A testable model: Gauged Two Higgs Doublet Model

Yue-Lin Sming Tsai (NCTS, Hsinchu)

The 1st CEPC analysis and physics workshop

This work is in collaboration with Wei-Chih Huang and Tzu-Chiang Yuan References: 1512.00229 (JHEP), 1512.07268 (NPB)

Outline

Motivations

Model configuration

Phenomenology

- Mass spectra of scalar and gauge bosons
- Stability and perturbative constraints
- Dark Matter and charged Higgs at CEPC/ILC

Conclusions

Motivation (I): three unknown questions, killing three birds with one stone

- 1. After the Standard Model (SM) Higgs discovery, does there exist other scalar particles? (A discrete Z2 symmetry might be needed to avoid FCNC!)
- 2. What is dark matter (DM)? (A discrete Z2 symmetry might be needed to protect DM stability!)
- 3. Where does the tiny neutrino mass come from? (A discrete Z2 symmetry might be needed to kill tree-level contribution!)

Motivation (II): 2HDM and left-right alignment

- 1. A wonder of the standard model (SM) is why the left and right representation is not symmetric?
- 2. 2HDM is a good model because its simple extension of SM scalar sector, yet with rich phenomenology, freely to adopt various Yukawa types: Type 1,2,X,Y, and Inert Higgs. An unexplained Z2 discrete symmetry is needed to do so.
- 3. A new continuous gauge symmetry SU(2)H to align 2HDM as new doublet is used to replace the artificial discrete Z2 symmetry. (Now left and right representation is a complete symmetric, horizontal symmetry.)

Model configuration

Alignment and the replacement of Z2 symmetry

Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$
$Q_L = (u_L \ d_L)^T$	3	2	1	1/6	0
$U_R = egin{pmatrix} u_R & u_R^H \end{pmatrix}^T$	3	1	2	2/3	1
$D_R = \begin{pmatrix} d_R^H & d_R \end{pmatrix}^T$	3	1	2	-1/3	-1
$L_L = (\nu_L \ e_L)^T$	1	2	1	-1/2	0
$N_R = \left(\nu_R \ \nu_R^H\right)^T$	1	1	2	0	1
$E_R = \begin{pmatrix} e_R^H & e_R \end{pmatrix}^T$	1	1	2	-1	-1
χ_u	3	1	1	2/3	0
Xd	3	1	1	-1/3	0
$\chi_{ u}$	1	1	1	0	0
Xe	1	1	1	-1	0
$H = (H_1 \ H_2)^T$	1	2	2	1/2	1
$\Delta_H = \begin{pmatrix} \Delta_3/2 & \Delta_p/\sqrt{2} \\ \Delta_m/\sqrt{2} & -\Delta_3/2 \end{pmatrix}$	1	1	3	0	0
$\Phi_H = \begin{pmatrix} \Phi_1 & \Phi_2 \end{pmatrix}^T$	1	1	2	0	1

TABLE I. Matter field contents and their quantum number assignments in G2HDM.

- Extra gauge groups: SU(2)H * U(1)X
- SU(2)L symmetry breaking can be induced by SU(2)H symmetry breaking.
- One of Higgs doublets H_2 can be inert and its stability are protected by the SU(2)H gauge symmetry and Lorentz invariance.
- Unlike Left-Right (LR) symmetric models, the complex gauge fields are electrically neutral.
- Neutrinos would be Dirac fermions unless additional lepton number violation terms are involved. Dirac neutrino is minimum setting.

Particle contents

Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$
$Q_L = (u_L \ d_L)^T$	3	2	1	1/6	0
$U_R = \begin{pmatrix} u_R & u_R^H \end{pmatrix}^T$	3	1	2	2/3	1
$D_R = \begin{pmatrix} d_R^H & d_R \end{pmatrix}^T$	3	1	2	-1/3	-1
$L_L = (\nu_L \ e_L)^T$	1	2	1	-1/2	0
$N_R = \left(\nu_R \ \nu_R^H\right)^T$	1	1	2	0	1
$E_R = \begin{pmatrix} e_R^H & e_R \end{pmatrix}^T$	1	1	2	-1	-1
χ_u	3	1	1	2/3	0
χ_d	3	1	1	-1/3	0
χν	1	1	1	0	0
χ_e	1	1	1	-1	0
$H = (H_1 \ H_2)^T$	1	2	2	1/2	1
$\Delta_H = \begin{pmatrix} \Delta_3/2 & \Delta_p/\sqrt{2} \\ \Delta_m/\sqrt{2} & -\Delta_3/2 \end{pmatrix}$	1	1	3	0	0
$\Phi_H = (\Phi_1 \ \Phi_2)^T$	1	1	2	0	1

