ATLAS Measurements Using Jet Grooming and Substructure Giulia Ucchielli (INFN and University of Bologna) On Behalf of the **Collaboration** # **Introduction:** Many interesting ATLAS measurements using jet substructure @ 8 TeV already presented at BOOST (*)! ## **Outline of the talk:** - tt differential σ production \rightarrow now at 13 TeV first time at BOOST! - W collinear σ production \rightarrow *first measurement of the weak structure!* - ♣ To be published soon/ongoing efforts: - \star ttH \rightarrow first boosted channel in ttH - ♣ trigger → new triggers using jet substructure (*) some of them here: https://indico.cern.ch/event/439039/contributions/2223299/attachments/1311086/1961864/boost16_negrini.pdf https://indico.cern.ch/event/439039/contributions/2223300/attachments/1310580/1962242/BOOST16.pdf #### *Jets importance:* - **SM:** test of QCD and QED theoretical calculations - ♣ Beyond SM: many topologies involving hadronic final states (as seen in <u>Jonathan's</u> & <u>Junpei's</u> talks). #### <u>LHC @ √s=13 TeV:</u> - ✓ Hard Scattering Event - **★** Underlying Event (UE): - **≭** ISR/FSR - * Multiple interactions per bunch crossing - **★** Pile-up (up to ~50 in 2016) **✔** Boosted objects: **Exploit jet substructure properties** Jet "cleaning" or grooming =" trimming" ATLAS standard procedure # Jet Trimming - ATLAS Large-R jets: #### **Grooming:** - **♦** *Trimming* → ATLAS standard procedure for many SM analysis - mass-drop filtering - pruning alternatives #### CERN-PH-EP-2013-069 more in Joe's talk! # Jet re-clustering: - ❖ jet radius might be not optimized for specific physics scenarios - **♦** *in situ* calibration - ❖ enhance the availability of large-R jet configurations - \rightarrow intermediate *scale r* < *R* input to reconstruct large-R jets - * calibrated small-R jets can make *calibration of re-clustered large-R jets automatic* - →any large-R, any clustering algorithm, and many grooming strategies can be used! - N.B. does not mean uncertainty on re-clustered jet necessarily smaller than correspondent large-R jet. #### How re-clustering is applied: improving potential discovery for NP # Jet tagging using substructure variables: In the decays of massive resonances, boosted prongs can be collimated into a single jet: #### Tagging on: - ♣ Jet mass: calibrated mass (*) - **♦** N-subjettiness ratio (**): $$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, \dots, \delta R_{Nk})$$ $\tau_{32}=\tau_3/\tau_2$ - τ_2 : 2 prong decay - τ_3 : 3 prong decay - splitting scale - * minimum dijet mass from three subjects e.g. top-tagging (*), (**) ## Measurements of tt differential cross-section: #### The importance of tt: - **♦** high production cross section: $\sigma(13 \text{ TeV}) = 3.3 \times \sigma(8 \text{ TeV}) \rightarrow \sim 800 \text{ pb}$, - ❖ test of SM up to the *TeV scale*, - ❖ differential measurements **sensitive to BSM** scenarios, not detectable in inclusive ones. #### Final states: - ♣ l+jets: resolved and boosted (LJ) - * *all-hadronic*: boosted (AH) - ♣ High Lorentz boosted top-quark ($p_T>300$ GeV) decay products increasingly difficult to resolve → merged into a *large-R jet* - \clubsuit Both analysis define two types of anti- k_T jets: - **♦** *Small-R jets:* R=0.4, |η| < 2.5, p_T > 25 GeV (LJ and AH) - ***** *Large-R jets:* R=1.0, $|\eta| < 2.0$, $p_T > 300$ GeV (**LJ** and **AH**) #### Large-R jet reconstruction: - **Trimming:** R_{sub} = 0.2 , f_{cut} = 0.05 (LJ and AH) - ❖ Trimmed jet mass corrected to particle top jet using MC #### Top-tagging based on substructure variables: - **❖** *Large-R jet mass* - **❖** N-subjettiness chosen because of low correlation, strong performance and robustness across pT range #### **Analysis Flow:** Grooming + substructure: Analysis jets definition $\frac{\textit{Unfolding:}}{\textit{differential } \sigma \textit{ measurement}}$ common to LJ and AH analysis #### Event Selection: $\sqrt{s}=13$ TeV, $\mathcal{L}=3.2$ fb⁻¹ #### **Resolved** $\geq 4 \ small-R \ jets \ (\geq 2 \ b\text{-tagged})$ - **❖** Leptonic t: - imposes W-mass constraint to solve for $v \mid p_Z \mid$ - ❖pairs W and b-jet closest in Δ R to lepton - **❖** Hadronic t: - ♣pairs non b-tagged jets closest to m_W with remaining second hardest b-tagged jet Variables: p_T^{t,had}, | y^{t,had}|, p_T^{tt}, m^{tt}, | y^{tt}| #### **Boosted** ≥ 1 small-R jet $\mathcal{E} \geq 1$ large-R jets (at least one small-R b-tagged) MET > 20 GeV, $MET + m_T^W > 60$ GeV - **❖** Leptonic t: - ❖ at least one small-R jet with Δ R(l, small-R jet) < 2.0 - **♦** Hadronic t: - * top-tagged large-R jet (m>100 GeV, τ_{32} >0.75). Variables: p_Tt,had, | yt,had| # tt differential cross-section - LJ: ## Resolved ## **Boosted** - ❖ Data seems softer at high p_T in both resolved and boosted channels - ♣ p_T^{t,had}: trends of NLO MC generators similar among generators # tt differential cross-section - LJ - Systematics: #### **Dominant uncertainties:** - * Resolved: Jet Energy Scale (JES) and flavour tagging - **♦ Boosted:** Large R-jet (→JES dominant) #### Measurements of tt differential cross-section - AH: ATLAS-CONF-2016-100 Event Selection: $\sqrt{s}=13$ TeV, $\mathcal{L}=14.7$ fb⁻¹ ♣ ≥ 2 large-R jet (top-tagged), $$p_T^{lead} > 500 \text{ GeV}$$, $p_T^{sublead} > 350 \text{ GeV}$, 122.5 GeV < $m_{large-R} < 225.5 \text{ GeV}$ - $\Delta R(large-R, small-R) < 1.0$ - \bullet τ_{32} p_T dependent cut (50% efficienciency top-tagging WP) $\textit{Variables:} \ p_{T}^{1} \ , \ p_{T}^{2} \ , \ |\ y^{t1}| \ , \ |\ y^{t2}| \ , \ |\ y^{tt}| \ , \ m^{tt} \ , \ p_{T}^{tt} \ , \ H_{T}^{tt} \ , \ \Delta \phi^{tt} \ , \ y_{B}^{tt} \ , \ \chi^{tt} \ , \ |\ \cos\theta\ |\ ^*, \ p_{Tout}^{tt}$ - Challenging QCD background - → data-driven: ABCD method - ♣A,D,G,B: multijet dominated regions - **♦**F: validation region (~50% tt/~50% multijet) | | 0 t | 1 t | 2 t | |-----|-----|-----|-----| | 0 b | A | D | G | | 1 b | В | Е | Н | | 2 b | С | F | S | ❖ Event yields in signal region: | $t\bar{t}$ (all-hadronic) | 1 190 | ± | 240 | | |-------------------------------|-------|---|-----|--| | $t\bar{t}$ (non all-hadronic) | 60 | ± | 15 | | | Single top-quark | 9 | ± | 5 | | | Multijet events | 300 | ± | 20 | | | Prediction | 1 570 | ± | 260 | | | Data (14.7fb^{-1}) | 1512 | | | | | | | | | | - * tt non-all had and single-top from MC: - \clubsuit including contribution from τ - ~4% of total yields in SR - ❖ failing top-tagging requirements #### Hadronic top