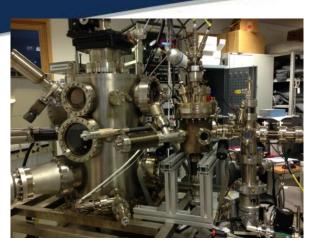
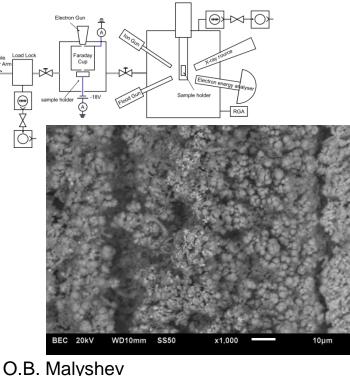


Task 4.3: Mitigate beam-induced vacuum effects (STFC, CERN)


O.B. Malyshev, R. Valizadeh, Taaj Sian and Rūta Širvinskaitė


ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

7th Nov 2016

Science & Technology Facilities Council

Low SEY studies

Current work:

- Several new surfaces were produced by different laser and their SEY were measured
 - To be reported by Reza Valizadeh
- The data acquisition on the SEY facility is fully automated with LabVIEW
- Design on a new cold stage (LN₂) facility has been almost completed
- Design on a new cold stage (4-300K) facility started
- Some parts are in a process of procurement
 - To be reported by Taaj Sian
- Next Steps
 - Building the new cold stage facility
 - Production of samples for other EuroCirCol partners (subject to the funds availability)
 - Showstoppers
 - Finance to produce of samples for other EuroCirCol partners.
 - A delivery of a new electron gun for the new cold stage facility (there is none at the moment)

Ceramic

Kr _____

Solenoid

Ceramic-

pulsed DC.

RF power

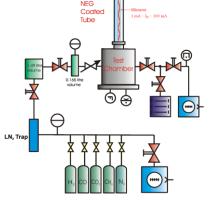
supply, HiPIMS HV

DC,

Vacuum

Target: Ti-Zr-V

twisted and alloy wires


pump

NEG coating studies

Current work

PhD student Rūta Širvinskaitė:

- July Sep 2016 familiarisation vacuum basics, literature survey, introduction to NEG depositions and evaluation facilities
- Secondary calibration of UHV gauges
- In-situ calibration of RGAs against the UHV gauges
- Other activities (Reza and Oleg)
 - A study of dual NEG coatings completed
 - A dual-layer NEG coating consisting of a 0.5- μm-thick dense layer covered by a 1-μm thick columnar layer was evaluated for EDS and pumping activated at different temperatures.
 - The paper has been submitted to JVSTA
 - A study of NEG impedance (not a part of EuroCirCol but relevant to it)
 - The surface resistance of two types of NEG coating (dense and columnar) was investigated at 7.8 GHz. The bulk conductivity was obtained with the analytical model: $\sigma_d = 1.4 \times 10^4 S/m$ for the columnar NEG coating and $\sigma_d = 8 \times 10^5 S/m$ for the dense NEG coating.
 - The paper has been submitted to NIMA
 - To be reported by Oleg later
- Next Steps
 - Deposition of Zr on a sample tube, ESD and pumping measurements
 - Design of a facility for cryogenic (LN₂ and LHe) measurements
- Showstoppers
 - None at this stage

O.B. Malyshev

Milestone report

Proposal on surface engineering to mitigate electron cloud effects

A report describes two coupled problem: meeting vacuum specification on a beam vacuum and to mitigating electron cloud. Two most promising technologies were identified:

- Low SEY laser treated surface. A recent invention that allows obtaining surfaces with SEY < 0.6 for complete eradication of the BIEM and ecloud.
- NEG coated surface. NEG film can be deposited to provide SEY < 1. After activation this film also provides a reduced PSD and ESD and distributed pumping speed.

Before choosing between these two options, both technologies have to be verified at cryogenic temperature and under synchrotron radiation bombardment.