- H₁ and H₂ are embedded into a SU(2)_H doublet
- SU(2)_L doublet fermions are singlets under SU(2)_H while SU(2)_L singlet fermions pair up with heavy fermions as SU(2)_H doublets
- VEVs of Φ_H and Δ_H give a mass to SU(2)_H gauge bosons
- ✤ VEV of Φ_H gives a Dirac mass to heavy fermions

<u>Anomaly cancelation</u>: We have to introduce x_u , x_d, and x_e to cancel those of right-handed ones from uH_R, dH_R, and eH_R respectively.

X_nu is for keeping neutrino mass term.

Particle contents

						-
Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$	*
$Q_L = (u_L \ d_L)^T$	3	2	1	1/6	0	
$U_R = \begin{pmatrix} u_R & u_R^H \end{pmatrix}^T$	3	1	2	2/3	1	*
$D_R = \begin{pmatrix} d_R^H & d_R \end{pmatrix}^T$	3	1	2	-1/3	-1	
$L_L = (\nu_L \ e_L)^T$	1	2	1	-1/2	0	
$N_R = \left(\nu_R \nu_R^H \right)^T$	1	1	2	0	1	
$E_R = \begin{pmatrix} e_R^H & e_R \end{pmatrix}^T$	1	1	2	-1	-1	
χ_u	3	1	1	2/3	0	*
χ_d	3	1	1	-1/3	0	
χν	1	1	1	0	0	*
χ_e					12	
$H = (H_1 H_2)^T$		DM	candi	.date	es _	\mathbf{X}
	~	2~	\sim	~		to
$\Delta_H = \begin{pmatrix} \Delta_3/2 & \Delta_p/\sqrt{2} \\ \Delta_m/\sqrt{2} & -\Delta_3/2 \end{pmatrix}$	1	1	3	0	0	
$\Phi_H = (\Phi_1 \ \Phi_2)^T$	1	1	2	0	1	

- H₁ and H₂ are embedded into a SU(2)_H doublet
- SU(2)_L doublet fermions are singlets under SU(2)_H while SU(2)_L singlet fermions pair up with heavy fermions as SU(2)_H doublets
- VEVs of Φ_H and Δ_H give a mass to SU(2)_H gauge bosons
- ✤ VEV of Φ_H gives a Dirac mass to heavy fermions

Triplet Higgs induced to keep the splitting of H1 and H2. Comparison with LR symmetric models

The Yukawas

$$\begin{aligned} \mathcal{L}_{\text{Yuk}} \supset y_d \bar{Q}_L \left(D_R \cdot H \right) + y_u \bar{Q}_L \left(U_R \cdot \tilde{\tilde{H}} \right) + \text{H.c.}, \\ &= y_d \bar{Q}_L \left(d_R^H H_2 - d_R H_1 \right) - y_u \bar{Q}_L \left(u_R \tilde{H}_1 + u_R^H \tilde{H}_2 \right) + \text{H.c.} \end{aligned}$$

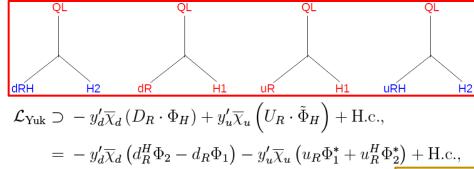
 $U_R^T = (u_R \ u_R^H)_{2/3}$ $D_R^T = (d_R^H \ d_R)_{-1/3}$

where $\widetilde{\tilde{H}} \equiv (\tilde{H}_2 - \tilde{H}_1)^T$ with $\tilde{H}_{1,2} = i\tau_2 H_{1,2}^*$. After the EW symmetry breaking $\langle H_1 \rangle \neq 0$

Xd

Xd

nhi1



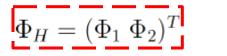
After the EW symmetry breaking the vev of H1 is not zero, u and d obtain their masses but uHR and dHR remain massless since H2 does not get a vev.

