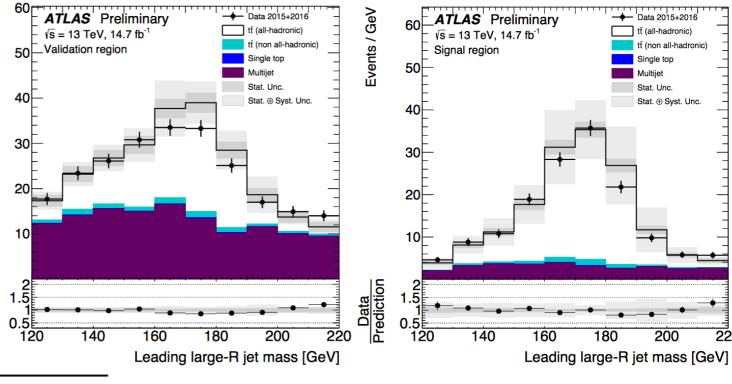
#### Measurements of tt differential cross-section - AH: ATLAS-CONF-2016-100

Event Selection:  $\sqrt{s}=13$  TeV,  $\mathcal{L}=14.7$  fb<sup>-1</sup>


♣ ≥ 2 large-R jet (top-tagged), 
$$p_T^{lead} > 500 \text{ GeV}$$
,  $p_T^{sublead} > 350 \text{ GeV}$ , 122.5 GeV <  $m_{large-R} < 225.5 \text{ GeV}$ 

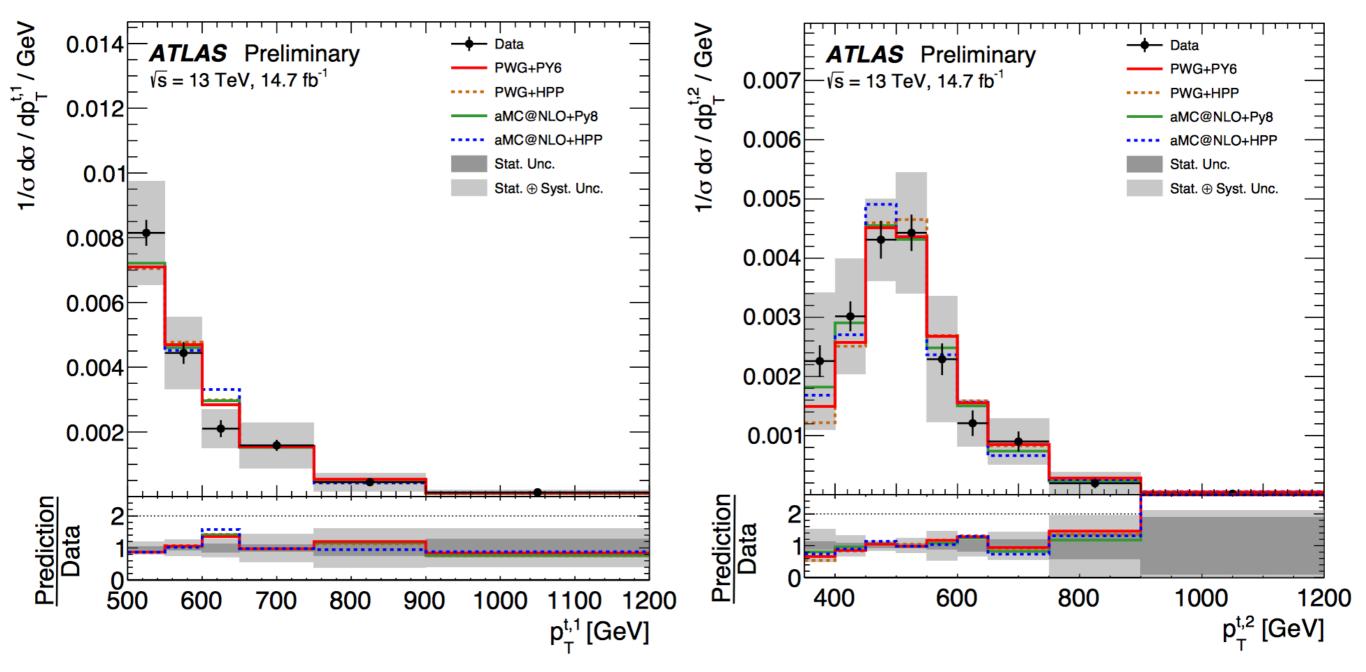
- $\Delta R(large-R, small-R) < 1.0$
- $\bullet$   $\tau_{32}$   $p_T$  dependent cut (50% efficienciency top-tagging WP)

 $\textit{Variables:} \ p_{T}^{1} \ , \ p_{T}^{2} \ , \ |\ y^{t1}| \ , \ |\ y^{t2}| \ , \ |\ y^{tt}| \ , \ m^{tt} \ , \ p_{T}^{tt} \ , \ H_{T}^{tt} \ , \ \Delta \phi^{tt} \ , \ y_{B}^{tt} \ , \ \chi^{tt} \ , \ |\ \cos\theta\ |\ ^*, \ p_{Tout}^{tt}$ 


- Challenging QCD background
- → data-driven: ABCD method
  - ♣A,D,G,B: multijet dominated regions
  - **♦**F: validation region (~50% tt/~50% multijet)

|     | 0 t | 1 t | 2 t |
|-----|-----|-----|-----|
| 0 b | A   | D   | G   |
| 1 b | В   | Е   | Н   |
| 2 b | С   | F   | S   |




