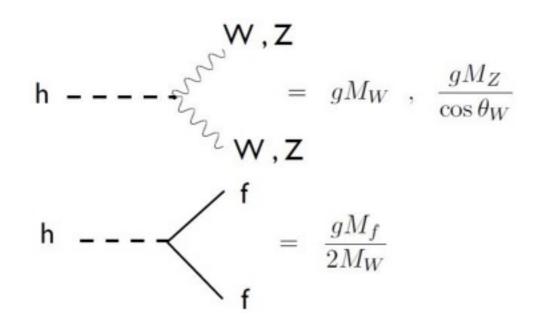
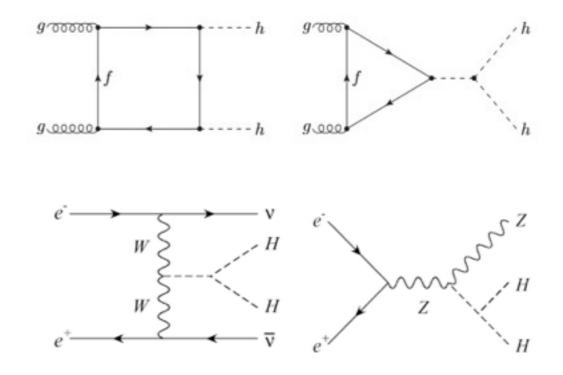
Probing the Top-Yukawa Coupling in Associated Higgs production with a Single Top Quark

Chih-Ting Lu 盧致廷 (NTHU) National Tsing Hua University, Hsinchu, Taiwan

CEPC physics and computing workshop

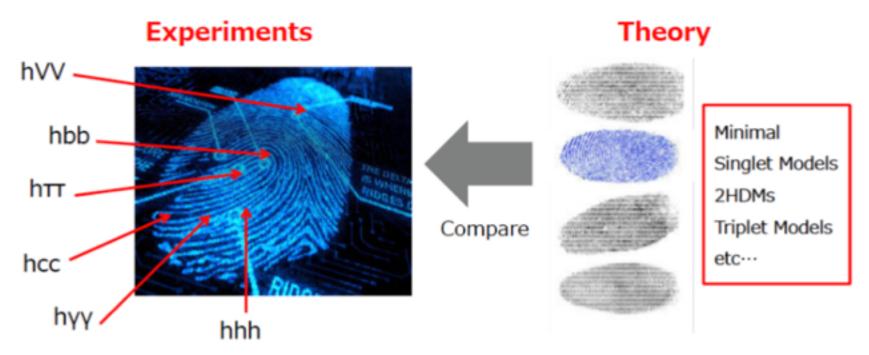
• Collaborators for this work :


- Prof. Kingman Cheung
- Prof. Jae Sik Lee
- Dr. Jung Chang
- Ref: arXiv:1403.2053 JHEP 1405 (2014) 062


Outline

- 1. Motivation
- 2. Highlight some experimental results for the Higgs boson at the LHC
- 3. Formalism and Results from Higgs Precision (Higgcision) analysis
- 4. Probing the Top-Yukawa Coupling in Associated Higgs production with a Single Top Quark at the LHC
- 5. Discussion

Motivation


- Why is it important for the discovery of the Higgs boson?
- 1. It is a byproduct of the BEH mechanism, so if we discover the Higgs boson, then we can confirm the BEH mechanism ! (It is NOT just a new scalar particle !)
- 2. New type of interactions :

Motivation Shinya KANEMURA U. of TOYAMA

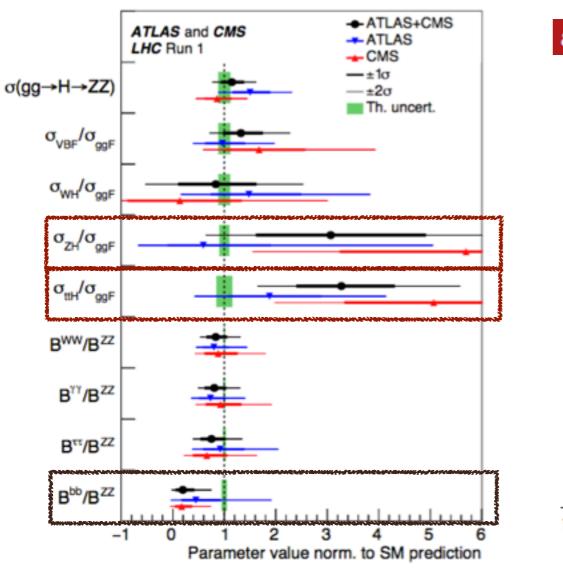
All SM parameters are found Precision = Energy frontier