• Yukawas couplings for leptons

$$\mathcal{L}_{\text{Yuk}} \supset y_e \bar{L}_L \left(E_R \cdot H \right) + y_\nu \bar{L}_L \left(N_R \cdot \tilde{H} \right) - y'_e \overline{\chi}_e \left(E_R \cdot \Phi_H \right) + y'_\nu \overline{\chi}_\nu \left(N_R \cdot \tilde{\Phi}_H \right) + \text{H.c.},$$

$$= y_e \bar{L}_L \left(e_R^H H_2 - e_R H_1 \right) - y_\nu \bar{L}_L \left(\nu_R \tilde{H}_1 + \nu_R^H \tilde{H}_2 \right)$$

$$- y'_e \overline{\chi}_e \left(e_R^H \Phi_2 - e_R \Phi_1 \right) - y'_\nu \overline{\chi}_\nu \left(\nu_R \Phi_1^* + \nu_R^H \Phi_2^* \right) + \text{H.c.},$$



phi1

uŔH

phi2

Xu

Scalar Potential

 $V(H, \Delta_H, \Phi_H) = V(H) + V(\Phi_H) + V(\Delta_H) + V_{\text{mix}}(H, \Delta_H, \Phi_H) ,$

 $= \mu_H^2 \left(H_1^{\dagger} H_1 + H_2^{\dagger} H_2 \right) + \lambda_H \left(H_1^{\dagger} H_1 + H_2^{\dagger} H_2 \right)^2 ,$

 $V(H) = \mu_H^2 H^{\dagger} H + \lambda_H \left(H^{\dagger} H \right)^2 ,$

Scalar Potential

$$V_{\text{mix}}(H, \Delta_{H}, \Phi_{H}) = + M_{H\Delta} \left(H^{\dagger} \Delta_{H} H\right) - M_{\Phi\Delta} \left(\Phi_{H}^{\dagger} \Delta_{H} \Phi_{H}\right) \\ + \lambda_{H\Delta} \left(H^{\dagger} H\right) \text{Tr} \left(\Delta_{H}^{\dagger} \Delta_{H}\right) + \lambda_{H\Phi} \left(H^{\dagger} H\right) \left(\Phi_{H}^{\dagger} \Phi_{H}\right) \\ + \lambda_{\Phi\Delta} \left(\Phi_{H}^{\dagger} \Phi_{H}\right) \text{Tr} \left(\Delta_{H}^{\dagger} \Delta_{H}\right) , \\ = + M_{H\Delta} \left(\frac{1}{\sqrt{2}} H_{1}^{\dagger} H_{2} \Delta_{p} + \frac{1}{2} H_{1}^{\dagger} H_{1} \Delta_{3} + \frac{1}{\sqrt{2}} H_{2}^{\dagger} H_{1} \Delta_{m} - \frac{1}{2} H_{2}^{\dagger} H_{2} \Delta_{3} \right) \\ - M_{\Phi\Delta} \left(\frac{1}{\sqrt{2}} \Phi_{1}^{*} \Phi_{2} \Delta_{p} + \frac{1}{2} \Phi_{1}^{*} \Phi_{1} \Delta_{3} + \frac{1}{\sqrt{2}} \Phi_{2}^{*} \Phi_{1} \Delta_{m} - \frac{1}{2} H_{2}^{\dagger} H_{2} \Delta_{3} \right) \\ + \lambda_{H\Delta} \left(H_{1}^{\dagger} H_{1} + H_{2}^{\dagger} H_{2}\right) \left(\frac{1}{2} \Delta_{3}^{2} + \Delta_{p} \Delta_{m}\right) \\ + \lambda_{H\Phi} \left(H_{1}^{\dagger} H_{1} + H_{2}^{\dagger} H_{2}\right) \left(\Phi_{1}^{*} \Phi_{1} + \Phi_{2}^{*} \Phi_{2}\right) \\ + \lambda_{\Phi\Delta} \left(\Phi_{1}^{*} \Phi_{1} + \Phi_{2}^{*} \Phi_{2}\right) \left(\frac{1}{2} \Delta_{3}^{2} + \Delta_{p} \Delta_{m}\right) ,$$

Coefficients of the quadratic terms of H1 and H2:

 $\mu_H^2 = \frac{1}{2} M_{H\Delta} \cdot v_\Delta + \frac{1}{2} \lambda_{H\Delta} \cdot v_\Delta^2 + \frac{1}{2} \lambda_{H\Phi} \cdot v_\Phi^2 ,$

 $H_1 \mbox{ can develop a VEV}$ while $H_2 \mbox{ not, provided that the second term is large enough! } H_2 \mbox{ can be inert!}$

U(1)x symmetry helps to simplify the potential, e.g. term like $\Phi_H^T \Delta_H \Phi_H$ would be allowed by just SU(2)_H

Things get ugly quickly!

$$V_{\text{mix}}(H, \Delta_{H}, \Phi_{H}) = + M_{H\Delta}(H^{\dagger}\Delta_{H}H) - M_{\Phi\Delta}(\Phi_{H}^{\dagger}\Delta_{H}\Phi_{H}) + \lambda_{H\Delta}(H^{\dagger}H)(\Phi_{H}^{\dagger}\Phi_{H}) + \lambda_{H\Delta}(H^{\dagger}H) (\Phi_{H}^{\dagger}\Phi_{H}) + \lambda_{H\Delta}(H^{\dagger}H) \text{Tr}(\Delta_{H}^{\dagger}\Delta_{H}) + \lambda_{H\Delta}(H^{\dagger}H) \text{Tr}(\Delta_{H}^{\dagger}\Delta_{H}) ,$$

$$= + M_{H\Delta}(\frac{1}{\sqrt{2}} \Phi_{1}^{\dagger}\Phi_{2}\Delta_{p} + \frac{1}{2} \Phi_{1}^{\dagger}H_{1}\Delta_{3} + \frac{1}{\sqrt{2}} \Phi_{2}^{\dagger}\Phi_{1}\Delta_{m} - \frac{1}{2} \Phi_{2}^{\dagger}\Phi_{2}\Delta_{3}) + \lambda_{H\Delta}(H^{\dagger}H) + H_{2}^{\dagger}\Phi_{2}\Delta_{p} + \frac{1}{2} \Phi_{1}^{\dagger}\Phi_{1}\Delta_{3} + \frac{1}{\sqrt{2}} \Phi_{2}^{\dagger}\Phi_{1}\Delta_{m} - \frac{1}{2} \Phi_{2}^{\dagger}\Phi_{2}\Delta_{3}) + \lambda_{H\Delta}(H^{\dagger}H_{1} + H_{2}^{\dagger}H_{2})(\frac{1}{2}\Delta_{3}^{2} + \Delta_{p}\Delta_{m}) + \lambda_{H\Delta}(H^{\dagger}H_{1} + H_{2}^{\dagger}H_{2})(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{H\Delta}(\Phi_{1}^{\dagger}H_{1} + H_{2}^{\dagger}H_{2})(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{\Phi\Delta}(\Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2})(\frac{1}{2}\Delta_{3}^{2} + \Delta_{p}\Delta_{m}), \qquad 11$$

$$\begin{split} V(\Phi_H) &= \mu_{\Phi}^2 \Phi_H^{\dagger} \Phi_H + \lambda_{\Phi} \left(\Phi_H^{\dagger} \Phi_H \right)^2 ,\\ &= \mu_{\Phi}^2 \left(\Phi_1^* \Phi_1 + \Phi_2^* \Phi_2 \right) + \lambda_{\Phi} \left(\Phi_1^* \Phi_1 + \Phi_2^* \Phi_2 \right)^2 ,\\ V(\Delta_H) &= -\mu_{\Delta}^2 \operatorname{Tr} \left(\Delta_H^{\dagger} \Delta_H \right) + \lambda_{\Delta} \left(\operatorname{Tr} \left(\Delta_H^{\dagger} \Delta_H \right) \right)^2 ,\\ &= -\mu_{\Delta}^2 \left(\frac{1}{2} \Delta_3^2 + \Delta_p \Delta_m \right) + \lambda_{\Delta} \left(\frac{1}{2} \Delta_3^2 + \Delta_p \Delta_m \right)^2 , \end{split}$$

