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Jet energy scale corrections

JEC corrects reconstructed jets back to particle levelIntroduction L1 L2L3 Closure Conclusion Backup Technical Details

Jets and Jet Energy Corrections at CMS

Technical Details

CMSSW 8 0 20

Samples:

/QCD Pt-15to7000 TuneCUETP8M1 Flat 13TeV pythia8/RunIISummer16DR80-
NoPU magnetOn 80X mcRun2 asymptotic 2016 TrancheIV v2-v1/AODSIM
/QCD Pt-15to7000 TuneCUETP8M1 Flat 13TeV pythia8/RunIISummer16DR80-
PUFlat0to70 magnetOn 80X mcRun2 asymptotic 2016 TrancheIV v2-v1/AODSIM

Jet Collections:

Anti-kT , {PF, PF+CHS, PF+PUPPI} Jets with R = {0.4, 0.8}

PUPPI updated to v10 on September 9, 2016 and back-ported to 80X starting in
CMSSW 8 0 20 (Link to PR)

“Reverted back to the 74X tune after studies on the MET performance.” (PUPPI
Twiki)
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Reconstructed
Jets

pileup (A,ρ,pT ,η)

pileup (A,ρ,pT ,η)
MC (pT ,η)

dijets (η) γ+Jet/Z+Jet Calibrated
Jets

Applied on MC

Applied on data From in-situ MPF/Z-jet, flat in pT

L2L3ResL1 L2L3

<pRECOT >

<pptclT >
(pptclT , η, µ) = 1

Factorized approach:

• Pileup corrections to correct for offset energy
• Correction to particle level jet vs. (pT,η) from simulation
• Small residuals correction to data: pile-up, relative vs η, absolute vs pT
Although corrections are small, these are full physics analyses!

Jet Energy Resolution:

• Measured in MC vs (pptclT ,η,µ)
• Data/MC Scale factors from dijet events

Accuracy of JES has impact on all measurements with jets in final state
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Jet energy scale from simulation

Matching particle-level and reconstructed jets in QCD MC
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• Adressing the non-uniformity of the detector
response

• Stable response in barrel
• Stronger pT-dependence in Endcaps and HF
• Drop in response

• at 3<|η|<3.2 due to gaps
• at |η|>4.5 due to acceptance
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Rptcl(< pT >, η) = <pT>
<pptclT >

[pT,ptcl, η]



Jet energy resolution (JER) from simulation

JER = σ( <pT>
<pptclT >

)

• Resolution stable against pileup above jet pT=100 GeV
• Better than 10% (5%) resolution above pT=100 GeV (1 TeV)
• Degradation of 50% at pT=20 GeV for very high pileup of up to µ=75
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Offset scale factor

• Offset correction aims to remove IT and OOT pileup
• For simulation derived with QCD multijet events with/without pileup
overlay
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Residual correction to data: Random
Cone method with zero-bias data and
single-neutrino MC
• No contribution from hard
scattering→ only noise and
pileup

• Data/MC comparison for average
offset per additional pileup
interaction (µ)

• Different types of PF
contributions monitored
separately
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Relative η residual correction and JER SFs

• Disbalance in dijet events after MC based JEC applied
• Data/MC residual correction for the dependency of the
jet response on the jet η
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• Dijet events also used to
measure JER SFs
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Absolute residual scale

Response in several channels
to cover wide pT range:
• Z→ll + jets
• γ + jets
• multijet

H. Kirschenmann - CERN  15 November 2016

L3Residual: general idea
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The	L3Res	global	fit	

MJB =
|~p Leading jet

T |
|~p Recoil

T |

R
MPF

= 1 +
~/Et · ~p Recoil

T

(~p Recoil

T )2

Z/γ+jet	

Mul3jet	

Combined	together	in	a	global	fit		
(overall	data/MC	scale	+	pT-dependence)	

Run1	

3	

Looking	beTer	(and	with	more	data)…	

With	more	data	it	became	evident	that		
•  the	effect	is	mostly	visible	in	gamma+jet	sample	(in	parAcular	in	tension	with	mulAjet	

sample)	
•  It	was	already	there	in	74X	and	seems	to	get	worse	with	more	lumi	(higher	PU?)	
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After global fit
 / NDF = 76.0 / 632χ

• Data/MC comparison for the jet response
dependency on the jet pT

• Global fit taking into account individual scales
and uncertainties of reference objects (0.2% for
µ, 0.2% for e, 0.5% for γ)

• Vulnerable to low-level/reference object
instabilities
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Jet energy correction uncertaintiesJet Energy Correction (JEC) Uncertainties 
 

o  Pileup	uncertainty	
dominant	below	50	GeV		

o  JetFlavorQCD	sizable	
uncertainty	for	inclusive	
jets,	but	smaller	for	other	
analyses	

o  Other	important	
uncertainXes:	absolute	
scale	within	|η|<3	and	
relaXve	scale	at	|η|>3	

o  Minimum	uncertainty		of	
~0.7%	at	pT=300	GeV	and		
|η|<3	
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• Pileup uncertainty
dominant below 50 GeV

• Important uncertainties:
absolute scale at |η|<3
and relative scale at |η|>3

• Minimum uncertainty of
0.7% at pT=300 GeV and
|η|<3
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The differential jet production cross section

• Jet mass is sensitive to the internal structure of jets, described by QCD
parton showering

• Differential cross section of dijets with respect to pT and mass
• Grooming technique to separate soft part and hard core of the jet
• First comparison to analytic calculations using soft drop jet grooming
technique

Selec;on	
•  >=2	AK8	PFJets	with	CHS		

–  AK8	jets	are	reclustered	with	CA	plus	sof	drop	
–  “Tight”	jet	ID	applied	
–  Pt	>	200	GeV	
–  Generator	level	:	all	stable	par;cles	except	

neutrinos,	pt	>	20	GeV	
•  Select	dijets	at	RECO	and	GEN	level,	plot	

leading	two:		
–  Pt	asymmetry	(pt1	–	pt2)	/	(pt1	+	pt2)	<	0.3	
–  Delta	phi	(jet1,	jet2)	>	2.0	

•  Jet	Correc;ons	:	
–  Jet	energy	:	L1	(rho*area)	+	L2L3	
–  Jet	mass	:	L2L3	only	(no	rho	*	area)	

•  Jet	Resolu;on	(pt	and	mass)	:		
–  Stretch	reco	by:	(	reco	+	(reco	–	gen)	*	delta)	/	

reco	
–  JER	applies	to	energy	AND	mass	
–  JMR	applies	only	to	mass	
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Δϕ	>	2.0	

(pt1-pt2)/(pt1+pt2)	<	0.3	

pt	>	200	GeV,	|η|	<	2.4	

• The uncertainties of the
jet mass dramatically
reduced after grooming is
applied

• The physics modeling and
pileup uncertainties are
suppressed
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Summary

• JEC corrects reconstructed jets back to particle level
• Factorized approach:

• Pileup corrections to correct for offset energy
• Correction to particle level jet vs. (pT,η) from simulation
• Small residuals correction to data: pile-up, relative vs η, absolute vs pT

• Understanding of both JEC and JER is of crucial importance for many
physics analyses (e.g. the inclusive jet cross section and top quark
mass)

• For first time at hadron collider a direct comparison is made between
data and theoretical calculations for differential jet cross section with
respect to pT and mass
→ Sensitive observable to the physics modeling and could be used in
future global fits for parameter tuning
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Uncertainties estimate in RunI
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