Fingerprinting new physics models

Motivation R. Santos ISEL & CFTC (U. Lisboa)

Status of the CP-conserving 2HDM

Alignment and wrong-sign Yukawa

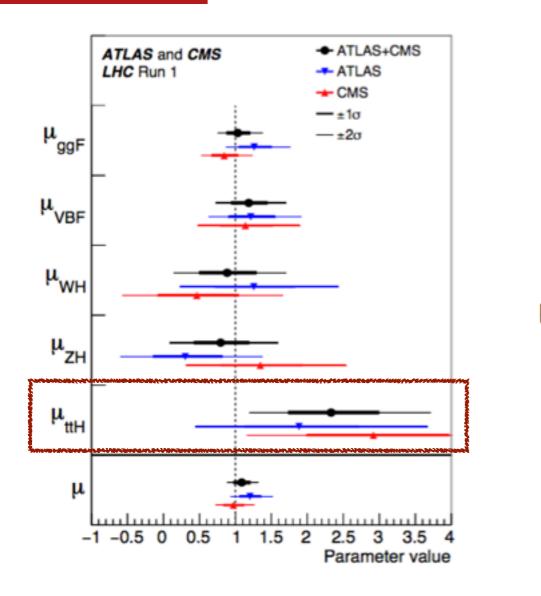

The Alignment (SM-like) limit - all tree-level couplings to fermions and gauge bosons are the SM ones.

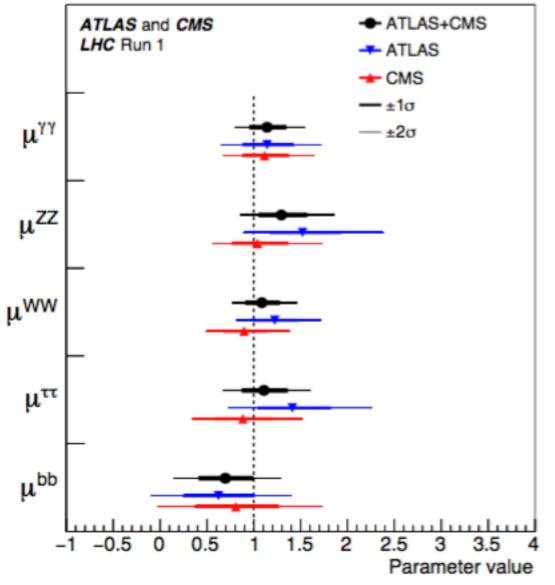
$$sin(b - a) = 1 P k_D = 1; k_U = 1; k_W = 1$$

Wrong-sign Yukawa coupling - at least one of the couplings of h to down-type and up-type fermion pairs is opposite in sign to the corresponding coupling of h to VV (in contrast with SM).

$$k_D k_W < 0$$
 or $k_U k_W < 0$

The actual sign of each κ_i depends on the chosen range for the angles.


