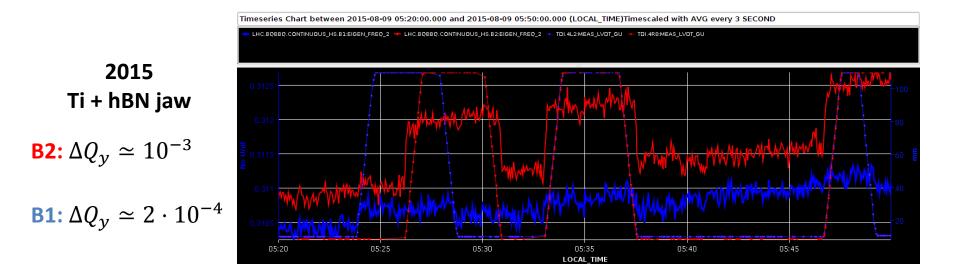
# Update on TDIS impedance and stability studies

N.Biancacci, E.Bonanno, D.Amorim, S.Arsenyev, G.Mazzacano, E.Métral, J.E.Muller, A.Passarelli, B.Salvant, A.Valimaa, N.Wang

TDIS review , 1-12-2016

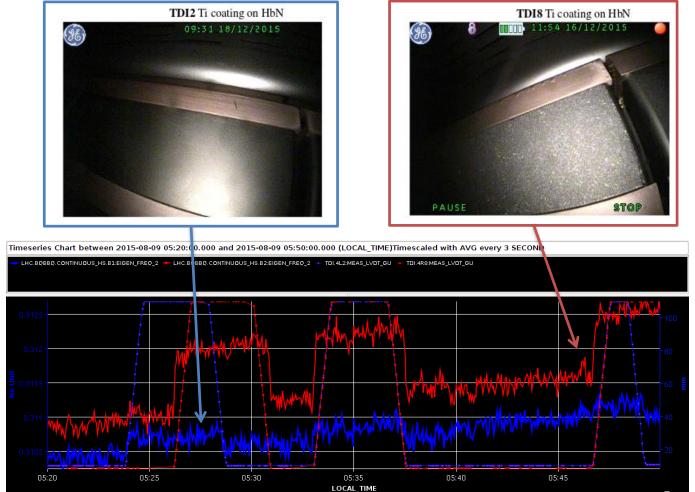

With many thanks to: I.lamas, Garcia, A. P. Marcone and L.Gentini for the mechanical design and technical informations G. Arduini, the WP2 members and A. Grudiev for the useful comments and suggestions received 1

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

#### 2015 performance:

- TDI jaw in hBN coated with Ti.
- Observed higher transverse impedance and power loss in TDI8 w.r.t. TDI2 through tune shifts and sync. phase shift measurements.

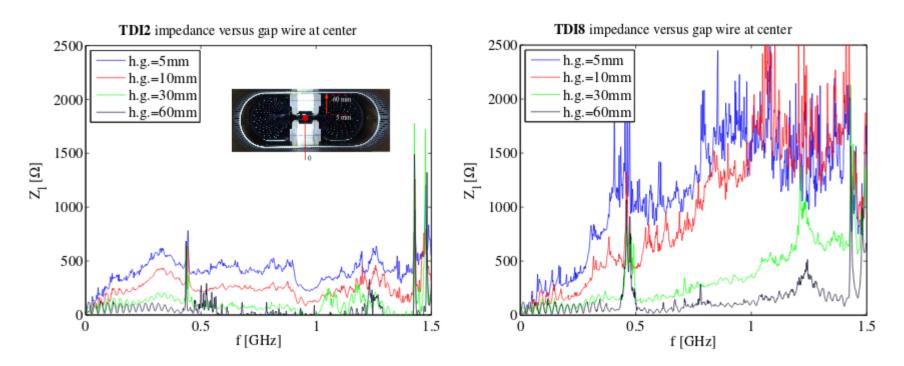



#### See also:

B. Salvant, <u>Impedance meeting 10 Aug 2015</u> J. Uythoven in <u>LMC 30 Sep 2015</u>

#### Measurements and inspections during the 2015/2016 YETS:

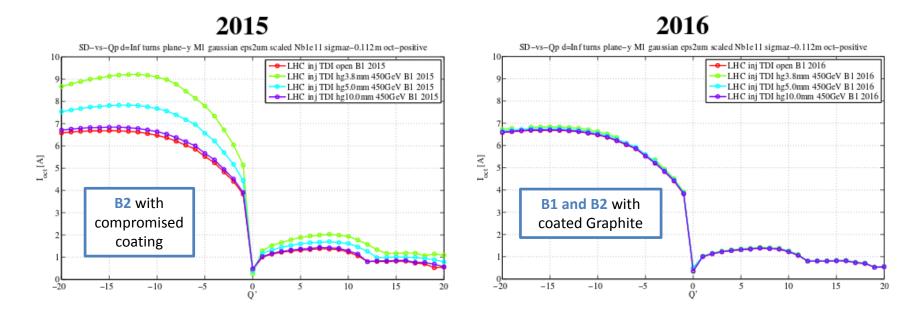
Issue confirmed to be the degraded Ti coating on hBN




2015 Ti + hBN jaw B2:  $\Delta Q_y \simeq 10^{-3}$ 

**B1:**  $\Delta Q_y \simeq 2 \cdot 10^{-4}$ 

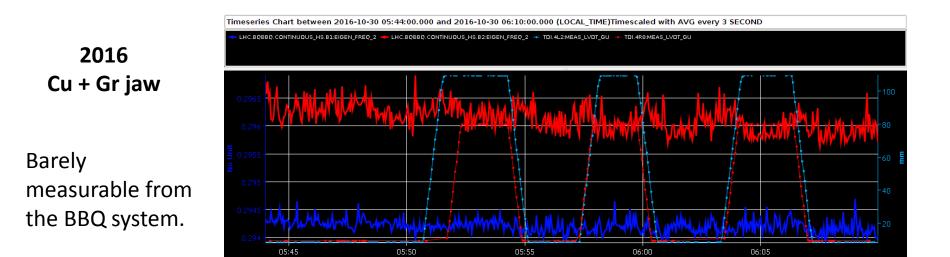
#### Measurements and inspections during the 2015/2016 YETS:


- Issue confirmed to be the degraded Ti coating on hBN
- Confirmed also through stretched wire measurements.



