

Progress in NEG Coatings for Particle Accelerators

O.B. Malyshev and R. Valizadeh,

ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

Outlook

- Introduction
- Desorption properties
- Surface resistance
- Summary

What NEG coating does

1) Reduces gas desorption:

- A pure metal (Ti, Zr, V, Hf, etc.) film ~1-μm thick without contaminants.
- A barrier for molecules from the bulk of vacuum chamber.
- 2) Increases distributed pumping speed, S:
 - A sorbing surface on whole vacuum chamber surface

 $S = \alpha \cdot A \cdot v/4;$

- where α sticking probability,
 - A surface area,
 - v mean molecular velocity

Science & Technology Facilities Council

Earlier experiments with NEG coating

- Samples coated with Ti-Zr-V at CERN (Switzerland)
- Experiments SR beam line at BINP (Russia)

and TiZrV coated vacuum chambers (activated at 190°C for 24 hrs) V.V. Anashin *et al*, Vacuum 75 (2004) p. 155.

ASTeC activation procedure

O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p. 321.

Pressure in the accelerator vacuum chamber

 $P \propto rac{\eta}{lpha}$

where

- η desorption yield (photon, electron or ion stimulated desorption)
- α sticking probability

• Improving pumping properties is limited:

 $\alpha \leq 1$

- $0.005 < \alpha_{H2} < 0.02$
- $0.1 < \alpha_{CO} < 0.5$
- $0.4 < \alpha_{CO2} < 0.6$
- Reducing the desorption yields η in orders of magnitude was our aim

Reducing the gas desorption from the NEG coatings

- Main gases in the NEG coated vacuum chamber are H₂ and CH₄
 - Only H₂ can diffuse through the NEG film under bombardment or heat
 - CH₄ is most likely created on the NEG surface from diffused H₂ and C (originally from sorbed CO and CO₂)
 - Therefore the H₂ diffusion must be suppressed

• Where H₂ come from?

Electron stimulated desorption facility

ESD is studied as a function of

• Electron energy

Facilities Council

- Dose
- Wall temperature (-5 to +70°C)
- Activation/bakeout temperature
- Can be used for samples with:
 - Specially treated samples
 - Vacuum fired, polished, etc.
 - Low desorption coating
 - No coatings
 - NEG coating
 - ESD measurements
 - Sticking probability measurements

Reducing the gas desorption from the NEG coatings

Vacuum

NEG

Coating

Subsurface

Substrate

Layers

bulk

Gas molecules are contained on the NEG coating surface after exposure to air minimise exposure to air inside the NEG coating trapped during deposition purity of discharge gas background pressure in subsurface substrate layer substrate bakeout before NEG deposition in the substrate bulk vacuum firing

SEM images of films (film morphology)

columnar

dense

Best for pumping

A first candidate for a barrier

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.

ESD yield from NEG coated samples

ESD yield from NEG coated samples

ESD yield from NEG coated samples

(a) after deposition before vent to air

(b) activation at 150 °C

(d) activation at 250°C

(c) activation at 180 °C

H₂ ESD from NEG coated vacuum fired 316LN

Science & Technology Facilities Council

Dual layer

- Columnar layer:
 - Activated at lower temperature
 - Provides higher sticking probability and pumping capacity
- Dense layer:
 - Provides lower ESD
- Dual Layer:
 - Combines benefit of both
 - For more details: see A. Hannah's poster EM286 on Thursday

Columnar NEG Coating

Dense NEG Coating

Bulk metal

Vacuum

Science & Technology Facilities Council

Dual layer

ESD for dense, columnar and dual layer NEG

Dual layer combines both benefit:

- ESD yields are like for dense film with
- pumping properties of columnar film

Surface impedance: method

- The cavity geometry consists of two parts:
 - a body of the cavity
 - a planar sample,
 - separated by an air gap.
- Contactless
- RF chokes in order to keep the RF power within the cavity

$$R_S^{sam} = \frac{G Q_0^{-1} - R_S^{cav} p_c}{p_s}$$

- Modelled with CST Microwave Studio.
- $G = 235 \Omega$.
- The field ratios $p_c = 0.625$ and $p_s = 0.375$ for perfect electric conductor boundary conditions.

Analytical model

 The expressions for the surface impedance of a planar metallic film deposited on a substrate (dielectric or metallic) are derived by following the standard approach employed in calculating the transmission and reflection coefficients in layered media

$$R_{S} = R_{1} \frac{1 - \delta^{2} \exp(-4\kappa_{1}d_{1}) - 2\delta \sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \delta^{2} \exp(-4\kappa_{1}d_{1}) + 2\delta \cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})} \quad \text{for NEG on metal substrate;}$$

$$R_{S} = R_{1} \frac{1 - \exp(-4\kappa_{1}d_{1}) + 2\sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \exp(-4\kappa_{1}d_{1}) - 2\cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})} \quad \text{for NEG on Si substrate.}$$

NEG coatings

- NEG films
 - columnar-
 - dense •
- Deposited on:
 - polycrystalline copper
 - silicon Si(100) substrates.
- The substrate size was 100 mm × 100 mm × 2 mm
- Sample thickness:
 - from 0.7 to 18 μm

The surface resistance RS of dense and columnar NEG coatings on copper and silicon substrates as a function of film thickness

The bulk conductivity was obtained with the analytical model:

- for the columnar NEG coating
- $\sigma_d = 8 \times 10^5 S/m$ for the dense NEG coating

The surface resistance R_s as a function of NEG film thickness on copper at various frequencies

Conclusion

- NEG coating is a technology that allows to meet UHV/XHV vacuum specification win long narrow vacuum chambers.
 - PSD and ESD After NEG activation at 180°C the initial η (316LN)/ η (Ti-Zr-V) =
 - =20 for H_2 , =1000 for CH_4 and =200 for CO.
 - Vacuum firing = an order of magnitude lower ESD
 - η (Ti-Zr-Hf-V) < η (Ti-Zr-V).
 - Best results is for the dense and dual layer NEG activated at 180 °C
 - Often the only vacuum solution
 - Lower cost of pumping system
- It require activation at 150-180 °C in stead of 250-300 °C usual bakeout:
 - Shorter or less bellows
 - Wider choice of material for vacuum chamber and components
- The bulk conductivity:
 - $\sigma d = 1.4 \times 104 \ S/m$ for the columnar NEG coating
 - $\sigma d = 8 \times 105 \ S/m$ for the dense NEG coating
- SEY < 1.1can be obtained after activation or by conditioning