arXiv:1606.02266


 $\frac{\sigma_{ZH}/\sigma_{ggF}}{\text{the same ratio in SM}} = 3.2 \pm 1.4$

 $\frac{\sigma_{ttH}/\sigma_{ggF}}{\text{the same ratio in SM}} = 3.3 \pm 0.9$

 $\frac{B^{bb}/B^{ZZ}}{\text{the same ratio in SM}} = 0.19 \pm 0.21$

arXiv:1606.02266

 CMS search for the Associated Higgs production with a Single Top Quark

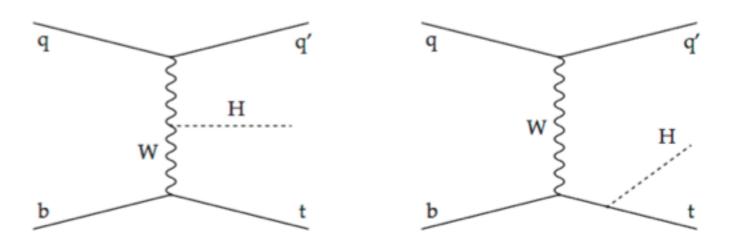
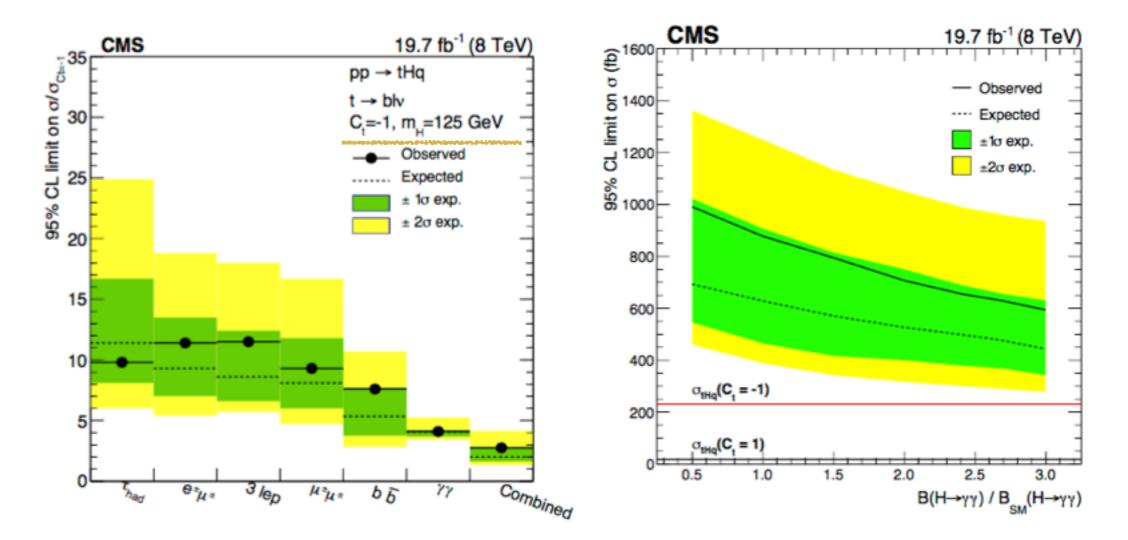



Figure 1: Dominant Feynman diagrams for the production of tHq events: the Higgs boson is typically radiated from the heavier particles of the diagram, i.e. the W boson (left) or the top quark (right).

JHEP 1606 (2016) 177

 CMS search for the Associated Higgs production with a Single Top Quark

Formalism from Higgs Precision (Higgscision) analysis

 Assuming that the Higgs boson *h* is a generic CPmixed state, we can write the gauge-Higgs and Yukawa coupling as

$$egin{aligned} \mathcal{L}_{hVV} &= gm_W \left(g_{hWW} W^+_\mu W^{-\mu} + g_{hZZ} rac{1}{2c_W^2} Z_\mu Z^\mu
ight) h \,, \ \mathcal{L}_{hff} &= -\sum_{f=t,b,c, au} rac{gm_f}{2m_W} ar{f} \left(g^S_{hff} + ig^P_{hff} \gamma_5
ight) f \, h \,. \end{aligned}$$

We note $g_{hWW} = g_{hZZ} = g_{hff}^S = 1$ and $g_{hff}^P = 0$ in the SM.

The amplitude for the decay process $h\to\gamma\gamma$ can be written as

$$\mathcal{M}_{h\gamma\gamma} = -rac{lpha m_h^2}{4\pi v} \Big\{ S^\gamma(m_h) \; (\epsilon^*_{1\perp} \cdot \epsilon^*_{2\perp}) - P^\gamma(m_h) rac{2}{m_h^2} \langle \epsilon^*_1 \epsilon^*_2 k_1 k_2
angle \Big\},$$

