Jet energy scale and resolution measurements at CMS

Anastasia Karavdina on behalf of CMS collaboration July 19, 2017

University of Hamburg

Jet energy scale corrections

JEC corrects reconstructed jets back to particle level

$$rac{< p_T^{RECO}>}{< p_T^{ptcl}>}(p_T^{ptcl},\eta,\mu)$$
 = 1

Factorized approach:

- Pileup corrections to correct for offset energy
- Correction to particle level jet vs. (p_{T},η) from simulation
- Small residuals correction to data: pile-up, relative vs η , absolute vs p_T Although corrections are small, these are full physics analyses!

Jet Energy Resolution:

- Measured in MC vs (p_T^{ptcl}, η, μ)
- Data/MC Scale factors from dijet events

Accuracy of JES has impact on all measurements with jets in final state

Matching particle-level and reconstructed jets in QCD MC

$$R_{ptcl}(,\eta) = \frac{}{} [p_{T,ptcl},\eta]$$

- Adressing the non-uniformity of the detector response
- Stable response in barrel
- $\cdot\,$ Stronger $p_{T}\text{-}dependence in Endcaps and HF$
- Drop in response
 - $\cdot\,$ at 3<| η |<3.2 due to gaps
 - $\cdot \,$ at $|\eta|$ >4.5 due to acceptance

Jet energy resolution (JER) from simulation

$$\mathsf{JER} = \sigma(\frac{}{})$$

- $\cdot\,$ Resolution stable against pileup above jet $p_{T}\text{=}100~\text{GeV}$
- Better than 10% (5%) resolution above $p_{\textrm{T}}\text{=}100$ GeV (1 TeV)
- Degradation of 50% at p_T=20 GeV for very high pileup of up to μ =75

- $\cdot\,$ Offset correction aims to remove IT and OOT pileup
- For simulation derived with QCD multijet events with/without pileup overlay

Residual correction to data: Random Cone method with zero-bias data and single-neutrino MC

- No contribution from hard scattering \rightarrow only noise and pileup
- Data/MC comparison for average offset per additional pileup interaction (μ)
- Different types of PF contributions monitored separately

Relative η residual correction and JER SFs

- $\cdot\,$ Disbalance in dijet events after MC based JEC applied
- Data/MC residual correction for the dependency of the jet response on the jet η
 - Dijet events also used to measure JER SFs

Absolute residual scale

Response in several channels to cover wide p_T range:

- \cdot Z \rightarrow ll + jets
- \cdot γ + jets
- multijet

- Data/MC comparison for the jet response dependency on the jet $p_{\rm T}$
- Global fit taking into account individual scales and uncertainties of reference objects (0.2% for μ , 0.2% for e, 0.5% for γ)
- Vulnerable to low-level/reference object instabilities

Jet energy correction uncertainties

- Pileup uncertainty dominant below 50 GeV
- Important uncertainties: absolute scale at $|\eta|$ <3 and relative scale at $|\eta|$ >3
- Minimum uncertainty of 0.7% at p_T =300 GeV and $|\eta|$ <3

The differential jet production cross section

- Jet mass is sensitive to the internal structure of jets, described by QCD parton showering
- Differential cross section of dijets with respect to p_{T} and mass
- · Grooming technique to separate soft part and hard core of the jet
- First comparison to analytic calculations using soft drop jet grooming technique

- The uncertainties of the jet mass dramatically reduced after grooming is applied
- The physics modeling and pileup uncertainties are suppressed

CMS PAS SMP-16-010

Summary

- JEC corrects reconstructed jets back to particle level
- Factorized approach:
 - Pileup corrections to correct for offset energy
 - Correction to particle level jet vs. (p_T, η) from simulation
 - + Small residuals correction to data: pile-up, relative vs η , absolute vs p_T
- Understanding of both JEC and JER is of crucial importance for many physics analyses (e.g. the inclusive jet cross section and top quark mass)
- For first time at hadron collider a direct comparison is made between data and theoretical calculations for differential jet cross section with respect to p_T and mass

 \rightarrow Sensitive observable to the physics modeling and could be used in future global fits for parameter tuning

Uncertainties estimate in Runl

