

Progress in NEG Coatings for Particle Accelerators

O.B. Malyshev and R. Valizadeh,

ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

Outlook

- Introduction
- Desorption properties
- Surface resistance
- Summary

What NEG coating does

1) Reduces gas desorption:

- **A pure metal (Ti, Zr, V, Hf, etc.) film ~1-m thick without contaminants.**
- **A barrier for molecules from the bulk of vacuum chamber.**
- **2) Increases distributed pumping speed,** *S***:**
	- **A sorbing surface on whole vacuum chamber surface**

 $S = \alpha \cdot A \cdot v/4$;

- where α sticking probability,
	- **A – surface area,**
	- **v – mean molecular velocity**

Science & Technology

Facilities Council **Control Control Co**

- Samples coated with Ti-Zr-V at CERN (Switzerland)
- Experiments SR beam line at BINP (Russia)

Science & Technology

Comparison of PSD from 316LN and NEG

V.V. Anashin *et al***, Vacuum 75 (2004) p. 155.**

ASTeC activation procedure

O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p. 321.

Pressure in the accelerator vacuum chamber

P η α α

where

- η desorption yield (photon, electron or ion stimulated desorption)
- α sticking probability

• Improving pumping properties is limited:

 $\alpha \leq 1$

- $0.005 < \alpha_{H2} < 0.02$
- $0.1 < \alpha_{CO} < 0.5$
- $0.4 < \alpha_{CQ2} < 0.6$
- Reducing the desorption yields η in orders of magnitude was our aim

Reducing the gas desorption from the NEG coatings

- Main gases in the NEG coated vacuum chamber are H_2 and $CH₄$
	- Only H_2 can diffuse through the NEG film under bombardment or heat
	- $CH₄$ is most likely created on the NEG surface from diffused H_2 and C (originally from sorbed CO and CO₂)
	- Therefore the H_2 diffusion must be suppressed

• **Where H² come from?**

Electron stimulated desorption facility

ESD is studied as a function of

Electron energy

Facilities Council

- Dose
- Wall temperature $(-5$ to $+70^{\circ}C)$
- Activation/bakeout temperature
- Can be used for samples with:
	- Specially treated samples
		- Vacuum fired, polished, etc.
	- Low desorption coating
	- No coatings
	- NEG coating
		- ESD measurements
		- Sticking probability measurements

Reducing the gas desorption from the NEG coatings

Vacuum

NEG

Coating

Subsurface

Substrate

Layers

bulk

Gas molecules are contained on the NEG coating surface after exposure to air minimise exposure to air inside the NEG coating trapped during deposition purity of discharge gas background pressure in subsurface substrate layer substrate bakeout before NEG deposition in the substrate bulk vacuum firing

SEM images of films (film morphology)

columnar dense

Best for pumping Theorem A first candidate for a barrier

O.B. Malyshev, R. Valizadeh, J.S. Colligon *et al***. J. Vac. Sci. Technol. A 27 (2009), p. 521.**

ESD yield from NEG coated samples

ESD yield from NEG coated samples

ESD yield from NEG coated samples

(a) after deposition before vent to air

(b) activation at 150° C

(d) activation at 250° C

(c) activation at 180° C

H2 ESD from NEG coated vacuum fired 316LN

Science & Technology
Facilities Council

Dual layer

- Columnar layer:
	- Activated at lower temperature
	- Provides higher sticking probability and pumping capacity
- Dense layer:
	- Provides lower ESD
- Dual Layer:
	- Combines benefit of both
	- For more details: see A. Hannah's poster EM286 on **Thursday**

Columnar NEG Coating

Dense NEG Coating

Bulk metal

Vacuum

Science & Technology

Dual layer

ESD for dense, columnar and dual layer NEG

Dual layer combines both benefit:

- ESD yields are like for dense film with
- pumping properties of columnar film

Surface impedance: method

- The cavity geometry consists of two parts:
	- a body of the cavity
	- a planar sample,
	- separated by an air gap.
- Contactless
- RF chokes in order to keep the RF power within the cavity

$$
R_S^{sam} = \frac{G Q_0^{-1} - R_S^{cav} p_c}{p_s}
$$

- Modelled with CST Microwave Studio.
- \cdot *G* = 235 Ω .
- The field ratios $p_c = 0.625$ and $p_s = 0.375$ for perfect electric conductor boundary conditions.