❖ Event yields in signal region:

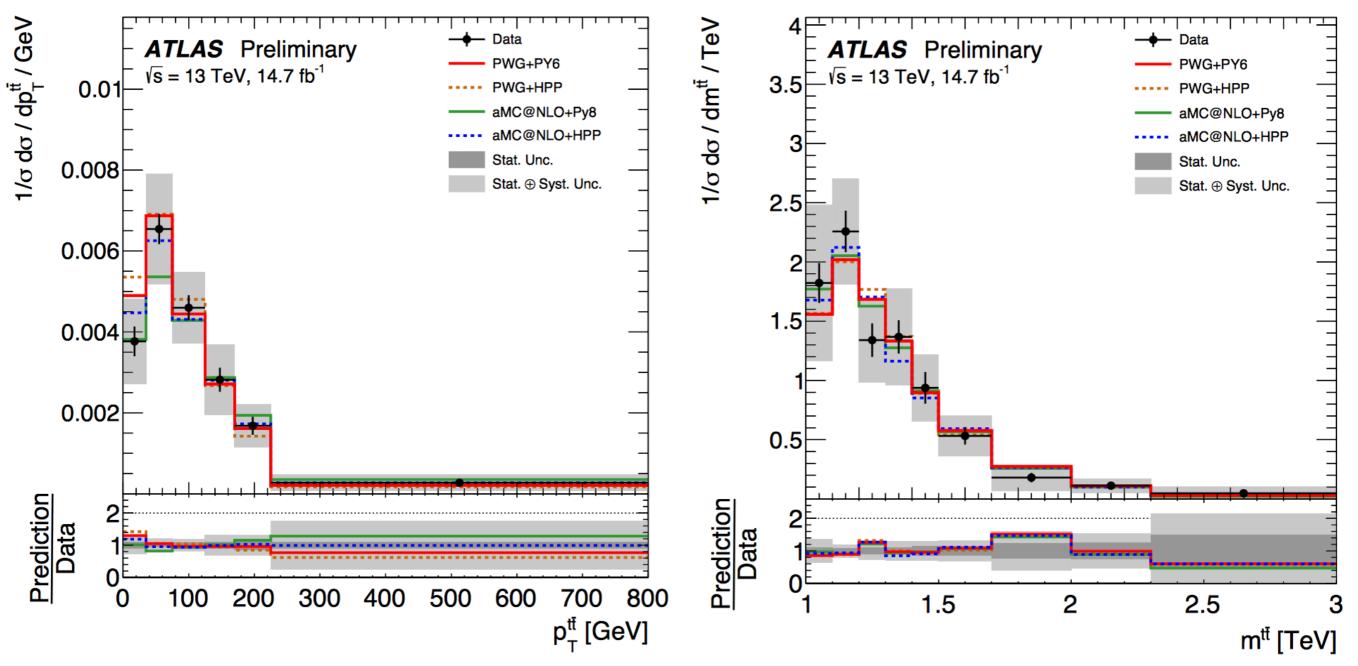
| $t\bar{t}$ (all-hadronic)     | 1 190 | ± | 240 |  |
|-------------------------------|-------|---|-----|--|
| $t\bar{t}$ (non all-hadronic) | 60    | ± | 15  |  |
| Single top-quark              | 9     | ± | 5   |  |
| Multijet events               | 300   | ± | 20  |  |
| Prediction                    | 1 570 | ± | 260 |  |
| Data $(14.7  \text{fb}^{-1})$ | 1512  |   |     |  |
|                               |       |   |     |  |



- \* tt non-all had and single-top from MC:
  - $\clubsuit$  including contribution from  $\tau$
  - ~4% of total yields in SR
  - ❖ failing top-tagging requirements

#### Hadronic top variables:




**❖** Good agreement for leading and sub-leading top p<sub>T</sub> (sensitive to ~1 TeV)

#### **Dominant uncertainties:**

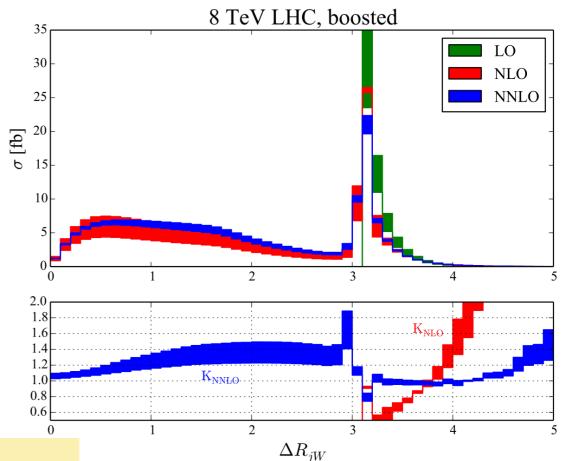
- Large-R jet,
- \* signal modelling,
- ♣ b-tagging