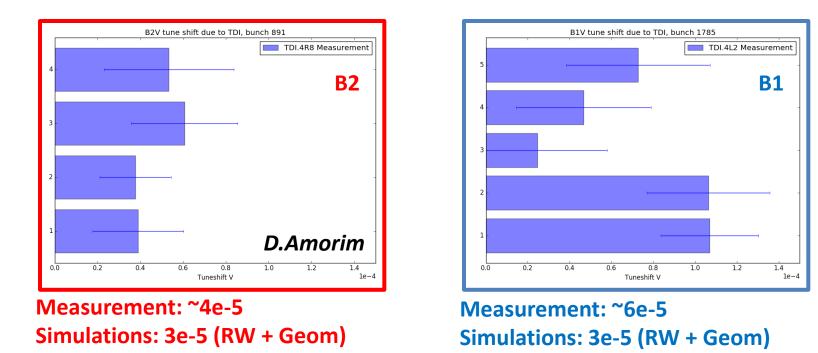
See also: N.Biancacci, <u>Impedance meeting 15 Feb 2016</u>

#### Measurements and inspections during the 2015/2016 YETS:


- Issue confirmed to be the degraded Ti coating on hBN
- Confirmed also through stretched wire measurements.
- B2 much more critical than B1 -> TDI doubled the LHC impedance at injection!



Considerable improvement in 2016 thanks to the Cu coating.


#### 2016 performance:

- TDI jaw in Graphite coated with Cu + Ti.
- Tune shift barely measurable with BBQ system
- **Power loss not detectable** through phase shift measurements in single bunch.



LOCAL TIME

• Single bunch tune shift measurements on 30-10-2016 with MKQ kick + ADT.



- **Reasonable good agreement** between a factor 2 on theory and measurements!
- Compromised Cu coating would lead to 1e-4 tune shift (Graphite exposed).
- Phase shift not visible (J.E.Muller)
- Copper coating the jaw surface drastically reduces the TDI broadband impedance. 9

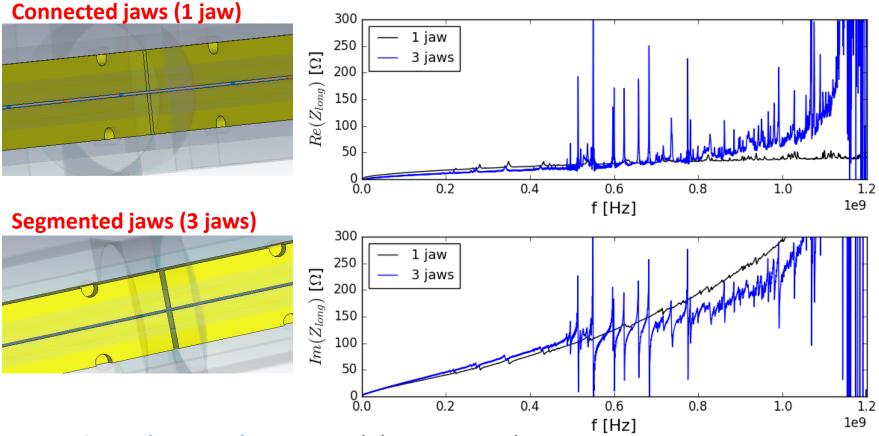
- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

#### TDIS design aspects relevant for impedance

#### Proposed 3 tank segmentation (TDI+S) in order to:

- Improve mechanical reliability.
- Allow module exchangeability.

#### Aimed for collimator like design at the transitions:


• **not possible due to ALICE ZDC**: no metallic surfaces at the level where the beam could impact.

#### Jaw materials:

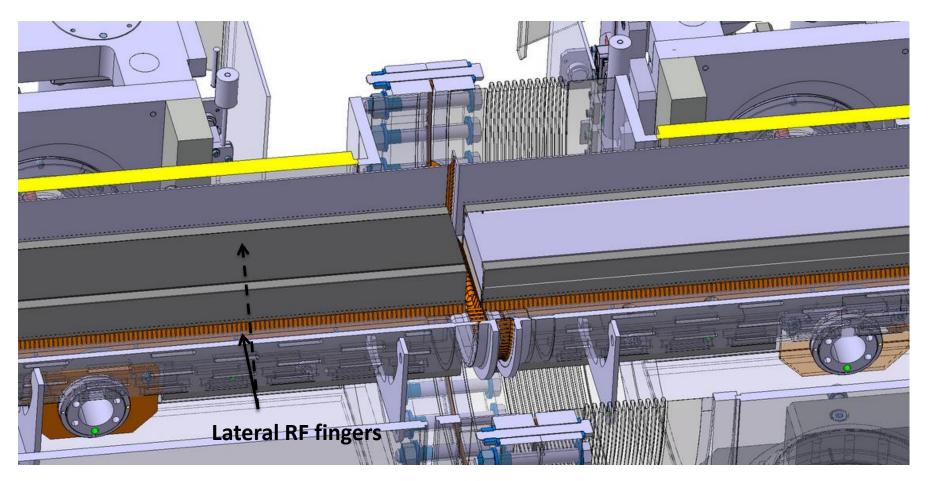
- a) Graphite
  - First two modules with Graphite (1.565mm each)
  - Last module: **1** Al (Ti coated) + **1** CuCrZn (with total integrated length 1.565mm)
- b) 3D C-C
  - First two modules with **1x 3D C-C** (570mm) + **1x Graphite** (995mm)
  - Last module 1 AI (Ti coated) + 1 CuCrZn (with a total total integrated length 1.565mm)
- c) Cu coating on Graphite
  - Graphite coated as in the present TDI