TABLE OF CONTENTS

1. PROBLEM DECRIPTION

1.1. Gas density along a cryogenic vacuum chamber under SR

- 1.1.1. Model
 1.1.2. PSD and ESD from cryogenic surface
 1.1.3. Equilibrium pressure
 1.1.4. Ion induced pressure instability
 1.1.5. Calculations for the FCC
- 1.2. SUGGESTED SOLUTIONS
- 2. OPTION 1: LOW SEY LASER TREATED SURFACE
 - 2.1. Beam and e-cloud
 - 2.2. Salt surface optimised for accelerator applications
 - 2.3. What else we need to study

3. OPTION 2: NEG COATED SURFACE

3.1. NEG coating as a solution for a long narrow vacuum chambers

- 3.1.1. What is NEG coating
- 3.1.2. NEG deposition
- 3.1.3. NEG surface characterisation
- 3.1.4. Vacuum characterisation
- 3.1.5. Surface resistance
- 3.1.6. NEG at low temperature
- 3.2. What we else need to know
- 4. CONCLUSIONS
- 5. REFERENCES

Main highlights for Option 1: SALT

What is known:

- The surface with SEY < 1 can be produced using laser treatment, the SEY may further be reduced with dose to ~0.6.
- It has no vacuum problems at room temperature
 - ESD, TD, ultrasound wash
- Surface impedance increases by factor 3
- What is required to study:
 - PSD data for SALT at room temperature
 - Data at cryogenic temperature
 - PSD and ESD
 - PEY and SEY
 - Effect of cryosrobed gases on PSD, ESD, PEY and SEY
 - Surface impedance

Facilities Council Jain highlights for Option 2: NEG

What is known:

- The surface with SEY < 1 (after NEG activation) can be produced.
- Vacuum:
 - Ti-Zr-V PSD data at room temperature only
 - Ti-Zr-Hf-V ESD is an order of magnitude lower than for Ti-Zr-V
 - The same reduction is expected for PSD
 - Ti-Zr-Hf-V ESD on vacuum fired tubes is two orders of magnitude lower than for the Ti-Zr-V film
 - The same reduction is expected for PSD
 - Dense vs columnar film
- Surface impedance
 - increases with thickness and frequency
 - the bulk conductivity was obtained with the analytical model:
 - $\sigma_c = 1.4 \times 10^4 \ S/m$ for the columnar NEG coating
 - $\sigma_d = 8 \times 10^5 \, S/m$ for the dense NEG coating

Main highlights for Option 2: NEG

- Modelling das density for H_2 after dose D = 10^{22} photons/m
 - Ti-Zr-V
 - $n_{Ti-Zr-V} = 1 \times 10^{18} \text{ molecules/m}^3$
 - Ti-Zr-Hf-V (dense)
 - $n_{Ti-Zr-Hf-V} = 1 \times 10^{17} \text{ molecules/m}^3$
 - Ti-Zr-Hf-V (dense) on vacuum fired tubes
 - $n_{Ti-Zr-Hf-V} = 1 \times 10^{16} \text{ molecules/m}^3$
 - Including photon induced pumping allows to reduce 10 times lower:
 - $n_{Ti-Zr-Hf-V} = 1 \times 10^{15}$ molecules/m³ on vacuum fired tubes

Main highlights for Option 2: NEG (cont.)

What is required to study:

- PSD data for dense and columnar Ti-Zr-Hf-V film at room temperature
- Data at cryogenic temperature
 - PSD, ESD and sticking probability
 - PEY and SEY
 - Effect of cryosrobed gases on PSD, ESD, PEY and SEY
 - Photon induced activation
 - Surface impedance
- Further reducing of NEG activation temperature
- Possibilities of reducing of NEG surface impedance

Conclusions:

- Two possible solutions could be used for the FCC beam chamber. These solutions should meet the specification to a maximum gas density, ion induced instability suppression and e-cloud and BIEM mitigation.
- Two most promising technologies were described in this report:
 - <u>Option 1</u>: A beam screen with pumping holes and low SEY laser treated surface.
 - <u>Option 2</u>: A beam screen without pumping holes with NEG coated surface.
- Both technologies are potentially feasible but both require further study at cryogenic temperatures.

Visit to Budker Institute of Nuclear Physics (Novosibirsk, Russia)

- SEY measurements in a weak magnetic field (~ 300 Gs)
 - Time-of-flight energy measurements of secondary electrons
 - Available now
- SEY measurements in a strong magnetic field (up to 10 T)
 - Update is possible
- Installing of either above on a SR beamline is possible

Following presentations

- Reza Valizadeh
 - Low SEY laser treated surface results
- Taaj Sian
 - Laser treated surface vs microparticle
 - Design of cryogenic systems for SEY measurements
- NEG coating results Oleg Malyshev