Analytical model

The expressions for the surface impedance of a planar metallic film deposited on a substrate (dielectric or metallic) are derived by following the standard approach employed in calculating the transmission and reflection coefficients in layered media **Analytical model**

ons for the surface impedance of

eposited on a substrate (dielectric

y following the standard approach

e transmission and reflection coe

a
 $(a_1) - 2\delta \sin(2\kappa_1 d_1) \exp(-2\kappa_1 d_1)$

for NEG o
 $\exp(-4\k$ **Analytical model**

ons for the surface impedance of

leposited on a substrate (dielectricy following the standard approach

e transmission and reflection coe

a
 $\frac{d_1d_1 - 2\delta \sin(2\kappa_1d_1) \exp(-2\kappa_1d_1)}{d_1d_1 + 2\delta \cos(2\$ **Analytical model**

the council expressions for the surface impedance of a plate

the council film deposited on a substrate (dielectric or

culating the transmission and reflection coefficie

ered media
 $1-\delta^2 \exp(-4\kappa_i d_i)$ For a rechnology

For a rechnology

The expressions for the surface impedance of a planar

metallic film deposited on a substrate (dielectric or metallic)

are derived by following the standard approach employed in

calcu **Analytical model**

ms for the surface impedance of a planary

eposited on a substrate (dielectric or metal)

transmission and reflection coefficients

transmission and reflection coefficients
 d_1) – $2\delta \sin(2\kappa_1 d_1) \$ **Anally Science & Technology**
 Anally Science & Technology
 Anally Facilities Council
 Anally Science A Representing the transmit diagered media
 $R_s = R_1 \frac{1-\delta^2 \exp(-4\kappa_i d_1) - 2\delta \sin(\frac{1}{1+\delta^2 \exp(-4\kappa_i d_1) + 2\delta \cos(\frac{1}{1$ **Analytical model**

ms for the surface impedance of a plana

eposited on a substrate (dielectric or me
 t following the standard approach emploids

transmission and reflection coefficients
 $\frac{d_1}{d_1} - 2\delta \sin(2\kappa_i d_1)$ Expressions for the surface impedance of a planar

lic film deposited on a substrate (dielectric or metallic)

erived by following the standard approach employed in

lating the transmission and reflection coefficients in
 Analytical model

Expressions for the surface impedance of a planar

llic film deposited on a substrate (dielectric or metallic)

lerived by following the standard approach employed in

lating the transmission and refle **Analytical model**

expressions for the surface impedance of a planar

allic film deposited on a substrate (dielectric or metallic)

derived by following the standard approach employed in

ulating the transmission and ref **Analytical model**

expressions for the surface impedance of a planar

allic film deposited on a substrate (dielectric or metallic)

derived by following the standard approach employed in

ulating the transmission and ref **alytical model**
the surface impedance of a plar
ed on a substrate (dielectric or m
ing the standard approach emp
mission and reflection coefficien
 $\frac{\sin(2\kappa_i d_i)\exp(-2\kappa_i d_i)}{\cos(2\kappa_i d_i)\exp(-2\kappa_i d_i)}$ for NEG on metal
 $\frac{d_i}{d_i$ **alytical model**
the surface impedance of a plar
ed on a substrate (dielectric or m
ving the standard approach emp
mission and reflection coefficien
 $\frac{\sin(2\kappa_1d_1)\exp(-2\kappa_1d_1)}{\cos(2\kappa_1d_1)\exp(-2\kappa_1d_1)}$ for NEG on metal **Analytical model**

sions for the surface impedance of a planar

a deposited on a substrate (dielectric or metal

by following the standard approach employe

the transmission and reflection coefficients in

dia
 $\frac{4\kappa_$ **Analytical model**

pressions for the surface impedance of a planar

c film deposited on a substrate (dielectric or metall

ived by following the standard approach employes

ting the transmission and reflection coefficien **alytical model**
the surface impedance of a planar
ing the standard approach employed in
inission and reflection coefficients in
 $\frac{\text{in}(2\kappa_i d_i) \exp(-2\kappa_i d_i)}{\cos(2\kappa_i d_i) \exp(-2\kappa_i d_i)}$ for NEG on metal substrate;
 $\frac{d_i}{d_i} + 2$ *R R* **alytical model**
the surface impedance of a planar
ing the standard approach employed in
inission and reflection coefficients in
 $\frac{\sin(2\kappa_i d_i) \exp(-2\kappa_i d_i)}{\cos(2\kappa_i d_i) \exp(-2\kappa_i d_i)}$ for NEG on metal substrate;
 $\frac{d_i}{d_i} + 2\sin$ **nalytical model**