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

## 1 jaw Vs 3 jaws

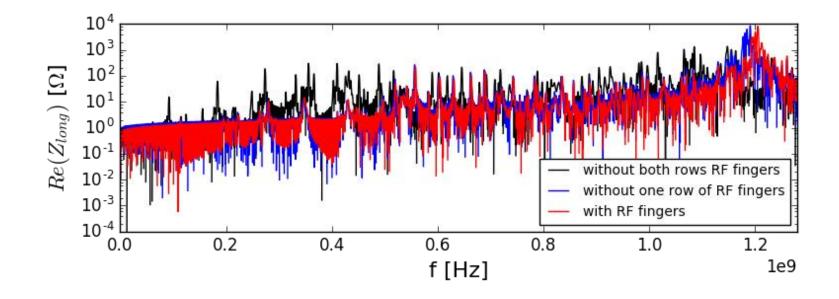


Approximated approach: connected the segmented jaws.


- Same mode pattern below 500 MHz
- Stronger modes develop above 500 MHz.

#### **Segmenting** the jaws is clearly **detrimental for impedance**:

RF fingers, transitions and coating are countermeasures that can mitigate it.


- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

### Effect of lateral RF fingers



- To study the effect of the lateral RF fingers we studied 3 cases:
  - Presence of both lateral rails of RF fingers
  - Presence of only one lateral rail
  - Both rails removed

### Longitudinal impedance



- Limited impact on longitudinal impedance with 1 row of RF fingers missing.
- Strong impact if we both are not in contact -> more modes -> more heating.
- We would recommend to keep both rails in order to have margin.

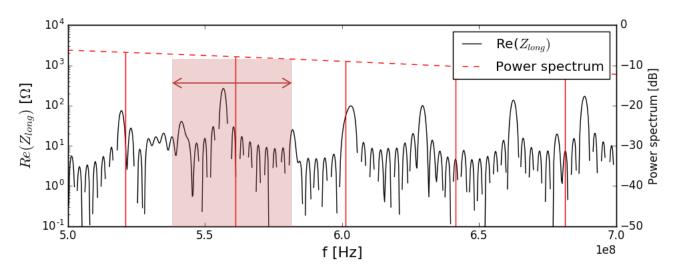
- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

### Heating from HOMs

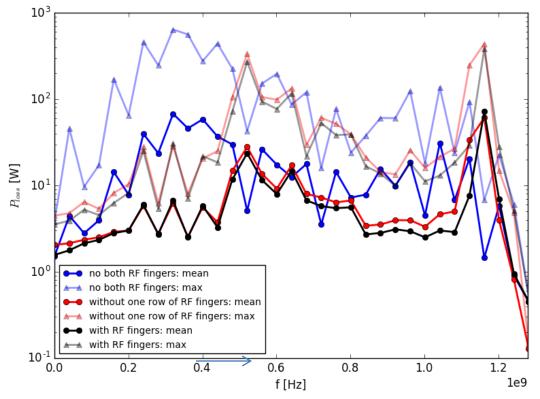


Here we assumed a Gaussian spectrum corresponding to an *rms* bunch length of 8.1cm.

NB: In the LHC the distribution is Gaussian only up to ~1.5 GHz. After there is still power between 2 and 2.5 GHz -> Not considered here.


# Evaluation of heating from HOMs

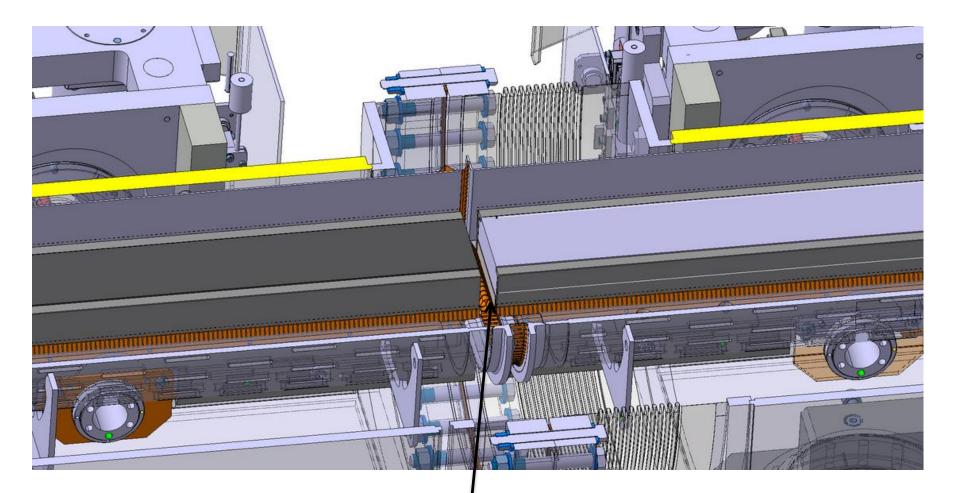
Since:


- Spectral lines spaced by 40 MHz for 25ns beam
- There is uncertainty on the HOM location due to approximations in simulations

