
Update on TDIS impedance and 
stability studies

N.Biancacci, E.Bonanno, D.Amorim, S.Arsenyev, G.Mazzacano, 
E.Métral, J.E.Muller, A.Passarelli, B.Salvant, A.Valimaa, N.Wang

With many thanks to:
I.lamas, Garcia, A. P. Marcone and L.Gentini for the mechanical design and technical informations
G. Arduini, the WP2 members and A. Grudiev for the useful comments and suggestions received

TDIS review , 1-12-2016

1



Outline

• TDI performance summary of 2015/2016
• TDIS  design aspects relevant for impedance
• Effect on impedance of: 

– jaws segmentation
– Lateral RF fingers
– Heating from HOMs
– Longitudinal RF fingers
– Heating from resistive wall
– Transition flanges and jaw tapers
– Gaps between the blocks

• Impact on HL-LHC stability threshold at 450 GeV
• Conclusions and outlook

2



Outline

• TDI performance summary of 2015/2016
• TDIS  design aspects relevant for impedance
• Effect on impedance of: 

– jaws segmentation
– Lateral RF fingers
– Heating from HOMs
– Longitudinal RF fingers
– Heating from resistive wall
– Transition flanges and jaw tapers
– Gaps between the blocks

• Impact on HL-LHC stability threshold at 450 GeV
• Conclusions and outlook

3



TDI performance between 2015/2016

2015
Ti + hBN jaw

B2: Δ𝑄𝑦 ≃ 10−3

B1: Δ𝑄𝑦 ≃ 2 ⋅ 10−4

2015 performance:
• TDI jaw in hBN coated with Ti.
• Observed higher transverse impedance and power loss in TDI8 w.r.t. TDI2 

through tune shifts and sync. phase shift measurements.

See also: 
B. Salvant, Impedance meeting 10 Aug 2015
J. Uythoven in LMC 30 Sep 2015 4

http://indico.cern.ch/event/437858/contributions/1083587/attachments/1138109/1629381/TDI_impedance_measurements_9aug2015.pdf
http://indico.cern.ch/event/449746/


TDI performance between 2015/2016
Measurements and inspections during the 2015/2016 YETS:
• Issue confirmed to be the degraded Ti coating on hBN

2015
Ti + hBN jaw

B2: Δ𝑄𝑦 ≃ 10−3

B1: Δ𝑄𝑦 ≃ 2 ⋅ 10−4
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TDI performance between 2015/2016
Measurements and inspections during the 2015/2016 YETS:
• Issue confirmed to be the degraded Ti coating on hBN
• Confirmed also through stretched wire measurements. 

See also: 
N.Biancacci, Impedance meeting 15 Feb 2016
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https://indico.cern.ch/event/496817/contributions/2009381/attachments/1228048/1799205/IWG_TDI_15022016_NB_lr.pdf


TDI performance between 2015/2016
Measurements and inspections during the 2015/2016 YETS:
• Issue confirmed to be the degraded Ti coating on hBN
• Confirmed also through stretched wire measurements. 
• B2 much more critical than B1 -> TDI doubled the LHC impedance at injection!

See also: 
N.Biancacci, Impedance meeting 15 Feb 2016 7

• Considerable improvement in 2016 thanks to the Cu coating.

B2 with 
compromised 

coating

B1 and B2 with 
coated Graphite

https://indico.cern.ch/event/496817/contributions/2009381/attachments/1228048/1799205/IWG_TDI_15022016_NB_lr.pdf


TDI performance between 2015/2016

2016
Cu + Gr jaw

Barely 
measurable from 
the BBQ system.

2016 performance:
• TDI jaw in Graphite coated with Cu + Ti.
• Tune shift barely measurable with BBQ system
• Power loss not detectable through phase shift measurements in single bunch.
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Measurement: ~4e-5
Simulations: 3e-5 (RW + Geom)

Measurement: ~6e-5
Simulations: 3e-5 (RW + Geom)

D.Amorim

• Reasonable good agreement between a factor 2 on theory and measurements!
• Compromised Cu coating would lead to 1e-4 tune shift (Graphite exposed).
• Phase shift not visible (J.E.Muller)
• Copper coating the jaw surface drastically reduces the TDI broadband impedance.

• Single bunch tune shift measurements on 30-10-2016 with MKQ kick + ADT.

B2 B1
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TDI performance between 2015/2016
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TDIS  design aspects relevant for impedance
Proposed 3 tank segmentation  (TDI+S) in order to:

• Improve mechanical reliability. 

• Allow module exchangeability. 