variables: **❖** Good agreement for leading and sub-leading top p_T (sensitive to ~1 TeV) #### **Dominant uncertainties:** - Large-R jet, - * signal modelling, - ♣ b-tagging #### Top system variables: tt system produced with modest p_T slowly falling m_{tt}→ good agreement with SM #### **Dominant uncertainties:** - Large-R jet, - signal modelling, - ♣ b-tagging # Collinear W @ 8 TeV see also Junmou's talk! #### W+jet NNLO in QCD - ❖ W+jet: *test perturbative QCD* and *real/virtual EW* emissions - **❖ LO** W+1 jet: *back-to-back* production - **NLO** W+1 jet: real W boson emission from ISR/FSR $O(\alpha \ln^2 p_{T,j}/m_W)$ - *→ collinear enhancement* in angular distance between *W* and closest jet. - ❖ tested in regions where cancellation between real/virtual correction incomplete \rightarrow *small* $\Delta R(W,jet)$ - * probing a new phase space region: - $\hookrightarrow \Delta R(l,jet) > 0.2$: usually $\Delta R(l,jet) > 0.4$ - \hookrightarrow *High* p_T *boosted jet* - * strong background to WW at very high p_T - \clubsuit W/jet collimated \rightarrow *resemble three prong structure* mimics *t* decay - ❖ important for W + jets measurements at high p_T, vector boson scattering, QCD multijets at high m_{ij} Muon and initial W directions highly correlated \Rightarrow measure $\sigma_{W(\rightarrow \mu \nu)+jets}$ as a function of $\Delta R(\mu, closest jet)$ #### Event Selection: $\sqrt{s}=8$ TeV, $\mathcal{L}=20.3$ fb⁻¹ - ≥ 1 jet with p_T > 500 GeV and $|\eta|$ < 2.1. - exactly one μ with dressed $p_T > 25$ GeV, $|\eta| < 2.4$. - ♣ jet with p_T > 100 GeV, |η| < 2.1 closest to μ → closest jet - $\Delta R(closest jet, \mu) > 0.2$ - ❖ Normalization correction of W+jets, multijet, *tt* and Z+jets in data control regions - ♣ Main systematic: JES and b-tagging - **♣** Fraction of collinear events increases with leading jet p_T and \sqrt{s} - ♣ Alpgen+Pythia6: multi-leg LO - **Pythia8**: includes dijet events with weak shower - **♦** Sherpa+OpenLoops: *NLO QCD* + *EW corrections* - **Njetti NNLO:** calculation up to $O(\alpha^3 s)$ # Search for ttH in high-p_T regime - ♦ ttH → direct access to Higgs-top Yukawa coupling - ♣ measuring Y_t provides indirect hints of new physics - * first time we study a boosted channel in ttH! - * re-clustering preferred then trimmed large-R jets - ♣ better sensitivity to signal strength µ - ❖ no systematic of large-R jets - * anti- k_T jets (R=0.4) used to re-cluster the large-R jets (R=1.0,200< p_T <1500GeV, $|\eta|$ < 2, m < 50 GeV) in this analysis. #### Analysis strategy: - ❖ Signal identification: *MVA* using event kinematics and topology, b-tagging information: - ♣ identification of very low signal over a very large background - ***** *Combination* with the resolved channel: - ❖ single-lepton - ♣ di-lepton #### Event Selection: $\sqrt{s}=13$ TeV, $\mathcal{L}=36.1$ fb⁻¹ - exactly one lepton; - ❖ one Higgs candidate $p_T > 200$ GeV with two associated b-jets - ♣ one Top candidate pT > 250 GeV with one associated b-jet and one non-b-jet - ❖ one b-jet outside the two re-clustered jets. #### Motivation for adding the boosted category to the resolved channel: - fewer combinatorial background; - ***** easier **system reconstruction** thanks to the