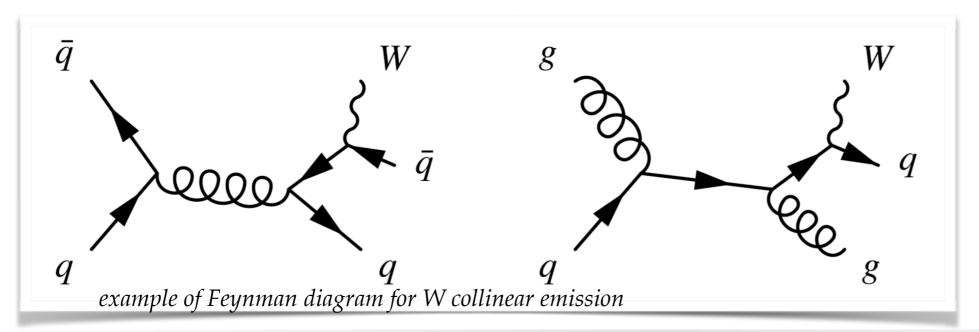
#### Top system variables:



tt system produced with modest p<sub>T</sub> slowly falling m<sub>tt</sub>→ good agreement with SM


#### **Dominant uncertainties:**

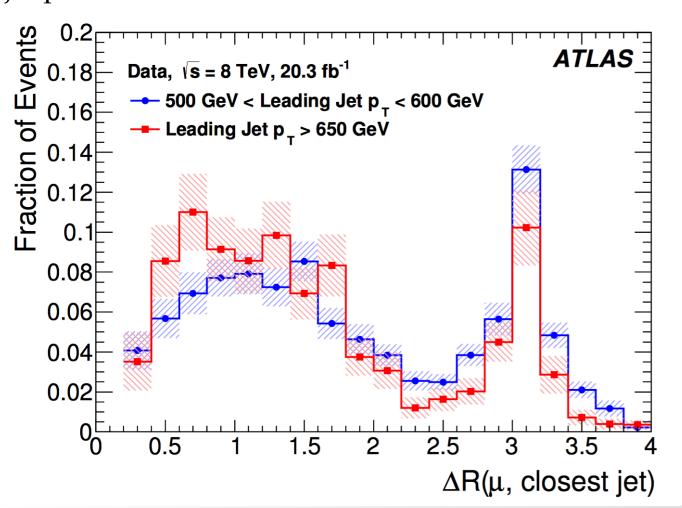
- Large-R jet,
- signal modelling,
- ♣ b-tagging


# Collinear W @ 8 TeV see also Junmou's talk!

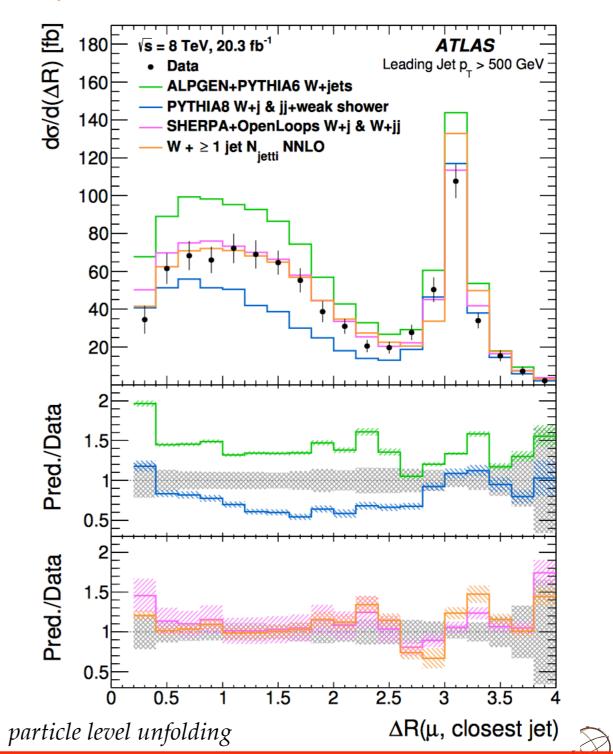
#### W+jet NNLO in QCD

- ❖ W+jet: *test perturbative QCD* and *real/virtual EW* emissions
  - **❖ LO** W+1 jet: *back-to-back* production
  - **NLO** W+1 jet: real W boson emission from ISR/FSR  $O(\alpha \ln^2 p_{T,j}/m_W)$
  - *→ collinear enhancement* in angular distance between *W* and closest jet.
  - ❖ tested in regions where cancellation between real/virtual correction incomplete  $\rightarrow$ *small*  $\Delta R(W,jet)$
- \* probing a new phase space region:
  - $\hookrightarrow \Delta R(l,jet) > 0.2$ : usually  $\Delta R(l,jet) > 0.4$
  - $\hookrightarrow$  *High*  $p_T$  *boosted jet*




- \* strong background to WW at very high p<sub>T</sub>
- $\clubsuit$  W/jet collimated  $\rightarrow$  *resemble three prong structure* mimics *t* decay
- ❖ important for W + jets measurements at high p<sub>T</sub>, vector boson scattering, QCD multijets at high m<sub>ij</sub>




Muon and initial W directions highly correlated  $\Rightarrow$  measure  $\sigma_{W(\rightarrow \mu \nu)+jets}$  as a function of  $\Delta R(\mu, closest jet)$ 

#### Event Selection: $\sqrt{s}=8$ TeV, $\mathcal{L}=20.3$ fb<sup>-1</sup>

- ≥ 1 jet with  $p_T$ > 500 GeV and  $|\eta|$  < 2.1.
- exactly one  $\mu$  with dressed  $p_T > 25$  GeV,  $|\eta| < 2.4$ .
- ♣ jet with  $p_T$ > 100 GeV, |η| < 2.1 closest to μ → closest jet
- $\Delta R(closest jet, \mu) > 0.2$
- ❖ Normalization correction of W+jets, multijet, *tt* and Z+jets in data control regions
- ♣ Main systematic: JES and b-tagging
- **♣** Fraction of collinear events increases with leading jet  $p_T$  and  $\sqrt{s}$