We used a statistical approach:

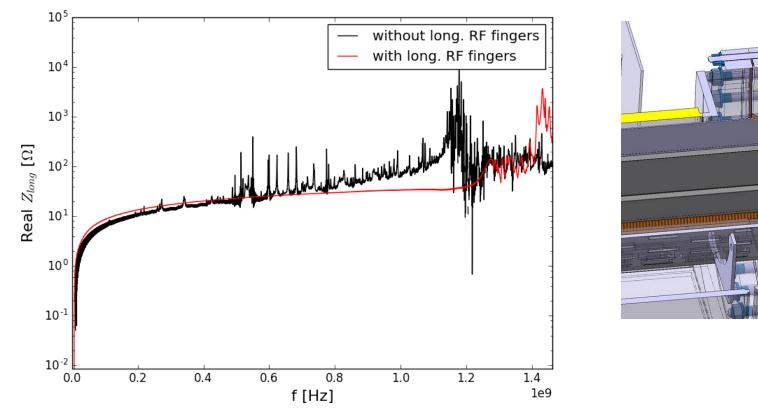
- Added uniform random noise on each spectral line within +/- 20 MHz range (equivalent to apply the noise on the HOM themselves)
- Calculated the corresponding power loss.
- Deduced mean/max of the power loss for each spectral line.




### **Evaluation of heating from HOMs**



- On average expected < 100 W per spectral line.
- Max values can reach 800 W
- Heating is distributed on different elements depending on different field patterns.
- Input needed on max allowed power deposited per sensitive elements in the structure.
- We can then estimate the **probability** an HOM, if present, could be **provoke deformation/damage** on these part of the TDIS.


- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

#### Longitudinal RF fingers



Longitudinal RF fingers

## Longitudinal RF fingers



- RF fingers location optimized in order to minimize the field communication with the tank volume below the jaws (thanks Luca).
- No visible HOMs in longitudinal impedance below 1.2 GHz thanks to granted continuity of image current flow.
- Need to quantify the probability of contact failure of one/some RF fingers
- Heat load left is mainly due to the resistive wall impedance of the jaw.

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

• Heating from broadband RW impedance at **injection** (3.8 mm haf gap).

 $\sigma_z=8.1 cm$  ,  $\gamma=479, N_b=2.2\cdot 10^{11} ppb, 2748$  bunches

| Main jaw<br>material | Resistivity<br>[Ohm.m] |      | Zyeff<br>[MOhm/m] | Ploss [W] |
|----------------------|------------------------|------|-------------------|-----------|
| Copper               | 17e-9                  | 0.02 | 0.016             | 55        |
| HL-LHC               |                        | 95   | 3.8               | -         |

• Heating from broadband RW impedance at **injection** (3.8 mm haf gap).

 $\sigma_z=8.1 cm$  ,  $\gamma=479, N_b=2.2\cdot 10^{11} ppb, 2748$  bunches

| Main jaw<br>material | Resistivity<br>[Ohm.m] | Z/n<br>[mOhm] | Zyeff<br>[MOhm/m] | Ploss [W] |
|----------------------|------------------------|---------------|-------------------|-----------|
| Graphite             | 15-6                   | 0.4           | 0.2               | 676       |
| Copper               | 17e-9                  | 0.02          | 0.016             | 55        |
| HL-LHC               |                        | 95            | 3.8               | -         |

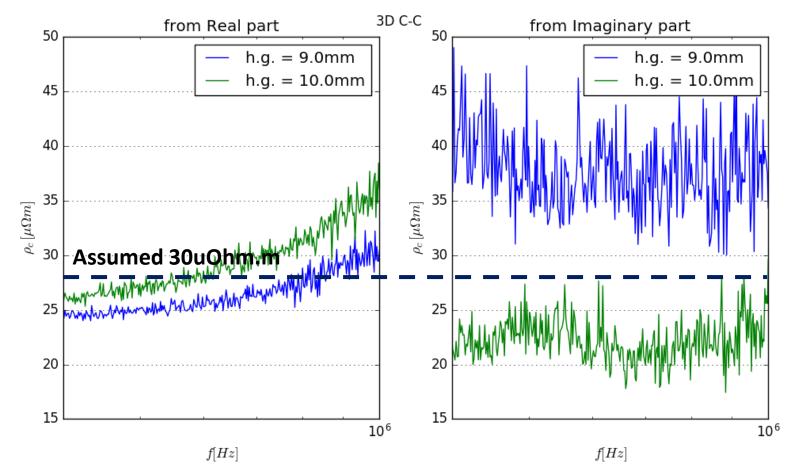
• Heating from broadband RW impedance at **injection** (3.8 mm haf gap).

 $\sigma_z=8.1 cm$  ,  $\gamma=479, N_b=2.2\cdot 10^{11} ppb, 2748$  bunches

| Main jaw<br>material | Resistivity<br>[Ohm.m] |      | Zyeff<br>[MOhm/m] | Ploss [W] |
|----------------------|------------------------|------|-------------------|-----------|
| 3D C-C               | ?                      | ?    | ?                 | ?         |
| Graphite             | 15-6                   | 0.4  | 0.2               | 676       |
| Copper coating       | 17e-9                  | 0.02 | 0.016             | 55        |
| HL-LHC               |                        | 95   | 3.8               | -         |

-> Performed a first measurement of 3D C-C resistivity

#### 3D C-C resistivity measurement


Alu reference block

**3D C-C block** 



 Measured the RF loop impedance change\* between a reference Alu block and the 3D C-C block provided by Inigo (thanks!)

#### 3D C-C resistivity measurement



Resistivity ~= 30uOhm.m within alignment uncertainties.