Phenomenology

Symmetry Breaking

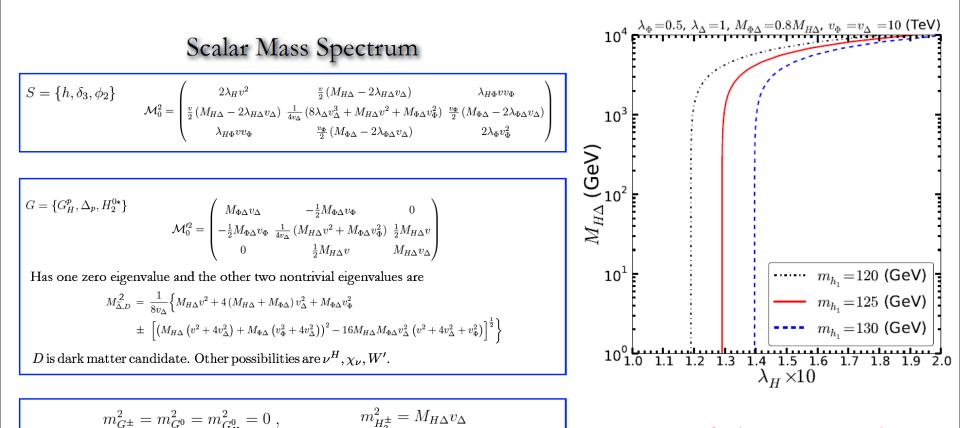
$$H_1 = \begin{pmatrix} G^+ \\ \frac{v+h}{\sqrt{2}} + iG^0 \end{pmatrix} , \quad \Phi_H = \begin{pmatrix} G_H^p \\ \frac{v_{\Phi} + \phi_2}{\sqrt{2}} + iG_H^0 \end{pmatrix} , \quad \Delta_H = \begin{pmatrix} \frac{-v_{\Delta} + \delta_3}{2} & \frac{1}{\sqrt{2}}\Delta_p \\ \frac{1}{\sqrt{2}}\Delta_m & \frac{v_{\Delta} - \delta_3}{2} \end{pmatrix}$$
$$H_2 = (H_2^+ H_2^0)^T , \qquad \Psi_G \equiv \{G^+, G^0, G_H^p, G_H^0\} \text{ are Goldstone bosons}$$

 $\Psi \equiv \{h, H_2, \Phi_1, \phi_2, \delta_3, \Delta_p\}$ are the physical fields

- We have 6 Goldstone bosons, absorbed by 3 SM gauge bosons and 3 SU(2)_H ones, yielding the massless photon and dark photon
 - We have the mixing between $\{h, \delta_3, \phi_2\}$ and $\{G_H^p, \Delta_p, H_2^{0*}\}$ due to:

$$V_{\text{mix}}(h, \delta_{3}, \phi_{2}) \supset + M_{H\Delta}\left(\frac{1}{2}H_{1}^{\dagger}H_{1}\Delta_{3}\right) + \lambda_{H\Delta}\left(H_{1}^{\dagger}H_{1}\right)\left(\frac{1}{2}\Delta_{3}^{2}\right) \qquad V_{\text{mix}}\left(G_{H}^{p}, \Delta_{p}, H_{2}^{0*}\right) \supset + M_{H\Delta}\left(\frac{1}{\sqrt{2}}H_{1}^{\dagger}H_{2}\Delta_{p} + \frac{1}{\sqrt{2}}H_{2}^{\dagger}H_{1}\Delta_{m}\right) \\ + \lambda_{H\Phi}\left(H_{1}^{\dagger}H_{1}\right)\left(\Phi_{2}^{*}\Phi_{2}\right) + \lambda_{\Phi\Delta}\left(\Phi_{2}^{*}\Phi_{2}\right)\left(\frac{1}{2}\Delta_{3}^{2}\right) \qquad - M_{\Phi\Delta}\left(\frac{1}{\sqrt{2}}\Phi_{1}^{*}\Phi_{2}\Delta_{p} + \frac{1}{\sqrt{2}}\Phi_{2}^{*}\Phi_{1}\Delta_{m}\right) \\ - M_{\Phi\Delta}\left(\frac{1}{2}\Phi_{2}^{*}\Phi_{2}\Delta_{3}\right)$$

13



One can find a very non-SM like Higgs in the parameter space.