- ♣ Alpgen+Pythia6: multi-leg LO
- **Pythia8**: includes dijet events with weak shower
- **♦** Sherpa+OpenLoops: *NLO QCD* + *EW corrections*
- **Njetti NNLO:** calculation up to  $O(\alpha^3 s)$




# Search for ttH in high-p<sub>T</sub> regime

- ♦ ttH → direct access to Higgs-top Yukawa coupling
- ♣ measuring Y<sub>t</sub> provides indirect hints of new physics
- \* first time we study a boosted channel in ttH!
- \* re-clustering preferred then trimmed large-R jets
  - ♣ better sensitivity to signal strength µ
  - ❖ no systematic of large-R jets
  - \* anti- $k_T$  jets (R=0.4) used to re-cluster the large-R jets (R=1.0,200< $p_T$ <1500GeV,  $|\eta|$  < 2, m < 50 GeV) in this analysis.

#### Analysis strategy:

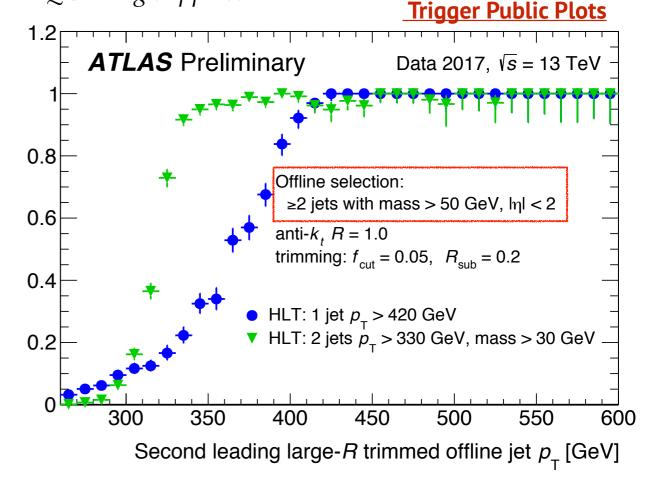
- ❖ Signal identification: *MVA* using event kinematics and topology, b-tagging information:
  - ♣ identification of very low signal over a very large background
- **\*** *Combination* with the resolved channel:
  - ❖ single-lepton
  - ♣ di-lepton

#### Event Selection: $\sqrt{s}=13$ TeV, $\mathcal{L}=36.1$ fb<sup>-1</sup>



- exactly one lepton;
- ❖ one Higgs candidate  $p_T > 200$  GeV with two associated b-jets
- ♣ one Top candidate pT > 250 GeV with one associated b-jet and one non-b-jet
- ❖ one b-jet outside the two re-clustered jets.

#### Motivation for adding the boosted category to the resolved channel:


- fewer combinatorial background;
- **\*** easier **system reconstruction** thanks to the re-clustered techniques;
- $\clubsuit$  testing new methods, measuring the Higgs  $p_T$  in ttH events (useful for differential  $\sigma$  analysis).



# On the trigger side..

*jet triggers:* high  $p_T$  thresholds or prescale. Large-R jets at trigger level allows lower thresholds and good QCD bkg suppression.

Large-R jet triggers: Per-event trigger efficiency **ATLAS** Preliminary Data 2017,  $\sqrt{s} = 13 \text{ TeV}$ 8.0 Offline selection: ≥1 jet with mass > 50 GeV,  $\ln l < 2$ 0.6 anti-k, R = 1.0trimming:  $f_{\text{cut}} = 0.05$ ,  $R_{\text{sub}} = 0.2$ 0.4 HLT: 1 jet  $p_{\tau} > 420 \text{ GeV}$ ▼ HLT: 1 jet p<sub>+</sub> > 390 GeV, mass > 30 GeV 0.2 400 450 500 550 600 Leading large-R trimmed offline jet  $p_{\perp}$  [GeV] Per-event trigger efficiency **ATLAS** Preliminary Data 2017,  $\sqrt{s} = 13 \text{ TeV}$ 8.0 Offline selection: ≥2 jets with  $p_{\tau}$  > 400 GeV,  $|\eta|$  < 2 0.6 anti- $k_{+}R = 1.0$ trimming:  $f_{\text{cut}} = 0.05$ ,  $R_{\text{sub}} = 0.2$ 0.4 HLT: 2 jets p<sub>+</sub> > 330 GeV, mass > 30 GeV 0.2 80 60 100 120 40 140 Second leading large-R trimmed offline jet mass [GeV]



- ❖ large-R jet trigger applied to trimmed jets with  $|\eta| < 2.0$  and mass > 50 GeV
  - efficiently suppresses QCD bkg
- ❖ offline/online trimming difference: trigger jets f<sub>cut</sub>=0.04, offline f<sub>cut</sub>=0.05 to avoid inefficiency on jet mass reconstruction.