where $k_{1,2}$ are the momenta of the two photons and $\epsilon_{1,2}$ the wave vectors of the corresponding photons, $\epsilon_{1\perp}^{\mu} = \epsilon_{1}^{\mu} - 2k_{1}^{\mu}(k_{2}\cdot\epsilon_{1})/m_{h}^{2}$, $\epsilon_{2\perp}^{\mu} = \epsilon_{2}^{\mu} - 2k_{2}^{\mu}(k_{1}\cdot\epsilon_{2})/m_{h}^{2}$ and $\langle\epsilon_{1}\epsilon_{2}k_{1}k_{2}\rangle \equiv \epsilon_{\mu\nu\rho\sigma} \epsilon_{1}^{\mu}\epsilon_{2}^{\nu}k_{1}^{\rho}k_{2}^{\sigma}$. Retaining only the dominant loop contributions from the third–generation fermions and W^{\pm} , and including some additional loop contributions from new particles, the scalar and pseudoscalar form factors are given by

$$S^{\gamma}(m_{h}) = 2 \sum_{f=b,t,\tau} N_{C} Q_{f}^{2} g_{hff}^{S} F_{sf}(\tau_{f}) - g_{hWW} F_{1}(\tau_{W}) + \Delta S^{\gamma},$$

$$P^{\gamma}(m_{h}) = 2 \sum_{f=b,t,\tau} N_{C} Q_{f}^{2} g_{hff}^{P} F_{pf}(\tau_{f}) + \Delta P^{\gamma},$$
(4)

where $\tau_x = m_h^2/4m_x^2$, $N_C = 3$ for quarks and $N_C = 1$ for tau leptons, respectively.

In the SM, $P^{\gamma} = 0$, $g^S_{hff} = g_{hWW} = 1$ and $\Delta S^{\gamma} = 0$.

Similarly, the amplitude for the decay process $h \to gg$ can be written as

$$\mathcal{M}_{Hgg} = -rac{lpha_s \, m_h^2 \, \delta^{ab}}{4\pi \, v} \Big\{ S^g(m_h) \left(\epsilon^*_{1\perp} \cdot \epsilon^*_{2\perp}
ight) - P^g(m_h) rac{2}{m_h^2} \langle \epsilon^*_1 \epsilon^*_2 k_1 k_2
angle \Big\},$$

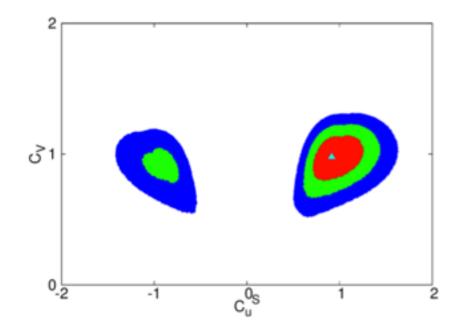
where a and b (a, b = 1 to 8) are indices of the eight SU(3) generators in the adjoint representation. Including some additional loop contributions from new particles, the scalar and pseudoscalar form factors are given by

$$S^{g}(m_{h}) = \sum_{f=b,t} g^{S}_{hff} F_{sf}(\tau_{f}) + \Delta S^{g},$$

$$P^{g}(m_{h}) = \sum_{f=b,t} g^{P}_{hff} F_{pf}(\tau_{f}) + \Delta P^{g}.$$
(6)

In the SM,
$$P^g = 0$$
, $g^S_{hff} = 1$ and $\Delta S^g = 0$.

Formalism from Higgs Precision (Higgscision) analysis


 Since we are primarily interested in size of the gauge-Higgs and top-Yukawa couplings and the relative sign between them, for bookkeeping purpose, we use the following simplified notations :

$$C_v \equiv g_{hWW} = g_{hZZ}$$
, $C_t^{S,P} \equiv g_{htt}^{S,P}$, $C_b^{S,P} \equiv g_{hbb}^{S,P}$.

Results from Híggs Precision (Híggscision) analysis for Run-I data

arXiv:1407.8236

Phys.Rev. D90 (2014) 095009

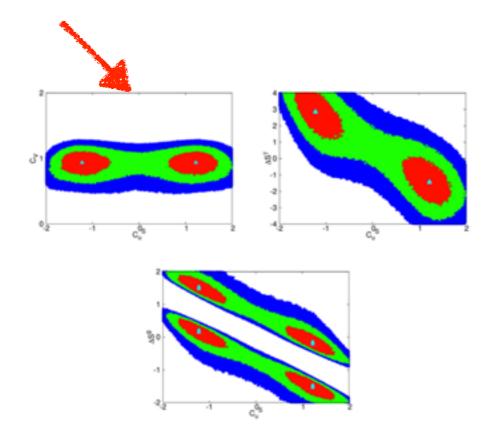


FIG. 2. The confidence-level regions in the plane of (C_u^S, C_v) of the CPC4 fit by varying C_u^S, C_d^S , C_l^S , and C_v while keeping $\Delta S^{\gamma} = \Delta S^g = \Delta \Gamma_{tot} = 0$. The contour regions shown are for $\Delta \chi^2 \leq 2.3$ (red), 5.99 (green), and 11.83 (blue) above the minimum, which correspond to confidence levels of 68.3%, 95%, and 99.7%, respectively. The best-fit point is denoted by the triangle.