• Being cross-checked with alternative DC resistivity measurements.

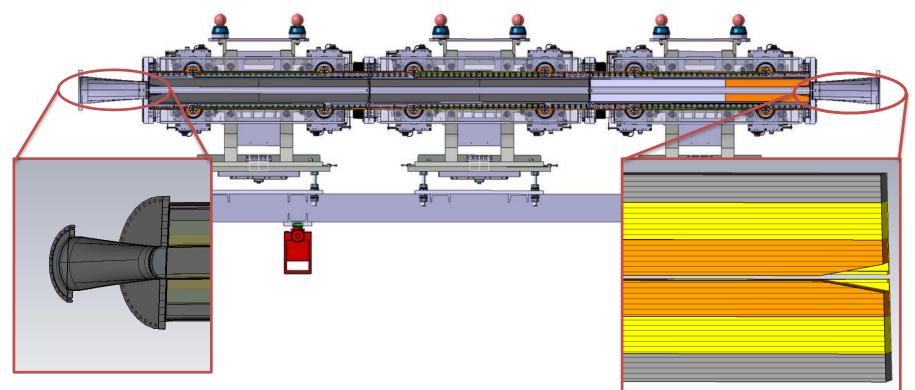
• Heating from broadband RW impedance at **injection** (3.8 mm haf gap).

 $\sigma_z = 8.1 cm$  ,  $\gamma = 479, N_b = 2.2 \cdot 10^{11} ppb$ , 2748 bunches

| Main jaw<br>material | Resistivity<br>[Ohm.m] | Z/n<br>[mOhm] | Zyeff<br>[MOhm/m] | Ploss [W] |
|----------------------|------------------------|---------------|-------------------|-----------|
| 3D C-C               | 30e-6                  | 0.6           | 0.3               | 775       |
| Graphite             | 15-6                   | 0.4           | 0.2               | 676       |
| Copper coating       | 17e-9                  | 0.02          | 0.016             | 55        |
| HL-LHC               |                        | 95            | 3.8               | -         |

• If cooling capacity is an issue Cu coating is highly recommended to reduce the longitudinal broad band impedance and relative heating.

• Heating from broadband RW impedance at flat top (55mm haf gap).

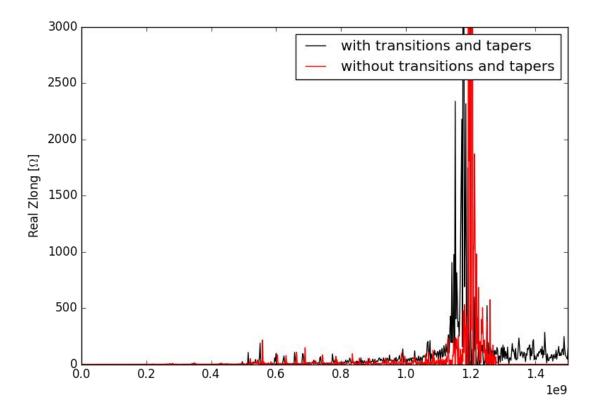

 $\sigma_z=8.1cm$  ,  $\gamma=7460, N_b=2.2\cdot 10^{11} ppb, 2748$  bunches

| Main jaw<br>material | Resistivity<br>[Ohm.m] | Z/n<br>[mOhm] | Zyeff<br>[kOhm/m] | Ploss [W] |
|----------------------|------------------------|---------------|-------------------|-----------|
| 3D C-C               | 30e-6                  | 0.04          | <1                | 57        |
| Graphite             | 15-6                   | 0.03          | <1                | 47        |
| Copper               | 17e-9                  | 0.001         | <1                | 1.7       |
| HL-LHC               |                        | 82            | 15000             | -         |

For all cases < 60 W expected from RW</li>

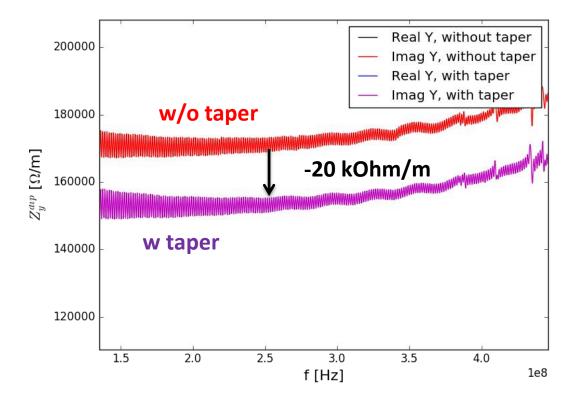
- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

#### Effect of taper and conical transition



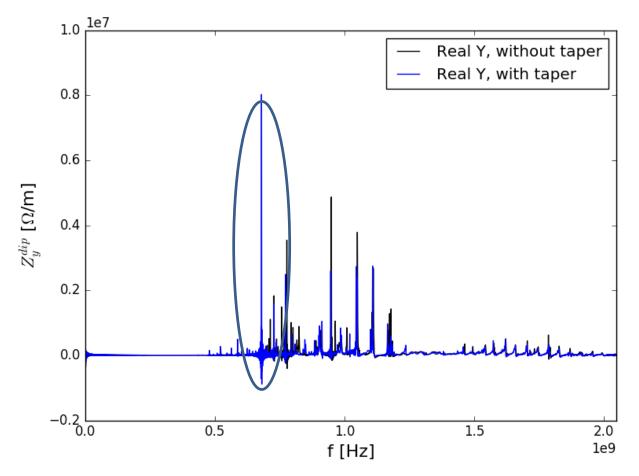

#### Simulation setup:

- Added jaw tapers: L=100mm with 10° angle.
- Added conical **jaw transitions.**
- Considered Cu and Graphite jaws.