re-clustered techniques; - \clubsuit testing new methods, measuring the Higgs p_T in ttH events (useful for differential σ analysis). # On the trigger side.. *jet triggers:* high p_T thresholds or prescale. Large-R jets at trigger level allows lower thresholds and good QCD bkg suppression. Large-R jet triggers: Per-event trigger efficiency **ATLAS** Preliminary Data 2017, $\sqrt{s} = 13 \text{ TeV}$ 8.0 Offline selection: ≥1 jet with mass > 50 GeV, $\ln l < 2$ 0.6 anti-k, R = 1.0trimming: $f_{\text{cut}} = 0.05$, $R_{\text{sub}} = 0.2$ 0.4 HLT: 1 jet $p_{\tau} > 420 \text{ GeV}$ ▼ HLT: 1 jet p₊ > 390 GeV, mass > 30 GeV 0.2 400 450 500 550 600 Leading large-R trimmed offline jet p_{\perp} [GeV] Per-event trigger efficiency **ATLAS** Preliminary Data 2017, $\sqrt{s} = 13 \text{ TeV}$ 8.0 Offline selection: ≥2 jets with p_{τ} > 400 GeV, $|\eta|$ < 2 0.6 anti- $k_{+}R = 1.0$ trimming: $f_{\text{cut}} = 0.05$, $R_{\text{sub}} = 0.2$ 0.4 HLT: 2 jets p₊ > 330 GeV, mass > 30 GeV 0.2 80 60 100 120 40 140 Second leading large-R trimmed offline jet mass [GeV] - ❖ large-R jet trigger applied to trimmed jets with $|\eta| < 2.0$ and mass > 50 GeV - efficiently suppresses QCD bkg - ❖ offline/online trimming difference: trigger jets f_{cut}=0.04, offline f_{cut}=0.05 to avoid inefficiency on jet mass reconstruction. Per-event trigger efficiency #### **Conclusions:** #### From the experiment... - **❖** LHC is collecting *more and more data* - ❖ Detectors and analysis strategies must copy with the *challenging environmental* conditions @ 13 TeV - ❖ jet physics allow us to *probe QCD and QED predictions* in new phase space regions - @ 13 TeV (learning/improving from 8 TeV measurements) → boosted - ❖ New triggers implementing online large-R jets trimming very efficient #### ...to the analyses: - Now more than ever jet grooming/tagging are fundamental to select "interesting jets": - * high performances of ATLAS standard trimming/tagging techniques - * *jet-reclustering* interesting for analysis targeting specific processes/regions ..many new results are coming! # Thanks for the attention!! # Backup/ Additional Material # tt differential cross-section - Tagger performance: - **♦** Signal: Z' → tt - **❖** Background: dijet event #### **Jet matching:** - reconstructed jet within $\Delta R < 0.75$ of generator-level jet, - ❖ signal generator-level jets p_T > 200 GeV and ΔR < 0.75 of a hadronically decaying top quark. # 50%WP: - ♣ p_T>350 GeV top fully contained - ❖ 200 GeV <p_T<350 GeV fully contained fraction rising 80% WP: already flat at p_T >250 GeV → suitable for searches not sculpting top p_T # Measurements of tt differential cross-section - LJ: #### **Monte Carlo Samples** | Physics process | Generator | Cross-section | PDF set for | Parton shower | Tune | |--|---------------|---------------|--------------|---------------|-------------| | | | normalisation | hard process | | | | <i>tī</i> Signal | Powheg-Box v2 | NNLO+NNLL | CT10 | Рутніа 6.428 | Perugia2012 | | $t\bar{t}$ PS syst. | Powheg-Box v2 | NNLO+NNLL | CTEQ6L1 | Herwig++2.7.1 | UE-EE-5 | | $t\bar{t}$ ME syst. | MadGraph5_ | NLO | CT10 | Herwig++2.7.1 | UE-EE-5 | | | aMC@NLO | | | | | | $t\bar{t}$ rad. syst. | Powheg-Box v2 | NNLO+NNLL | CT10 | Рутніа 6.428 | 'radHi/Lo' | | s top <i>t</i> -channel | Powheg-Box v1 | NLO | CT10f4 | Рутніа 6.428 | Perugia2012 | | s top s-channel | Powheg-Box v2 | NLO | CT10 | Рутніа 6.428 | Perugia2012 | | s top Wt-channel | Powheg-Box v2 | NLO+NNLL | CT10 | Рутніа 6.428 | Perugia2012 | | $t\bar{t}+W/Z/WW$ | MadGraph5_ | NLO | NNPDF2.3LO | Рутніа 8.186 | A14 | | | aMC@NLO | | | | | | $W(\rightarrow \ell \nu)$ + jets | Sherpa 2.1.1 | NNLO | CT10 | SHERPA | Sherpa | | $Z(\rightarrow \ell\bar{\ell})$ + jets | SHERPA 2.1.1 | NNLO | CT10 | Sherpa | Sherpa | | WW, WZ, ZZ | SHERPA 2.1.1 | NLO | CT10 | SHERPA | Sherpa | # Measurements of tt differential cross-section - LJ: | Level | Detector | | Particle | |---|--|---|--| | Topology | Resolved | Boosted | | | Leptons | $ d_0/\sigma(d_0) < 5$ and $ z_0\sin\theta < 0.5$ mm
Track-Calo-based Isolation
$ \eta < 1.37$ or $1.52 < \eta < 2.47$ (e) $ \eta < 2.5$ (μ)
$E_{\rm T}$ (e), $p_{\rm T}$ (μ)> 25 GeV | | $ \eta $ <2.5 $p_{\rm T}$ > 25 GeV | | Small-R jets | $p_{\rm T} > 25~{ m GeV}$
$ \eta < 2.5$
JVT cut (if $p_{\rm T}$ | < 60 GeV and $ \eta $ < 2.4) | $ \eta $ <2.5 $p_{\rm T}$ > 25 GeV | | Num of small-R jets | ≥ 4 jets | ≥ 1 jets | | | $E_{\mathrm{T}}^{\mathrm{miss}}$, m_{T}^{W} | | $E_{\rm T}^{\rm miss} > 20$ GeV, $E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60$ GeV | same as detector level | | Leptonic top | | At least one small- R jet with $\Delta R(\ell, \text{small-}R \text{ jet}) < 2.0$ | | | Hadronic top | kinematic top quark
reconstruction
for detector
and particle level | the leading- $p_{\rm T}$ trimmed large- R jet has: 300 GeV < $p_{\rm T}$ < 1500 GeV, m > 50 GeV, TopTagging at 80% efficiency $\Delta R(\text{large-}R \text{ jet}, \text{small-}R \text{ jet}) > 1.5,$ $\Delta \phi(\ell, \text{small-}R \text{ jet}) > 1.0$ | Boosted: $300 < p_{\rm T} < 1500 \text{GeV}$ Top-tagging: $m > 100 \text{GeV}$, $\tau_{32} < 0.75$ | | <i>b</i> -tagging | at least 2 b-tagged jets | at least one of:
1) the leading- p_T small- R jet with $\Delta R(\ell, \text{small-}R \text{ jet}) < 2.0$ is b -tagged
2) at least one small- R jet with $\Delta R(\text{large-}R \text{ jet}, \text{small-}R \text{ jet}) < 1.0$ is b -tagged | ghost-matched B-hadron | # tt differential cross-section - AH: - at least 2 anti- $k_t R = 1.0$ jets with $p_T > 350$ GeV, - at least 1 anti- $k_t R = 1.0$ jet with $p_T > 500$ GeV, - at least 2 anti- $k_t R = 0.4$ jets with $p_T > 25$ GeV, - the masses of both R = 1.0 jets be within 50 GeV of the top-quark mass, - the two leading R = 1.0 jets be associated with a b-hadron in the final state using a ghost-matching technique as described in Ref. [43], and - no electrons or muons with $p_T > 25$ GeV be in the event. - ❖ 93% purity of dijet events - ❖ revert signal region isolation - μ p_T > 38 GeV (to pass the non iso trigger) - ❖ Δ R(μ , closest jet) > 0.2 Normalization correction: 1.134 ± 0.054 (stat) - ❖ 91% purity of tt events - ❖ at least 2 b-tagged jets Normalization correction: 0.861 ± 0.061 (stat) - ❖ 94% purity of Z+jets events - ♣ exactly two µ - **♦** 60 GeV < $m_{\mu\mu}$ < 120 GeV - higher p_T μ used to define ΔR Normalization correction: 0.705 ± 0.052 (stat) | Systematic Source | $0.2 < \Delta