Per-event trigger efficiency

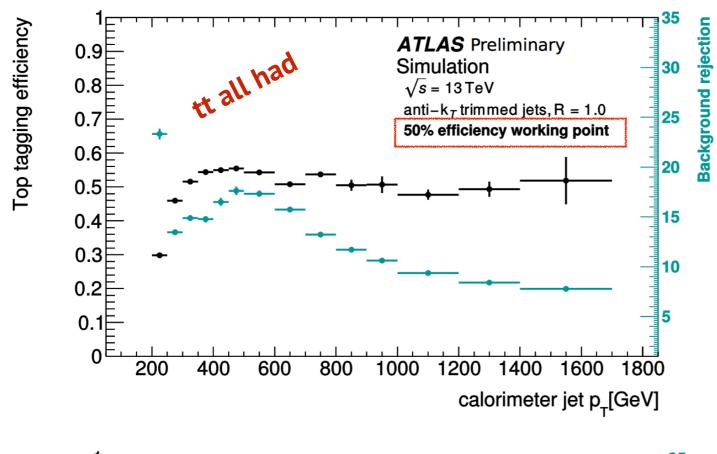
#### **Conclusions:**

#### From the experiment...

- **❖** LHC is collecting *more and more data*
- ❖ Detectors and analysis strategies must copy with the *challenging environmental* conditions @ 13 TeV
- ❖ jet physics allow us to *probe QCD and QED predictions* in new phase space regions
- @ 13 TeV (learning/improving from 8 TeV measurements) → boosted
- ❖ New triggers implementing online large-R jets trimming very efficient

#### ...to the analyses:

- Now more than ever jet grooming/tagging are fundamental to select "interesting jets":
  - \* high performances of ATLAS standard trimming/tagging techniques
  - \* *jet-reclustering* interesting for analysis targeting specific processes/regions


..many new results are coming!

# Thanks for the attention!!



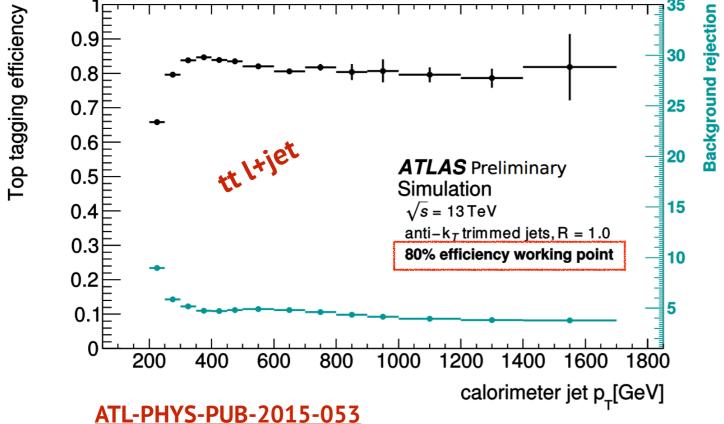
# Backup/ Additional Material

# tt differential cross-section - Tagger performance:



- **♦** Signal: Z' → tt
- **❖** Background: dijet event

#### **Jet matching:**


- reconstructed jet within  $\Delta R < 0.75$  of generator-level jet,
- ❖ signal generator-level jets  $p_T$ > 200 GeV and  $\Delta R$  < 0.75 of a hadronically decaying top quark.



# 50%WP:

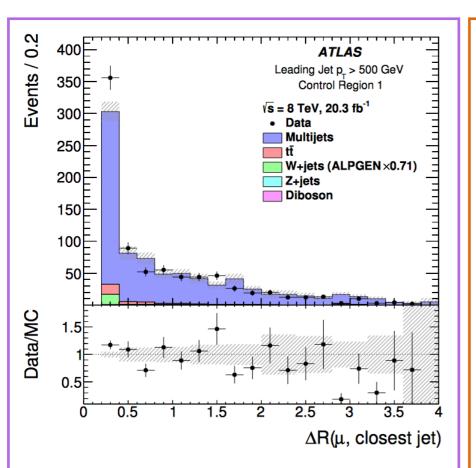
- ♣ p<sub>T</sub>>350 GeV top fully contained
- ❖ 200 GeV <p<sub>T</sub><350 GeV fully contained fraction rising

80% WP: already flat at  $p_T$ >250 GeV → suitable for searches not sculpting top  $p_T$ 



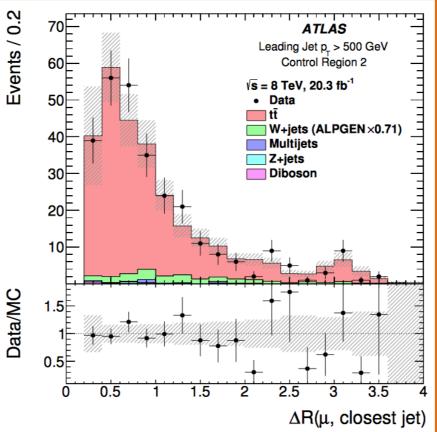
# Measurements of tt differential cross-section - LJ:

#### **Monte Carlo Samples**


| Physics process                        | Generator     | Cross-section | PDF set for  | Parton shower | Tune        |
|----------------------------------------|---------------|---------------|--------------|---------------|-------------|
|                                        |               | normalisation | hard process |               |             |
| <i>tī</i> Signal                       | Powheg-Box v2 | NNLO+NNLL     | CT10         | Рутніа 6.428  | Perugia2012 |
| $t\bar{t}$ PS syst.                    | Powheg-Box v2 | NNLO+NNLL     | CTEQ6L1      | Herwig++2.7.1 | UE-EE-5     |
| $t\bar{t}$ ME syst.                    | MadGraph5_    | NLO           | CT10         | Herwig++2.7.1 | UE-EE-5     |
|                                        | aMC@NLO       |               |              |               |             |
| $t\bar{t}$ rad. syst.                  | Powheg-Box v2 | NNLO+NNLL     | CT10         | Рутніа 6.428  | 'radHi/Lo'  |
| s top <i>t</i> -channel                | Powheg-Box v1 | NLO           | CT10f4       | Рутніа 6.428  | Perugia2012 |
| s top s-channel                        | Powheg-Box v2 | NLO           | CT10         | Рутніа 6.428  | Perugia2012 |
| s top Wt-channel                       | Powheg-Box v2 | NLO+NNLL      | CT10         | Рутніа 6.428  | Perugia2012 |
| $t\bar{t}+W/Z/WW$                      | MadGraph5_    | NLO           | NNPDF2.3LO   | Рутніа 8.186  | A14         |
|                                        | aMC@NLO       |               |              |               |             |
| $W(\rightarrow \ell \nu)$ + jets       | Sherpa 2.1.1  | NNLO          | CT10         | SHERPA        | Sherpa      |
| $Z(\rightarrow \ell\bar{\ell})$ + jets | SHERPA 2.1.1  | NNLO          | CT10         | Sherpa        | Sherpa      |
| WW, WZ, ZZ                             | SHERPA 2.1.1  | NLO           | CT10         | SHERPA        | Sherpa      |

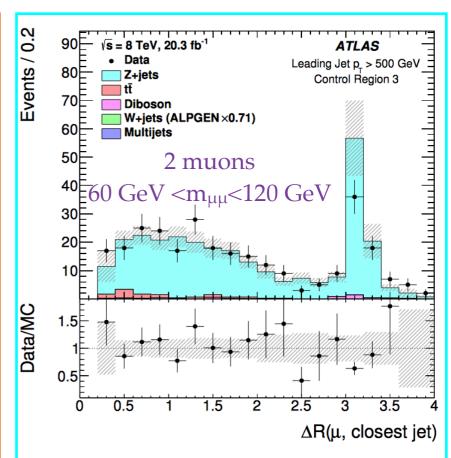
# Measurements of tt differential cross-section - LJ:

| Level                                                   | Detector                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                   | Particle                                                                                                   |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Topology                                                | Resolved                                                                                                                                                                                                         | Boosted                                                                                                                                                                                                                                                           |                                                                                                            |
| Leptons                                                 | $ d_0/\sigma(d_0)  < 5$ and $ z_0\sin\theta  < 0.5$ mm<br>Track-Calo-based Isolation<br>$ \eta  < 1.37$ or $1.52 <  \eta  < 2.47$ (e) $ \eta  < 2.5$ ( $\mu$ )<br>$E_{\rm T}$ (e), $p_{\rm T}$ ( $\mu$ )> 25 GeV |                                                                                                                                                                                                                                                                   | $ \eta $ <2.5 $p_{\rm T}$ > 25 GeV                                                                         |
| Small-R jets                                            | $p_{\rm T} > 25~{ m GeV}$<br>$ \eta  < 2.5$<br>JVT cut (if $p_{\rm T}$                                                                                                                                           | < 60 GeV and $ \eta $ < 2.4)                                                                                                                                                                                                                                      | $ \eta $ <2.5 $p_{\rm T}$ > 25 GeV                                                                         |
| Num of small-R jets                                     | ≥ 4 jets                                                                                                                                                                                                         | ≥ 1 jets                                                                                                                                                                                                                                                          |                                                                                                            |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ , $m_{\mathrm{T}}^{W}$ |                                                                                                                                                                                                                  | $E_{\rm T}^{\rm miss} > 20$ GeV, $E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60$ GeV                                                                                                                                                                                    | same as detector level                                                                                     |
| Leptonic top                                            |                                                                                                                                                                                                                  | At least one small- $R$ jet with $\Delta R(\ell, \text{small-}R \text{ jet}) < 2.0$                                                                                                                                                                               |                                                                                                            |
| Hadronic top                                            | kinematic top quark<br>reconstruction<br>for detector<br>and particle level                                                                                                                                      | the leading- $p_{\rm T}$ trimmed large- $R$ jet has: 300 GeV < $p_{\rm T}$ < 1500 GeV, $m$ > 50 GeV, TopTagging at 80% efficiency $\Delta R(\text{large-}R \text{ jet}, \text{small-}R \text{ jet}) > 1.5,$ $\Delta \phi(\ell, \text{small-}R \text{ jet}) > 1.0$ | <b>Boosted:</b> $300 < p_{\rm T} < 1500 \text{GeV}$ Top-tagging: $m > 100 \text{GeV}$ , $\tau_{32} < 0.75$ |
| <i>b</i> -tagging                                       | at least 2 b-tagged jets                                                                                                                                                                                         | at least one of:<br>1) the leading- $p_T$ small- $R$ jet with $\Delta R(\ell, \text{small-}R \text{ jet}) < 2.0$ is $b$ -tagged<br>2) at least one small- $R$ jet with $\Delta R(\text{large-}R \text{ jet}, \text{small-}R \text{ jet}) < 1.0$ is $b$ -tagged    | ghost-matched  B-hadron                                                                                    |


# tt differential cross-section - AH:

- at least 2 anti- $k_t R = 1.0$  jets with  $p_T > 350$  GeV,
- at least 1 anti- $k_t R = 1.0$  jet with  $p_T > 500$  GeV,
- at least 2 anti- $k_t R = 0.4$  jets with  $p_T > 25$  GeV,
- the masses of both R = 1.0 jets be within 50 GeV of the top-quark mass,
- the two leading R = 1.0 jets be associated with a b-hadron in the final state using a ghost-matching technique as described in Ref. [43], and
- no electrons or muons with  $p_T > 25$  GeV be in the event.