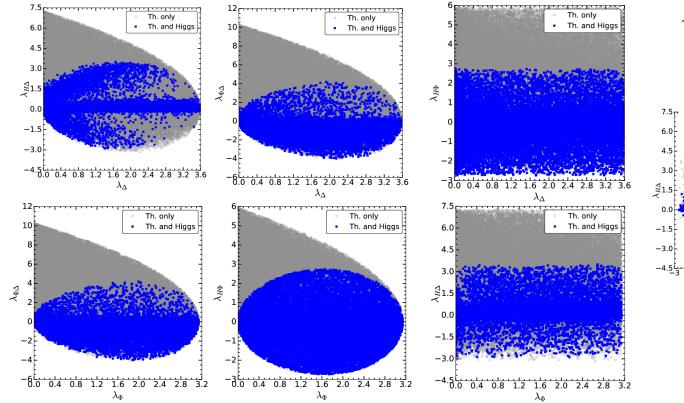
Stability and perturbative constraints

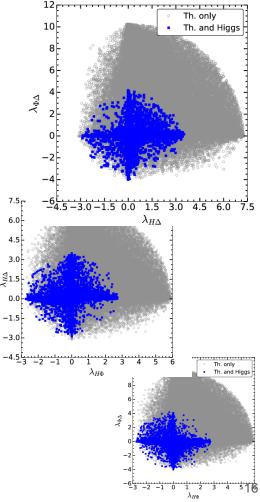
- Vacuum Stability
- Scalar potential should be bounded from below
- · Perturbative Unitarity
- Scattering amplitudes in the scalar sector

Stability and perturbative constraints make the Lambda(s) with confined ranges.

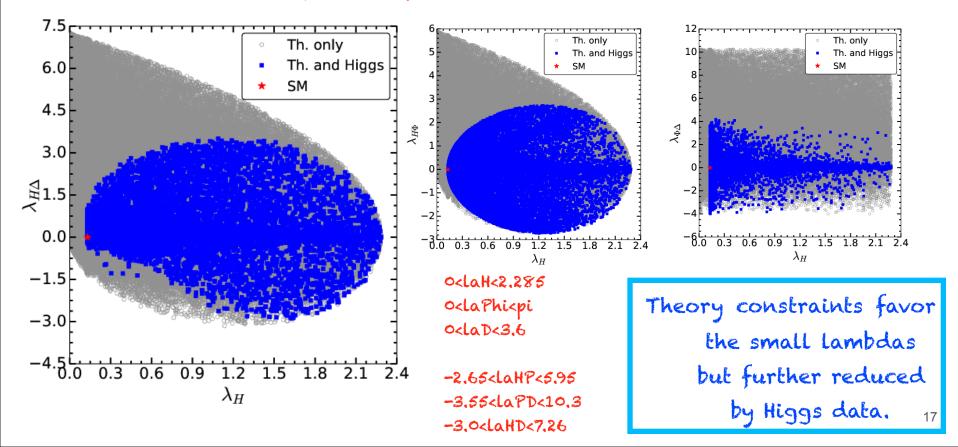
• λ_H , λ_{Φ} , λ_{Δ} must be positive definite:	
$\lambda_H,\;\lambda_{\Phi},\;\lambda_{\Delta}~>0\;.$	(73)
• $\lambda_{H\Phi}$, $\lambda_{\Phi\Delta}$, $\lambda_{H\Delta}$ can be positive or negative. Their ranges are determined by u constraint	nitarity
$ \lambda_{H \Phi} ,\; \lambda_{\Phi \Delta} ,\; \lambda_{H \Delta} \; < 8 \pi \; .$	(74)
(1) $\lambda_{H\Phi}$, $\lambda_{\Phi\Delta}$, $\lambda_{H\Delta} > 0$	
$\lambda_{H\Phi} \;,\; \lambda_{\Phi\Delta} \;,\; \lambda_{H\Delta} \;< 8\pi \;.$	(75)
(2) $\lambda_{H\Phi}$, $\lambda_{\Phi\Delta} > 0$; $\lambda_{H\Delta} < 0$	
$4\lambda_H\lambda_\Delta-\lambda_{H\Delta}^2>0$	(76)
Similar conditions for two other permutation cases.	
$(3) \hspace{0.2cm} \lambda_{H\Phi} > 0 \hspace{0.2cm} ; \hspace{0.2cm} \lambda_{\Phi\Delta} \hspace{0.2cm} , \hspace{0.2cm} \lambda_{H\Delta} \hspace{0.2cm} < 0$	
$4\lambda_{\Phi}\lambda_{\Delta}-\lambda_{\Phi\Delta}^2>0$	
$4\lambda_H\lambda_\Delta-\lambda_{H\Delta}^2>0$	
$2\lambda_{\Delta}\lambda_{H\Phi} - \lambda_{H\Delta}\lambda_{\Phi\Delta} > -\sqrt{\left(4\lambda_{H}\lambda_{\Delta} - \lambda_{H\Delta}^{2}\right)\left(4\lambda_{\Phi}\lambda_{\Delta} - \lambda_{\Phi\Delta}^{2}\right)}$	(77)
Similar conditions for two other permutation cases.	
(4) $\lambda_{H\Phi}$, $\lambda_{\Phi\Delta}$, $\lambda_{H\Delta} < 0$	
$4\lambda_H\lambda_{\Phi} - \lambda_{H\Phi}^2 > 0$	
$4\lambda_{\Phi}\lambda_{\Delta}-\lambda_{\Phi\Delta}^2>0$	
$4\lambda_H\lambda_\Delta-\lambda_{H\Delta}^2>0$	
$2\lambda_{\Phi}\lambda_{H\Delta} - \lambda_{H\Phi}\lambda_{\Phi\Delta} > -\sqrt{\left(4\lambda_{H}\lambda_{\Phi} - \lambda_{H\Phi}^{2}\right)\left(4\lambda_{\Phi}\lambda_{\Delta} - \lambda_{\Phi\Delta}^{2}\right)}$	
$2\lambda_H\lambda_{\Phi\Delta} - \lambda_{H\Phi}\lambda_{H\Delta} > -\sqrt{\left(4\lambda_H\lambda_{\Phi} - \lambda_{H\Phi}^2\right)\left(4\lambda_H\lambda_{\Delta} - \lambda_{H\Delta}^2\right)}$	
$2\lambda_{\Delta}\lambda_{H\Phi} - \lambda_{\Phi\Delta}\lambda_{H\Delta} > -\sqrt{\left(4\lambda_{\Phi}\lambda_{\Delta} - \lambda_{\Phi\Delta}^{2}\right)\left(4\lambda_{H}\lambda_{\Delta} - \lambda_{H\Delta}^{2}\right)}$	(78)