FIG. 3. The confidence-level regions in the plane of (C_u^S, C_v) , $(C_u^S, \Delta S^{\gamma})$, an $(C_u^S, \Delta S^g)$ of the CPC6 fit by varying $C_u^S, C_d^S, C_l^S, C_v, \Delta S^{\gamma}$, and ΔS^g . The contour regions shown are for $\Delta \chi^2 \leq 2.3$ (red), 5.99 (green), and 11.83 (blue) above the minimum, which correspond to confidence levels of 68.3%, 95%, and 99.7%, respectively. The best-fit points are denoted by the triangles.

Results from Híggs Precísion (Híggscision) analysis for Run-I data

As shown in Refs. [3] in which the model-independent fit to the current Higgs data is performed, the negative $C_t^S = -1$ is ruled at 95%CL if only the gauge-Higgs coupling C_v and the top-Yukawa coupling C_t^S vary. However, $C_t^S = -1$ is still allowed at 95%CL when the gauge-Higgs C_v , top-Yukawa C_t^S , bottom-Yukawa C_b^S , and tau-Yukawa C_τ^S couplings are all allowed to vary. Furthermore, if some sizable contributions to ΔS^{γ} and ΔS^g due to additional new particles running in the loop are assumed, a broad range of C_t^S between -2and +2 is still consistent with the current Higgs data.

Results from Híggs Precision (Híggscision) analysis for Run-I data

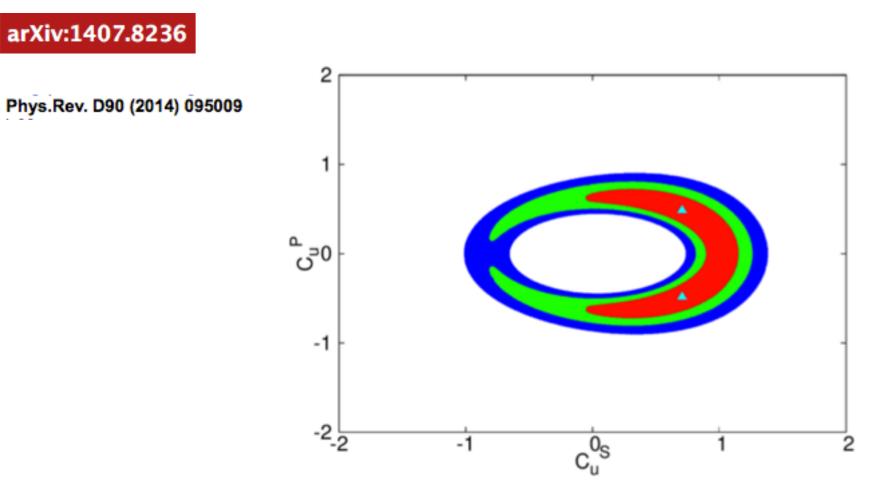


FIG. 4. The confidence-level regions of the fit by varying the scalar Yukawa couplings C_u^S and C_v , and the pseudoscalar Yukawa couplings C_u^P ; while keeping others at the SM values. The description of contour regions is the same as in Fig. 2.