r the surface impedance of a planar

ted on a substrate (dielectric or metallic)

wing the standard approach employed in

smission and reflection coefficients in
 $\frac{\sin(2\kappa_1 d_1) \exp(-2\kappa_1 d_1)}{\cos(2\kappa_1 d$ **nalytical model**

r the surface impedance of a planar

ted on a substrate (dielectric or metallic)

wing the standard approach employed in

smission and reflection coefficients in
 $\delta \sin(2\kappa_i d_i) \exp(-2\kappa_i d_i)$
 $\delta \cos(2\kappa_i$ **Analytical model**

ions for the surface impedance of a planar

deposited on a substrate (dielectric or metallic)

by following the standard approach employed in

ie transmission and reflection coefficients in

ia
 $\frac{\kappa$ **Analytical model**

ions for the surface impedance of a planar

deposited on a substrate (dielectric or metallic)

oy following the standard approach employed in

ie transmission and reflection coefficients in

ia
 $\frac{4\$

$$
R_{\rm s} = R_{\rm l} \frac{1 - \delta^2 \exp\left(-4\kappa_{\rm l}d_{\rm l}\right) - 2\delta \sin\left(2\kappa_{\rm l}d_{\rm l}\right) \exp\left(-2\kappa_{\rm l}d_{\rm l}\right)}{1 + \delta^2 \exp\left(-4\kappa_{\rm l}d_{\rm l}\right) + 2\delta \cos\left(2\kappa_{\rm l}d_{\rm l}\right) \exp\left(-2\kappa_{\rm l}d_{\rm l}\right)} \quad \text{for NEG on metal substrate;}
$$

$$
R_s = R_1 \frac{1 - \exp\left(-4\kappa_1 d_1\right) + 2\sin\left(2\kappa_1 d_1\right) \exp\left(-2\kappa_1 d_1\right)}{1 + \exp\left(-4\kappa_1 d_1\right) - 2\cos\left(2\kappa_1 d_1\right) \exp\left(-2\kappa_1 d_1\right)}
$$
 for NEG on Si substrate.

NEG coatings

 $2a$

 1_b

 2_b

 Pt

NEG

Si

NEG

Si

- NEG films
	- columnar
	- dense
- Deposited on:
	- polycrystalline copper
	- silicon Si(100) substrates.
- The substrate size was 100 mm \times 100 mm \times 2 mm
- Sample thickness:
	- from 0.7 to 18 μ m

The surface resistance RS of dense and columnar NEG coatings on copper and silicon substrates as a function of film thickness

The bulk conductivity was obtained with the analytical model:

- $\sigma_d = 1.4 \times 10^4$ *Slm* for the columnar NEG coating
- $\sigma_d = 8 \times 10^5$ *Slm* for the dense NEG coating

Science & Technology
Facilities Council

The surface resistance R_S as a function of NEG **film thickness on copper at various frequencies**

Science & Technology
Facilities Council

Conclusion

- NEG coating is a technology that allows to meet **UHV/XHV** vacuum specification win long narrow vacuum chambers.
	- PSD and ESD After NEG activation at 180°C the initial $\eta(316LN)/\eta(Ti-Zr-V)$ =
		- $=$ =20 for H₂, =1000 for CH₄ and =200 for CO.
		- Vacuum firing = an order of magnitude lower ESD
		- η (Ti-Zr-Hf-V) < η (Ti-Zr-V).
		- Best results is for the dense and dual layer NEG activated at 180 \degree C
	- Often the only vacuum solution
	- Lower cost of pumping system
- It require activation at 150-180 \degree C in stead of 250-300 \degree C usual bakeout:
	- Shorter or less bellows
	- Wider choice of material for vacuum chamber and components
- The bulk conductivity:
	- $\sigma d = 1.4 \times 104$ S/m for the columnar NEG coating
	- $\sigma d = 8 \times 105$ *S/m* for the dense NEG coating
- SEY < 1.1can be obtained after activation or by conditioning