G.Mazzacano

#### Longitudinal impedance at injection

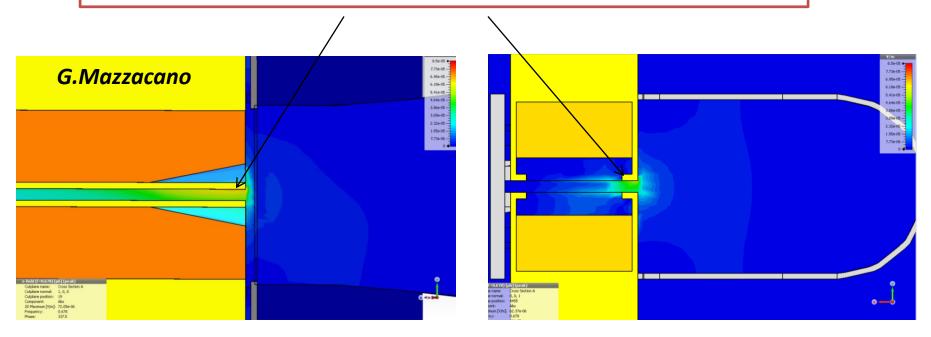



- Slightly downshifted the cluster the modes around 1.2 GHz.
- Globally, negligible impact on mode pattern.

### Vertical impedance at injection



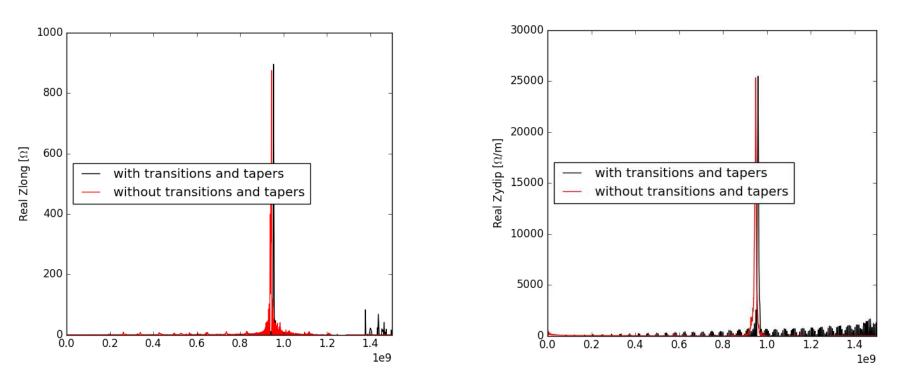
- Broadband impedance reduced of 20kOhm/m (i.e ~10 % of the transverse device impedance from RW only in case of 3D C-C)
- Recommended to keep the taper for transverse impedance reduction.


### Vertical impedance at injection



- Many HOMs present w/ and w/o taper on the jaw peak impedance ~ 8 MOhm/m
- Strongest mode at 680 MHz

### Vertical impedance at injection

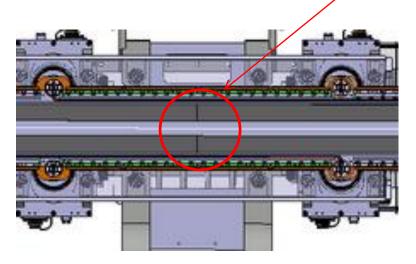

Lambda/4 mode around the not cut edge of the envelope @ 680 MHz



- Strongest mode at 680 MHz located around the not cut edge of the envelope.
- Can be cured tapering the envelope as well.
- Evaluation of HOMs impact on transverse stability requires statistical approach as used for the longitudinal HOMs -> Work still on progress, for the moment we evaluated the impact on stability from the impedance as it is: might be underestimated!

37

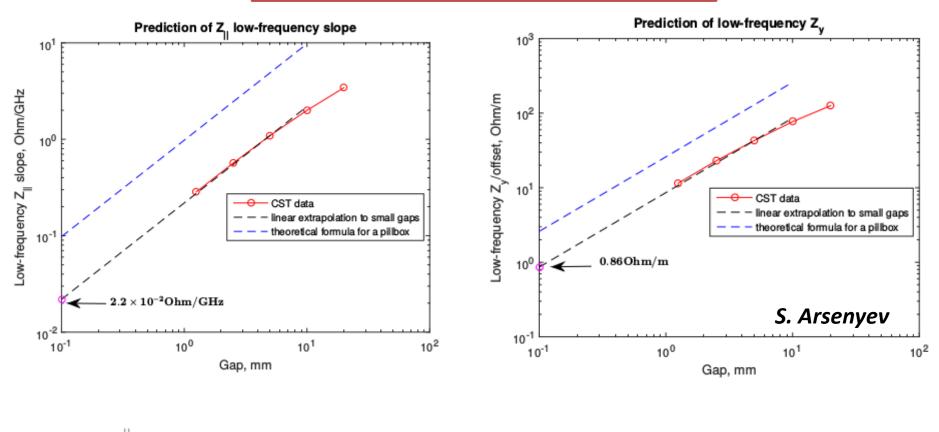
### Impedance at flat top




- Small effect of taper and transition when in parking position.
- The impedance contribution to the **heat load** budget is **negligible**.