Probing the Top-Yukawa Coupling in Associated Higgs production with a Single Top Quark

- As well known, tth production only depends on the absolute value of the top-Yukawa coupling.
- Meanwhile, in thX production, this degeneracy is lifted through the strong interference between the two main contributions which are proportional to the top-Yukawa and the gauge-Higgs couplings, respectively.
- Especially, when the relative sign of the top-Yukawa coupling with respect to the gauge-Higgs coupling is reversed, the thX cross section can be enhanced by more than one order of magnitude.

tth production at LO

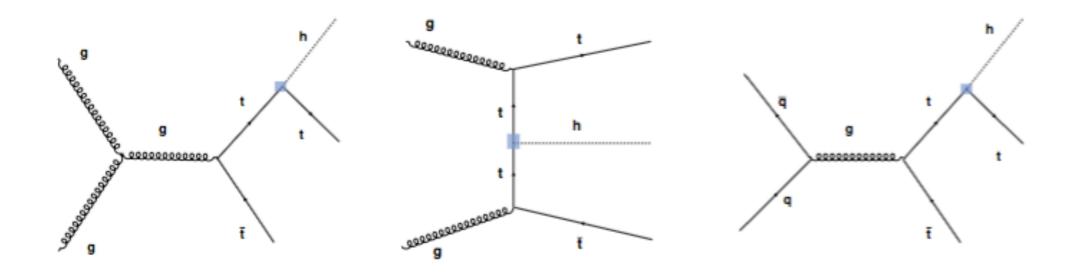


FIG. 1. Feynman diagrams contributing to $t\bar{t}h$ production at LO.

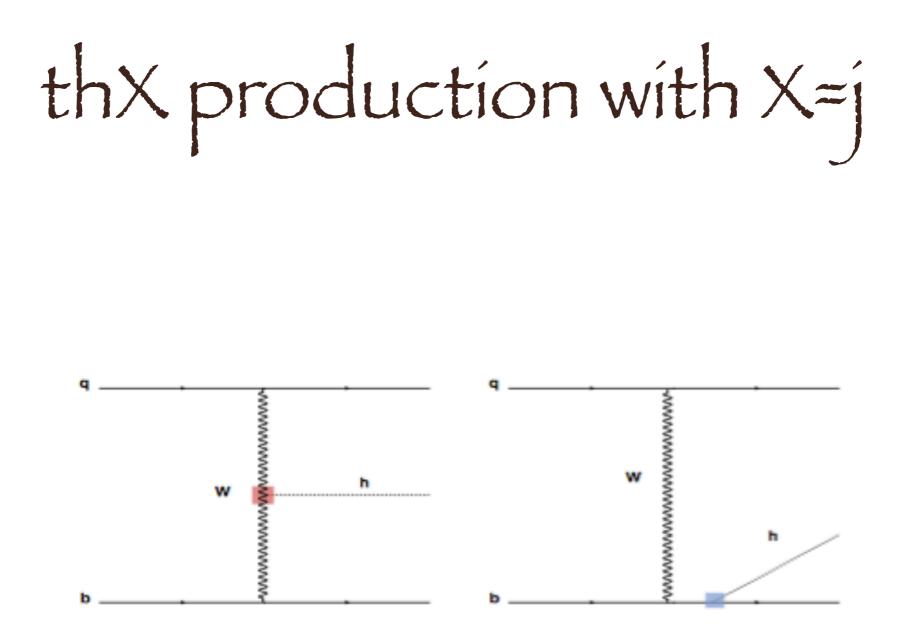


FIG. 2. Feynman diagrams contributing to thX production with X = j.

Other thX productions with X=jb, W, b

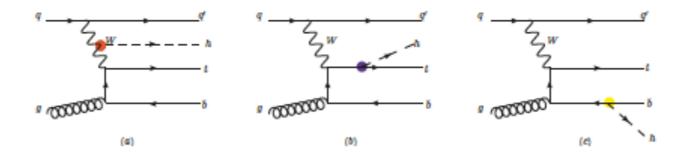


Figure 2. Some of the contributing Feynman diagrams for $qg \rightarrow thq'b$.

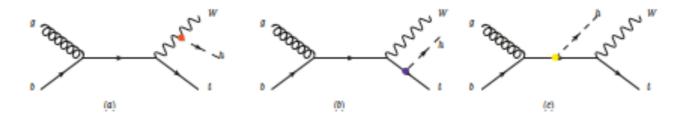


Figure 3. Some of the contributing Feynman diagrams for $gb \rightarrow thW^-$.

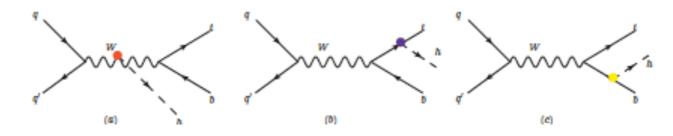


Figure 4. Contributing Feynman diagrams for $q\bar{q}' \rightarrow th\bar{b}$.