R < 2.4$ | $\Delta R > 2.4$ | Inclusive | |---|------------------------|------------------|-----------| | Scaling of dijets to data | 0.4% | 0.1% | 0.3% | | Scaling of $t\bar{t}$ to data | 0.6% | 0.2% | 0.5% | | Scaling of Z + jets to data | 0.6% | 0.3% | 0.5% | | Jet energy scale | 4.6% | 5.8% | 5.0% | | b-tagging efficiency | 3.7% | 1.2% | 2.9% | | Data/MC disagreement for dijets | 0.9% | 0.6% | 0.8% | | Data/MC disagreement for $t\bar{t}$ | 1.2% | 0.4% | 1.0% | | Data/MC disagreement for $Z + jets$ | 0.6% | 1.5% | 0.9% | | Diboson background estimate | 2.2% | 0.1% | 1.5% | | Unfolding dependence on prior | 1.1% | 1.8% | 1.3% | | Muon momentum scale and resolution | 0.0% | 0.1% | 0.1% | | Muon reconstruction efficiency | 0.4% | 0.4% | 0.4% | | Muon trigger efficiency | 2.0% | 1.9% | 1.9% | | Jet energy resolution | 0.6% | 0.8% | 0.6% | | MC background statistical | 2.4% | 1.8% | 2.3% | | MC response statistical | 1.7% | 2.2% | 1.9% | | Total systematic (excluding luminosity) | 7.6% | 7.4% | 7.3% | | Luminosity | 1.9% | 2.0% | 2.0% | | Data statistical | 2.7% | 3.6% | 2.2% | Events / 0.1 Data/MC #### Uncorrected distribution in signal region | Process | $0.2 < \Delta R < 2.4$ | $\Delta R > 2.4$ | Inclusive | |------------|------------------------|------------------|-----------| | Dijets | 5% | 2% | 4% | | $t\bar{t}$ | 7% | 2% | 5% | | Z + jets | 6% | 4% | 5% | | Dibosons | 2% | 4% | 3% | | W + jets | 80% | 88% | 82% | | Data | 1907 | 833 | 2740 | #### Cross section measurement | Process | $\sigma(W(\to \mu\nu) + \ge 1 \text{ jet}) \text{ [fb]}$ | |---|--| | Data ($\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$) | $169.2 \pm 3.7 \text{ (stat.)} \pm 12.3 \text{ (syst.)} \pm 3.3 \text{ (lumi.)}$ | | ALPGEN+PYTHIA6 W+jets | $236.6 \pm 1.1 \text{ (stat.)}$ | | PYTHIA8 $W+j \& jj+$ weak shower | $134.8 \pm 0.9 \text{ (stat.)} \pm 7.3 \text{ (pdf)}$ | | SHERPA+OpenLoops $W+j \& W+jj$ | $183 \pm 25 \text{ (scale)}$ | | $W + \ge 1$ jet N_{jetti} NNLO | 181 ± 14 (scale) | | Process | $\sigma(W(\rightarrow \mu\nu) + \ge 1 \text{ jet}, \ 0.2 < \Delta R < 2.4) \text{ [fb]}$ | |---|--| | Data ($\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$) | $116.2 \pm 3.2 \text{ (stat.)} \pm 8.8 \text{ (syst.)} \pm 2.3 \text{ (lumi.)}$ | | ALPGEN+PYTHIA6 W+jets | 167.1 ± 0.9 (stat.) | | PYTHIA8 $W+j$ & $jj+$ weak shower | $83.4 \pm 0.7 \text{ (stat.)} \pm 4.4 \text{ (pdf)}$ | | SHERPA+OpenLoops $W+j \& W+jj$ | $128 \pm 20 \text{ (scale)}$ | | $W + \ge 1$ jet N_{jetti} NNLO | 123 ± 9 (scale) | | Process | $\sigma(W(\rightarrow \mu\nu) + \ge 1 \text{ jet}, \ \Delta R > 2.4) \text{ [fb]}$ | |---|--| | Data ($\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$) | $53.0 \pm 1.9 \text{ (stat.)} \pm 3.9 \text{ (syst.)} \pm 1.0 \text{ (lumi.)}$ | | ALPGEN+PYTHIA6 W+jets | 69.5 ± 0.6 (stat.) | | PYTHIA8 $W+j$ & $jj+$ weak shower | 51.4 ± 0.6 (stat.) ± 2.9 (pdf) | | SHERPA+OpenLoops $W+j \& W+jj$ | 55 ± 5 (scale) | | $W + \ge 1$ jet N_{jetti} NNLO | 58 ± 5 (scale) | | | $\sigma_{ m LO}$ [fb] | $\sigma_{ m NLO}$ [fb] | $\sigma_{ m NNLO}$ [fb] | |-------|----------------------------------|------------------------|-------------------------| | 8 TeV | 57 ⁺¹³ ₋₁₀ | 160^{+35}_{-27} | 187+5 |