# Outline

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

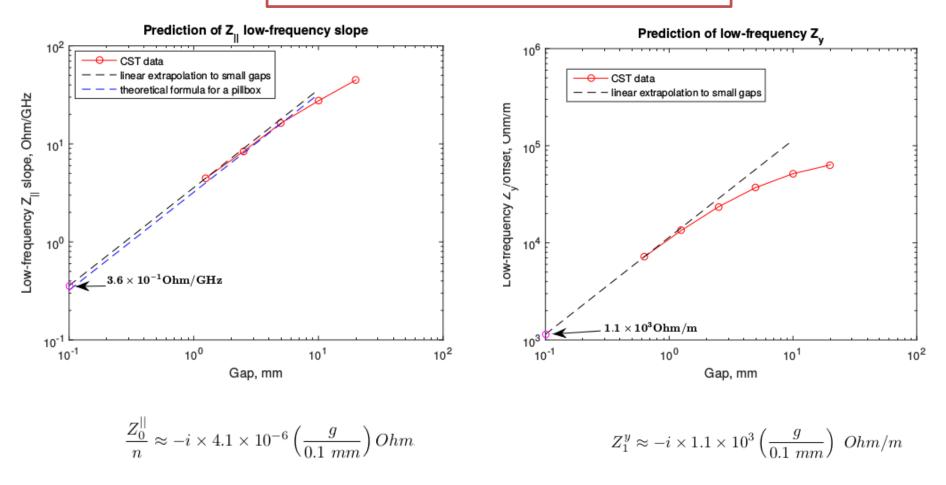

# Effect of gaps between blocks



| Jaw<br>material | # gaps (upper and lower jaw) |                      |                      |
|-----------------|------------------------------|----------------------|----------------------|
|                 | 1 <sup>st</sup> tank         | 2 <sup>nd</sup> tank | 3 <sup>rd</sup> tank |
| 3D C-C          | 4                            | 4                    | 1                    |
| Graphite        | 1                            | 1                    | 1                    |
| Copper          | 1                            | 1                    | 1                    |

- The jaw is made by separated shorter blocks.
- A gap might be remaining of the order of 0.1mm
- 9 gaps maximum when using 3D C-C
- Simulated within a simplified model and extrapolated to 0.1mm gaps.

#### Half gap = 55mm

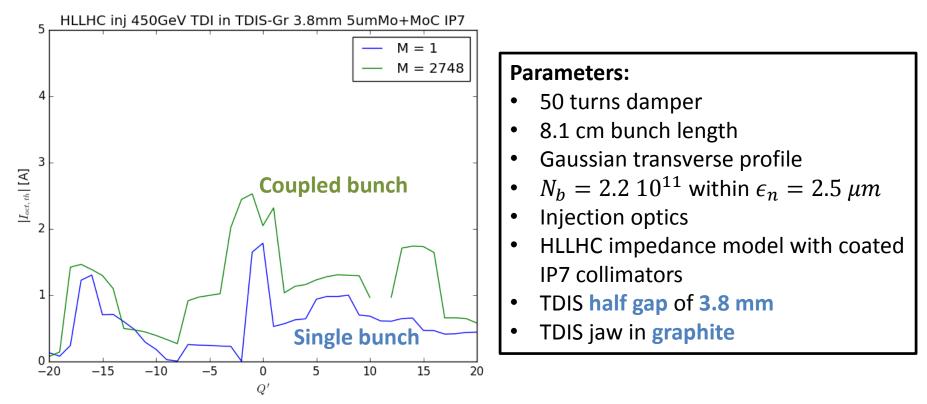



$$\frac{Z_0^{||}}{n}\approx -i\times 2.47\times 10^{-7}\left(\frac{g}{0.1\ mm}\right)Ohm$$

$$Z_1^y \approx -i \times 8.6 \times 10^{-1} \left(\frac{g}{0.1 \ mm}\right) \ Ohm/m.$$

- For 0.1mm gap between blocks:
  - Z/n = 0.2uOhm -> For 9 gaps 1.8 uOhm: Negligible
  - Zy\_eff = 0.5 Ohm/m -> For 9 gaps 4.5 Ohm/m: Negligible

#### Half gap = 4mm




- For **0.1mm** gap between blocks:
  - Z/n = 4 uOhm -> For 9 gaps 36 uOhm: Negligible
  - Zy\_eff = 1 kOhm/m -> For 9 gaps 9 kOhm/m: ~50% tapering gain

# Outline

- TDI performance summary of 2015/2016
- TDIS design aspects relevant for impedance
- Effect on impedance of:
  - jaws segmentation
  - Lateral RF fingers
  - Heating from HOMs
  - Longitudinal RF fingers
  - Heating from resistive wall
  - Transition flanges and jaw tapers
  - Gaps between the blocks
- Impact on HL-LHC stability threshold at 450 GeV
- Conclusions and outlook

### HL-LHC octupole stability threshold at 450 GeV



- Assumed Graphite jaw and transverse HOMs as-they-are: statistical simulations to be done to exploit the full impact of HOMs!
- 10% increase in coupled bunch instability threshold at injection due to the HOMs.
- Margins for impedance but without ecloud!
- If Cu jaws, single bunch threshold 10% lower, CB may be unchanged as it is driven by HOMs.
- No issues expected at flat top (<0.1% w.r.t. total impedance)

# Conclusions (1/3)

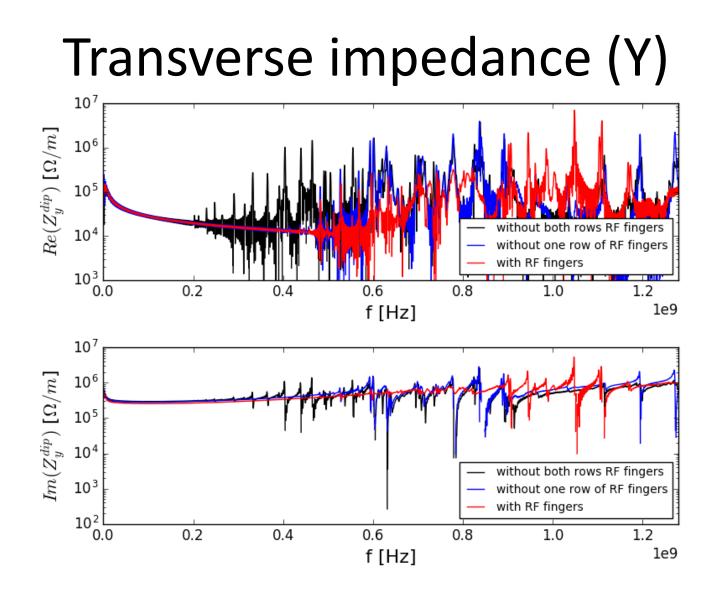
#### Coating:

- Cu coating is recommended to keep the device impedance low unless strong requirements (10%-15% of the HLLHC budget: huge impact)
- For now (LHC) it looks we have margin as impedance is shadowed mainly by ecloud and coupling effects.
- For HL-LHC we need to keep margins to host expected (and unexpected) challenges with high brightness beams.

#### Heating

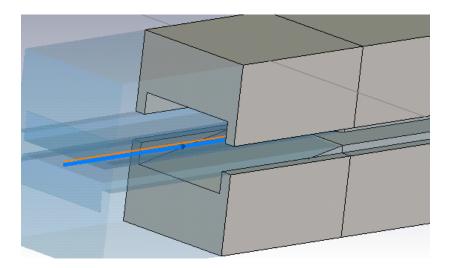
- HOM heating can be drastically reduced with longitudinal and lateral RF fingers: recommended
- In case of no or bad contacts, the heat load can be as bad as ~800 W depending on the mode.
- To be checked if sensitive equipment can sustain it and with which probability it may happen.
- Needed input from mechanical design on the elements sensitive to power deposition.
- Power loss between 600 -800 W for Graphite or 3D Carbon jaws
- Power loss between < 100 W for Copper coating: recommended</li>
- Longitudinal impedance budget:
  - Contribution of 0.6mOhm at injection, 0.04mOhm at flat top from RW impedance.
  - Loss of contacts induces longitudinal HOMs -> Increase impedance up to 4 mOhm.
  - Within margins but should be considered with other equipment (e.g. Velo when in operation).

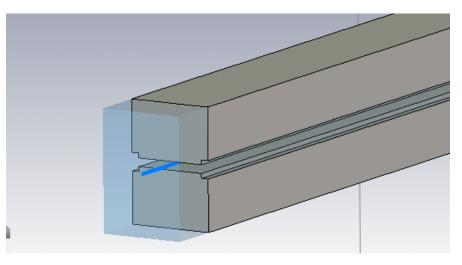
# Conclusions (2/3)


- Transverse (vertical) impedance budget
  - ~300 kOhm/m at injection from RW (~10% of the budget)
  - With transverse HOMs -> Increase of ~300 kOhm/m (~10% of the budget)
  - Negligible impact at flat top
- Transitions and jaw tapers:
  - Introduction of few transverse low frequency modes at closed gap
  - Mode at 680 MHz due to not tapered envelope
  - Can be cured by envelope tapering but currently not an issue for stability
- Gaps between blocks:
  - Negligible with open gap.
  - Impact with close gap at the order of few %: recommend to keep the gaps minimized both in number and width.
- Octupole stability threshold at injection.
  - ~1 A necessary for stability at Q' ~ 10 with graphite jaws in single bunch.
  - 10% less expected going to Copper thanks to RW impedance mitigation.
  - HOMs impact coupled bunch stability threshold: 10% 20% increase.
  - To be evaluated using statistical approach as done for heating: we might be in a lucky situation In case of issues HOM damping / reducing may be needed.

# Conclusions (3/3)

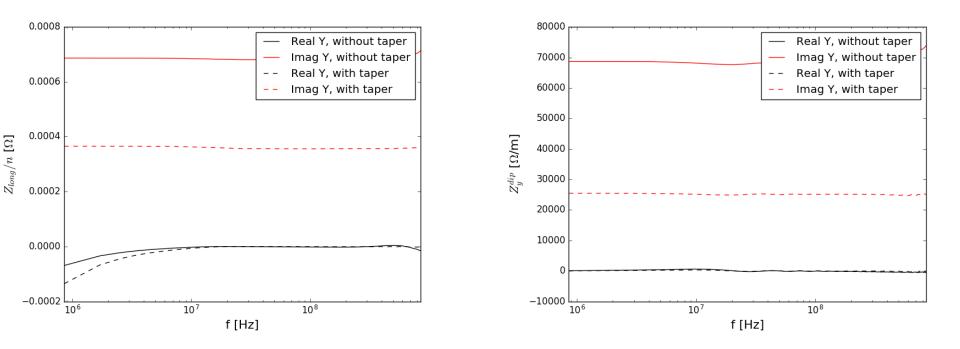
- Impedance measurements
  - The **TDIS** should be **measured** by **the impedance team** as soon as it is available
  - The PT100 probes should be shielded in order to avoid electromagnetic coupling corrupting the temperature readings (current issue in present TDI)


### Thanks for your attention!


### Backup



Stronger impact on transverse impedance HOMs below 1GHz.


### Effect of taper and conical transition





- Simplified models to study the effect of tapering:
  - Without taper: step from 55mm to 4mm half gap.
  - With taper: 10deg taper 100mm long -> ~17mm reduction in step
- Expected a reduction of the transverse impedance to 30% w.r.t. no taper

### Effect of taper and conical transition



- Tapering reduces both longitudinal and transverse inductive impedance.
- ~30% gain in transverse impedance reduction (inductive).
- Almost a factor 2 in longitudinal impedance (inductive).