Variation of cross sections for thX production

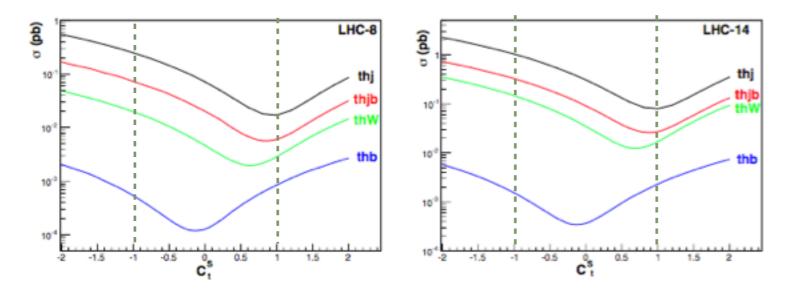


Figure 5. Variation of the total cross sections versus C_t^S for $pp \to thX$ with X = j, jb, W, b in the order of the size of cross sections at (a) LHC-8 and (b) LHC-14. We have taken $C_v = C_b^S = 1$ and $C_{t,b}^P = 0$. No cuts are imposed except for the second process $pp \to thjb$ in which we applied the cuts in eq. (3.1) to remove the divergence.

	$\sigma(pp \to thX)$ [fb]			
	X = j	X=j+b	X = W	X = b
$C_t^S = +1 \; (SM)$	79.4 (17.1)	27.1 (5.95)	17.0 (2.89)	2.32(0.833)
$C_t^S=0$	305 (71.4)	90.0 (19.8)	34.4 (4.66)	0.368(0.126)
$C_t^S = -1$	1030 (249)	325 (72.8)	146 (19.8)	1.52(0.536)

Table 1. The leading-order production cross sections in fb for the processes $pp \rightarrow th + X$ at 14 TeV (8 TeV) LHC, taking $C_v = C_b^S = 1$ and $C_{t,b}^P = 0$. We have not applied any cuts except for the case with X = j + b for which we required $p_{T_b} > 25$ GeV, $|\eta_b| < 2.5$; $p_{T_j} > 10$ GeV, $|\eta_j| < 5$, see text for details.

Variation of cross sections for thX production versus C^P_t

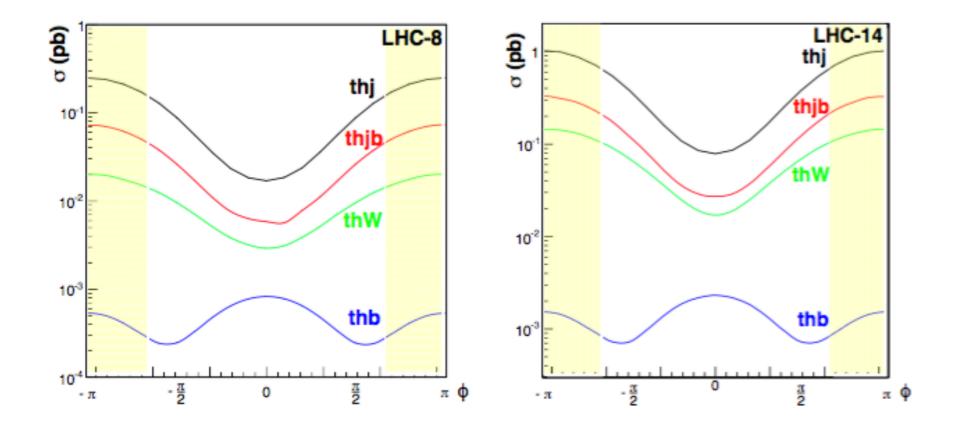


Figure 6. Production cross sections at the LHC-14 for $pp \to thj$ versus $\phi = \arctan(C_t^P/C_t^S)$ under the constraint $(C_t^S/0.86)^2 + (C_t^P/0.56)^2 = 1$. We take $C_v = 1$. The shaded regions are those disallowed at 68% C.L. by the Higgs data obtained in ref. [3].