- ❖ 93% purity of dijet events
- ❖ revert signal region isolation
- $\mu$  p<sub>T</sub> > 38 GeV (to pass the non iso trigger)
- ❖  $\Delta$ R( $\mu$ , closest jet) > 0.2

Normalization correction:  $1.134 \pm 0.054$  (stat)



- ❖ 91% purity of tt events
- ❖ at least 2 b-tagged jets

Normalization correction:  $0.861 \pm 0.061$  (stat)



- ❖ 94% purity of Z+jets events
- ♣ exactly two µ
- **♦** 60 GeV <  $m_{\mu\mu}$  < 120 GeV
- higher  $p_T$   $\mu$  used to define  $\Delta R$


Normalization correction:  $0.705 \pm 0.052$  (stat)

| Systematic Source                       | $0.2 < \Delta R < 2.4$ | $\Delta R > 2.4$ | Inclusive |
|-----------------------------------------|------------------------|------------------|-----------|
| Scaling of dijets to data               | 0.4%                   | 0.1%             | 0.3%      |
| Scaling of $t\bar{t}$ to data           | 0.6%                   | 0.2%             | 0.5%      |
| Scaling of $Z$ + jets to data           | 0.6%                   | 0.3%             | 0.5%      |
| Jet energy scale                        | 4.6%                   | 5.8%             | 5.0%      |
| b-tagging efficiency                    | 3.7%                   | 1.2%             | 2.9%      |
| Data/MC disagreement for dijets         | 0.9%                   | 0.6%             | 0.8%      |
| Data/MC disagreement for $t\bar{t}$     | 1.2%                   | 0.4%             | 1.0%      |
| Data/MC disagreement for $Z + jets$     | 0.6%                   | 1.5%             | 0.9%      |
| Diboson background estimate             | 2.2%                   | 0.1%             | 1.5%      |
| Unfolding dependence on prior           | 1.1%                   | 1.8%             | 1.3%      |
| Muon momentum scale and resolution      | 0.0%                   | 0.1%             | 0.1%      |
| Muon reconstruction efficiency          | 0.4%                   | 0.4%             | 0.4%      |
| Muon trigger efficiency                 | 2.0%                   | 1.9%             | 1.9%      |
| Jet energy resolution                   | 0.6%                   | 0.8%             | 0.6%      |
| MC background statistical               | 2.4%                   | 1.8%             | 2.3%      |
| MC response statistical                 | 1.7%                   | 2.2%             | 1.9%      |
| Total systematic (excluding luminosity) | 7.6%                   | 7.4%             | 7.3%      |
| Luminosity                              | 1.9%                   | 2.0%             | 2.0%      |
| Data statistical                        | 2.7%                   | 3.6%             | 2.2%      |