Stability and perturbative constraints





Stability and perturbative constraints



Current Mass Limits (pre CEPC/ILC)

Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$
$Q_L = \left(u_L \ d_L ight)^T$	3	2	1	1/6	0
$U_R = egin{pmatrix} u_R & u_R^H \end{pmatrix}^T$	3	1	2	2/3	1
$D_R = \begin{pmatrix} d_R^H & d_R \end{pmatrix}^T$	3	1	2	-1/3	-1
$L_L = (\nu_L \ e_L)^T$	1	2	1	-1/2	0
$N_R = \left(\nu_R \ \nu_R^H\right)^T$	1	1	2	0	1
$E_R = \begin{pmatrix} e_R^H & e_R \end{pmatrix}^T$	1	1	2	-1	-1
Xu	3	1	1	2/3	0
Xd	3	1	1	-1/3	0
$\chi_{ u}$	1	1	1	0	0
χe	1	1	1	-1	0
$H = (H_1 \ H_2)^T$	1	2	2	1/2	1
$\Delta_H = \begin{pmatrix} \Delta_3/2 & \Delta_p/\sqrt{2} \\ \\ \Delta_m/\sqrt{2} & -\Delta_3/2 \end{pmatrix}$	1	1	3	0	0
$\Phi_H = \left(\Phi_1 \;\; \Phi_2 ight)^T$	1	1	2	0	1

Triplet Higgs	W' and Z'	New charged fermions	New neutral fermions	Phi_2		
~10 TeV	~ TeV	> 100 GeV LEP limits	~dm	~TeV		
Charged Higgs	Inert Higgs	This is large gH scenario. For very small gH scenario,				
> 100 GeV ~inert Higgs	~DM	triplet Higgs mass can be ~100 GeV scale, story is totally different!				