Distinction among $C_t^S = 1, 0, -1$

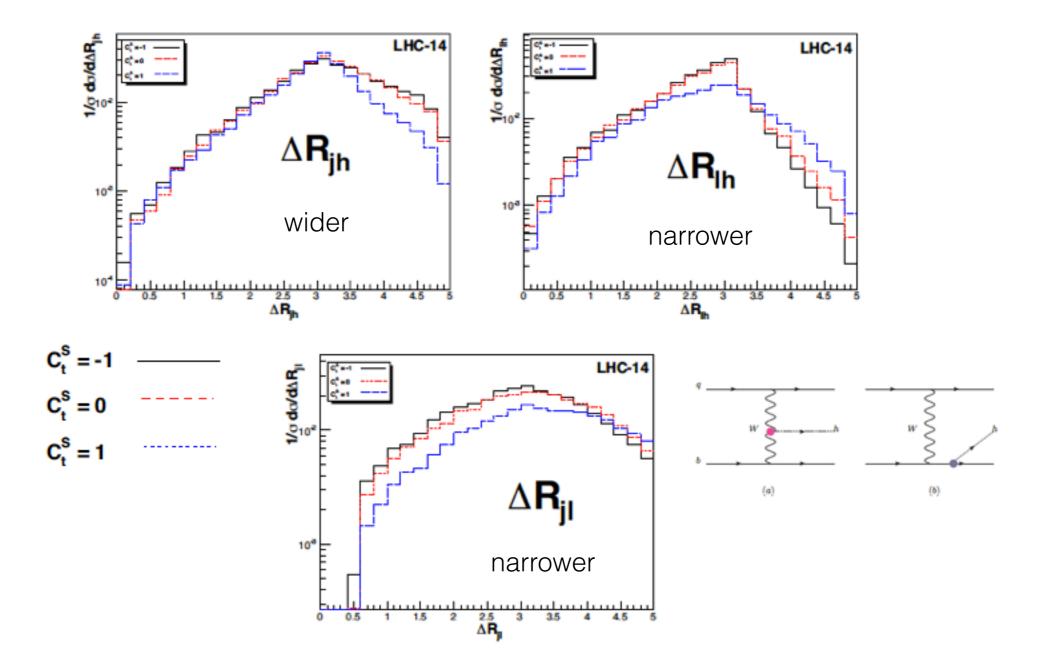


Figure 12. Normalized ΔR distributions for various pairs of particles (ℓ, j, h) , where the momentum of h is reconstructed by the photon pair, for the signal process $pp \to thj$ with $C_t^S = -1, 0, 1$ followed by the semileptonic decay of the top quark and $h \to \gamma\gamma$ at the LHC-14. Behavior of b and ℓ is about the same, as they are coming from the same top quark decay. We need only one of them: ℓ .

Discussion

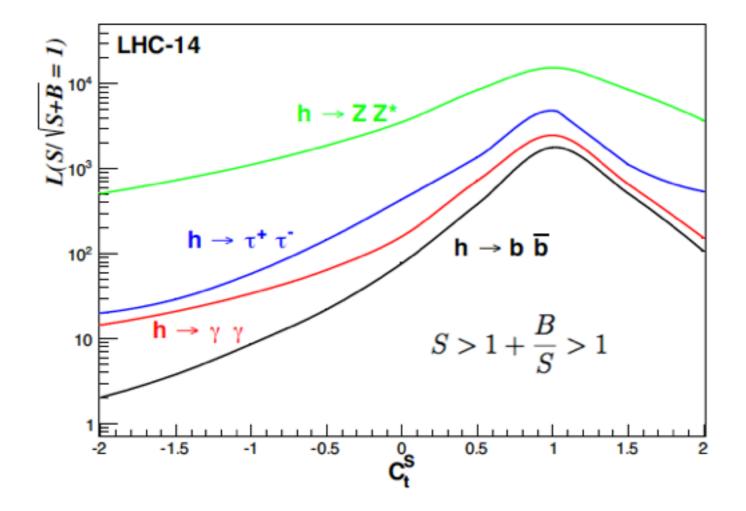



Figure 13. Required luminosities at the LHC-14 for the process $pp \to thj$ in various decay channels of the Higgs boson to achieve $S/\sqrt{S+B} = 1$. We show the channels $h \to b\bar{b}$, $\gamma\gamma$, $\tau^+\tau^-$, and $ZZ^* \to 4\ell$.

Thank You For Your Attention !!