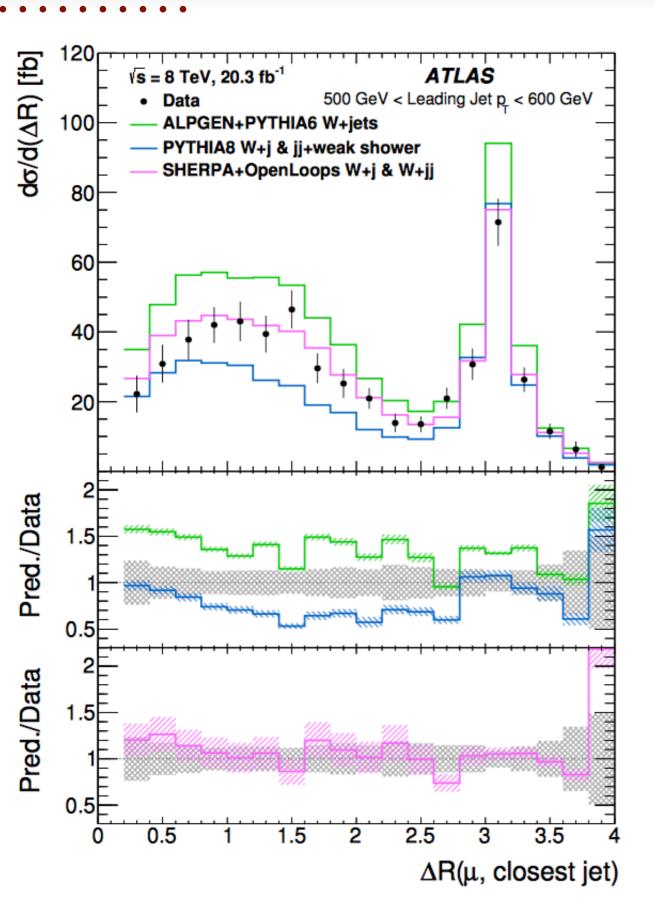
Events / 0.1

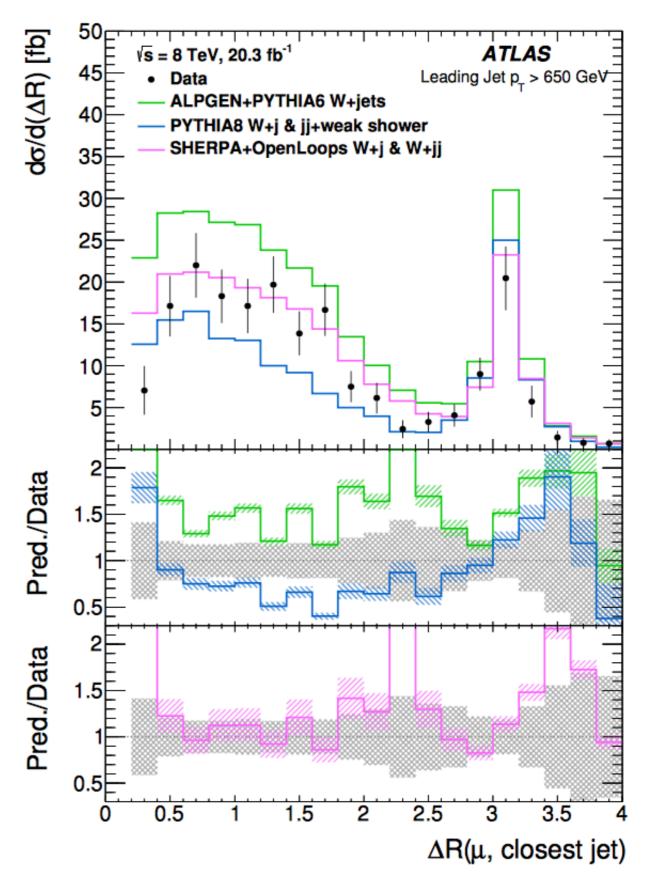
Data/MC

#### Uncorrected distribution in signal region



| Process    | $0.2 < \Delta R < 2.4$ | $\Delta R > 2.4$ | Inclusive |
|------------|------------------------|------------------|-----------|
| Dijets     | 5%                     | 2%               | 4%        |
| $t\bar{t}$ | 7%                     | 2%               | 5%        |
| Z + jets   | 6%                     | 4%               | 5%        |
| Dibosons   | 2%                     | 4%               | 3%        |
| W + jets   | 80%                    | 88%              | 82%       |
| Data       | 1907                   | 833              | 2740      |


#### Cross section measurement


| Process                                                   | $\sigma(W(\to \mu\nu) + \ge 1 \text{ jet}) \text{ [fb]}$                         |
|-----------------------------------------------------------|----------------------------------------------------------------------------------|
| Data ( $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ) | $169.2 \pm 3.7 \text{ (stat.)} \pm 12.3 \text{ (syst.)} \pm 3.3 \text{ (lumi.)}$ |
| ALPGEN+PYTHIA6 W+jets                                     | $236.6 \pm 1.1 \text{ (stat.)}$                                                  |
| PYTHIA8 $W+j \& jj+$ weak shower                          | $134.8 \pm 0.9 \text{ (stat.)} \pm 7.3 \text{ (pdf)}$                            |
| SHERPA+OpenLoops $W+j \& W+jj$                            | $183 \pm 25 \text{ (scale)}$                                                     |
| $W + \ge 1$ jet $N_{\text{jetti}}$ NNLO                   | $181 \pm 14$ (scale)                                                             |

| Process                                                   | $\sigma(W(\rightarrow \mu\nu) + \ge 1 \text{ jet}, \ 0.2 < \Delta R < 2.4) \text{ [fb]}$ |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------|
| Data ( $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ) | $116.2 \pm 3.2 \text{ (stat.)} \pm 8.8 \text{ (syst.)} \pm 2.3 \text{ (lumi.)}$          |
| ALPGEN+PYTHIA6 W+jets                                     | $167.1 \pm 0.9$ (stat.)                                                                  |
| PYTHIA8 $W+j$ & $jj+$ weak shower                         | $83.4 \pm 0.7 \text{ (stat.)} \pm 4.4 \text{ (pdf)}$                                     |
| SHERPA+OpenLoops $W+j \& W+jj$                            | $128 \pm 20 \text{ (scale)}$                                                             |
| $W + \ge 1$ jet $N_{\text{jetti}}$ NNLO                   | $123 \pm 9$ (scale)                                                                      |

| Process                                                   | $\sigma(W(\rightarrow \mu\nu) + \ge 1 \text{ jet}, \ \Delta R > 2.4) \text{ [fb]}$ |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| Data ( $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ) | $53.0 \pm 1.9 \text{ (stat.)} \pm 3.9 \text{ (syst.)} \pm 1.0 \text{ (lumi.)}$     |
| ALPGEN+PYTHIA6 W+jets                                     | $69.5 \pm 0.6$ (stat.)                                                             |
| PYTHIA8 $W+j$ & $jj+$ weak shower                         | $51.4 \pm 0.6$ (stat.) $\pm 2.9$ (pdf)                                             |
| SHERPA+OpenLoops $W+j \& W+jj$                            | $55 \pm 5$ (scale)                                                                 |
| $W + \ge 1$ jet $N_{\text{jetti}}$ NNLO                   | $58 \pm 5$ (scale)                                                                 |

|       | $\sigma_{ m LO}$ [fb]            | $\sigma_{ m NLO}$ [fb] | $\sigma_{ m NNLO}$ [fb] |
|-------|----------------------------------|------------------------|-------------------------|
| 8 TeV | 57 <sup>+13</sup> <sub>-10</sub> | $160^{+35}_{-27}$      | 187+5                   |



