<u>1705.02355</u> <u>1701.05927</u>

Generative Adversarial Networks for Jet Simulation

Michela Paganini^{a,b}, Luke de Oliveira^{b,c}, <u>Benjamin Nachman^b</u>

^aYale University

^bLawrence Berkeley National Laboratory

^cManifold

Outline: DNN with HEP images --- LAGAN --- CaloGAN

Simulation at the LHC

10000000000 m leeeeeeeeeee and a contract and a mmmmm mmm Recence Spanning 10⁻²⁰ m up to 1 m Inspired by Sherpa 1.1 can take O(min/event) paper - can you spot the differences?

Part I: Hard-scatter

We begin with a model and ME generators.

$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ $+ i \bar{\psi} D \psi$ $+ \psi_i y_{ij} \psi_j \phi + \text{h.c.}$ $+ |D_\mu \phi|^2 - V(\phi)$ + ???

Standard is automated NLO or LO + matched

For many cases, this is slow but not limiting (yet)

Part II: Fragmentation

Fragmentation uses MCMC; standard is leading-log.

mmmm

COLONICO COLONICO COLONICO COLONICO

TOTOTO

lelelele!

Not a limiting factor in terms of computing time.

Part III: Material Interactions

State-of-the-art for material interactions is Geant4.

Includes electromagnetic and hadronic physics with a variety of lists for increasing/decreasing accuracy (at the cost of time)

This accounts for O(1) fraction of all competing resources!

Part IV: Digitization

It is important to mention that **after** Geant4, each experiment has custom code for *digitization*

this can also be slow; but is usually faster than G4 and reconstruction

Goal: replace (or augment) simulation steps with a faster, powerful generator based on state-of-the-art machine learning techniques

This work: attack the most important part: Calorimeter Simulation

why should you care?

N.B. ALL jet substructure analyses in ATLAS are forced to use full simulation as current fast sim. is not good enough.

First step: instead of studying the detailed structure of calorimeter showers, we consider **Jet images**

The Jet Image

Jet Image: A two-dimensional fixed representation of the radiation pattern inside a jet

Modern Deep NN's for Generation

Generative Adversarial Networks (GAN): *A two-network game where one maps noise to images and one classifies images as fake or real.*

10

Locally Connected Layers

Due to the structure of the problem, we do not have translation invariance.

Classification studies found fully connected networks outperformed CNNs

Locally Connected Layers

Locally Aware GAN (LAGAN)

Unlike `natural images', we have physically meaningful 1D manifolds (here, jet mass)

+ More Layers for Generation

What about **multiple layers** with **non-uniform granularity** and a **causal relationship**?

φ Cell ID

Not jet images per se, but the technology is more general than jets!

Calorimeter Simulation

We take as our model a 3layer LAr calorimeter, inspired by the ATLAS barrel EM calorimeter

A single event may have O(10³) of particles showering in the calorimeter - too cumbersome to do all at once (now)

We exploit factorization of energy depositions

Generator Network for CaloGAN

Discriminator Network for CaloGAN

Average Images

Geant4

CaloGAN

Energy per layer

Generation Method	Hardware	Batch Size	milliseconds/shower
GEANT4	CPU	N/A	1772 -
CALOGAN	CPU	1	13.1
		10	5.11
		128	2.19
		1024	2.03
	GPU	1	14.5
		4	3.68
		128	0.021
		512	0.014
		1024	0.012

Conclusions

(Jet) image-based NN generation is a powerful tools for fully exploiting the physics program at the LHC

The key to robustness is to study what is being learned; this may even help us to learn something new! All of our training samples are public as is our generation, training, and plotting code:

https://github.com/hep-lbdl

you can find more documentation about the LAGAN and CaloGAN on the arXiv:

<u>1705.02355</u> <u>1701.05927</u>

Why images?

Pre-processing and Special Relativity

Pre-processing is an important aspect of image recognition

However, some steps can damage the physics information content of a jet image

I won't discuss this in detail here, but I bring it up so you are aware of it!

Modern Deep NN's for Classification

de Oliviera et al. 1511.05190

Convolutions

Convolved Feature Layers

 $W' \rightarrow WZ$ event

Subsequent developments:

P. Baldi et al. 1603.09349 (W-tagging) *J. Barnard et al.* 1609.00607 (W-tagging) *P. Komiske et al.* 1612.01551 (q/g-tagging) *G. Kasieczka et al.* 1701.08784 (top-tagging)

Modern Deep NN's for Classification

Signal Efficiency

Learning about Learning

Jet images afford a lot of natural visualization

as a community, we have also developed many techniques

More detail in my <u>DS@HEP15 talk</u>

ACGAN

Locally Aware GAN (LAGAN)

Spread in Images

A key challenge in training GANs is the diversity of generated images. This does not seem to be a problem for CaloGAN.

Depth of the shower

Lateral spread

 10^{-5}

10⁻⁶

 10^{0}

101

 σ_2

 10^{2}

These moments and others are useful for classification; we have also tested this as a metric (NN on 3D images) 33

Shower Energy

Add angle in addition to energy; hadronic calorimeter

Non-uniform geometry as a function of η

Integration within experiments (ATLAS and possibly others?) and collaboration with other efforts (e.g. GeantV)