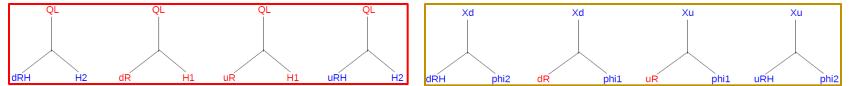
The precise mass limit depends on

A. Dark Matter candidates

B. mass splitting between charged and neutral particles

Dark Matter and charged Higgs @ CEPC/ILC

Production	decay	Final state
Charged Higgs e+e- > Z > H+ H-	H+ > W+ H2	l+, neutrino, missing energy
ete- > Z' > ete-	None	٤+٤-
Vector boson Fusion SM Higgs	h> two photons, FCNC decay $h \rightarrow \mu \tau$	(two photons, muon tau) + (missing energy or two electrons)
Mono X e+e- > X H2 H2	None	X(=photon, W, Z), missing energy
Heavy charged fermion production	many, see below	jets, leptons, missing energy



Inert Higgs Dark Matter

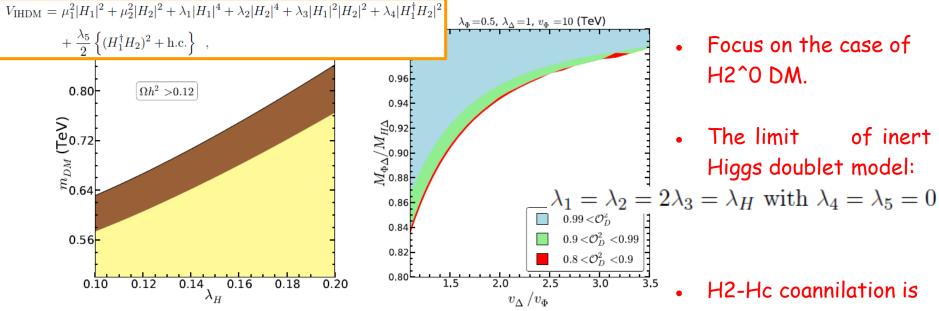


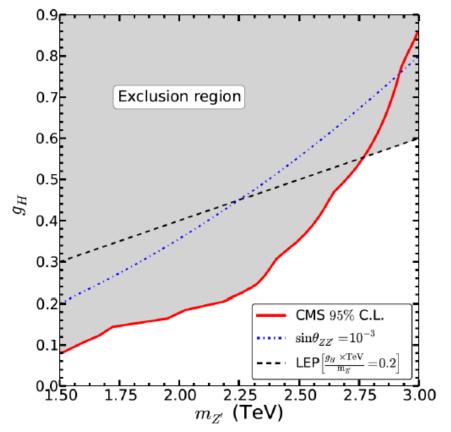
Figure 5. Left: the contour of relic density on (λ_H, m_{DM}) plane. The upper brown region is with the relic density between 0.1 and 0.12 but the lower yellow region is the relic density less than 0.1. Right: accepted DM mass region projected on $(v_{\Delta}/v_{\Phi}, M_{\Phi\Delta}/M_{H\Delta})$ plane. The red, green and light blue regions present the DM inert Higgs fraction $0.8 < \mathcal{O}_D^2 < 0.9, 0.9 < \mathcal{O}_D^2 < 0.99$ and $0.99 < \mathcal{O}_D^2$, respectively. See the text for detail of the analysis.

H2-Hc coannilation is always the main channel in the early universe.

Summary and outlook

- A novel horizontal symmetry to embed two Higgs doublets, H1 and H2 into a doublet under a non-abelian gauge symmetry SU(2)H and the SU(2)H doublet is charged under an additional abelian group U(1)X.
- To ensure the model is anomaly-free and SM Yukawa couplings preserve the additional SU(2)H×U(1)X symmetry, we choose to place the SM right-handed fermions and new heavy right-handed fermions into SU(2)H doublets while SM SU(2)L fermion doublets are singlets under SU(2)H.
- Additional gauge bosons are all electrically neutral unlike Left-Right symmetric models.
- Model satisfies unitarity, perturbative, and stability constraints.
- · Many of interesting and rich phenomenology.
- CEPC Signatures of the Heavy Higgs boson and Fermions.

Experimental constraints on Z'



- The red line comes from direct Z' resonance searches (1412.6302)
- The black dashed line comes from LEP constraints on the cross-section of $e^+e^- \rightarrow e^+e^-$ (hep-ex/0312023) $\Rightarrow v_{\Phi} > 10 \text{ TeV}$
- The blue dotted line comes from EWPT data and collider constraints on the Z-Z' mixing(0906.2435, 1406.6776)

$$m_{Z'} \simeq g_H \frac{v_\Phi}{2}$$