Aimed for collimator like design  at the transitions:

• not possible due to ALICE ZDC: no metallic surfaces at the level where the beam could impact. 

Jaw materials:

• a) Graphite

– First two modules with  Graphite (1.565mm each) 

– Last module: 1 Al (Ti coated) + 1 CuCrZn (with total integrated length 1.565mm)

• b) 3D C-C

– First two modules with 1x 3D C-C (570mm) + 1x Graphite (995mm)

– Last module 1 Al (Ti coated) + 1 CuCrZn (with a total total integrated length 1.565mm)

• c) Cu coating on Graphite 

– Graphite coated as in the present TDI 
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1 jaw Vs 3 jaws

Approximated approach: connected the segmented jaws.
• Same mode pattern below 500 MHz
• Stronger modes develop above 500 MHz.

Segmenting the jaws is clearly detrimental for impedance:
• RF fingers, transitions and coating are countermeasures that can mitigate it.

Connected jaws (1 jaw)

Segmented jaws (3 jaws)
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Effect of lateral RF fingers

• To study the effect of the lateral RF fingers we studied 3 cases:
• Presence of both lateral rails of RF fingers
• Presence of only one lateral rail
• Both rails removed

Lateral RF fingers
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Longitudinal impedance

• Limited impact on longitudinal impedance with 1 row of RF fingers missing.
• Strong impact if we both are not in contact -> more modes -> more heating.
• We would recommend to keep both rails in order to have margin.
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Heating from HOMs

Here we assumed a Gaussian spectrum corresponding  to an rms bunch length of 8.1cm.

NB: In the LHC the distribution is Gaussian only up to ~1.5 GHz. After there is  still power 
between 2 and 2.5 GHz -> Not considered here.

E.Métral in Chamonix 2012
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Evaluation of heating from HOMs

Since:
• Spectral lines spaced by 40 MHz for 25ns beam
• There is uncertainty on the HOM location due to approximations in simulations

We used a statistical approach:
• Added uniform random noise on each spectral line within +/- 20 MHz range 

(equivalent to apply the noise on the HOM themselves)
• Calculated the corresponding power loss.
• Deduced mean/max of the power loss for each spectral line.
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• On average expected  < 100 W per spectral line.
• Max values can reach  800 W
• Heating is distributed on different elements depending on different field patterns.
• Input needed on max allowed power deposited per  sensitive elements in the structure.
• We can then estimate the probability an HOM, if present, could be provoke 

deformation/damage on these part of the TDIS.

Evaluation of heating from HOMs
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Longitudinal RF fingers

Longitudinal RF fingers 
22



Longitudinal RF fingers

• RF fingers location optimized in order to minimize the field communication with 
the tank volume below the jaws (thanks Luca).

• No visible HOMs in longitudinal impedance below 1.2 GHz thanks to granted 
continuity of image current flow.

• Need to quantify the probability of contact failure of one/some RF fingers
• Heat load left is mainly due to the resistive wall impedance of the jaw.
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Main jaw 
material

Resistivity 
[Ohm.m]

Z/n 
[mOhm]

Zyeff 
[MOhm/m]

Ploss [W]

Copper 17e-9 0.02 0.016 55

HL-LHC 95 3.8 -

• Heating from broadband RW impedance at injection (3.8 mm haf gap).

Evaluation of heating from RW

𝜎𝑧 = 8.1𝑐𝑚 , 𝛾 = 479, 𝑁𝑏 = 2.2 ⋅ 1011𝑝𝑝𝑏, 2748 𝑏𝑢𝑛𝑐ℎ𝑒𝑠
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Main jaw 
material

Resistivity 
[Ohm.m]

Z/n 
[mOhm]

Zyeff
[MOhm/m]

Ploss [W]

Graphite 15-6 0.4 0.2 676

Copper 17e-9 0.02 0.016 55

HL-LHC 95 3.8 -

• Heating from broadband RW impedance at injection (3.8 mm haf gap).

Evaluation of heating from RW

𝜎𝑧 = 8.1𝑐𝑚 , 𝛾 = 479, 𝑁𝑏 = 2.2 ⋅ 1011𝑝𝑝𝑏, 2748 𝑏𝑢𝑛𝑐ℎ𝑒𝑠
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Main jaw 
material

Resistivity 
[Ohm.m]

Z/n 
[mOhm]

Zyeff
[MOhm/m]

Ploss [W]

3D C-C ? ? ? ?

Graphite 15-6 0.4 0.2 676

Copper coating 17e-9 0.02 0.016 55

HL-LHC 95 3.8 -

• Heating from broadband RW impedance at injection (3.8 mm haf gap).

Evaluation of heating from RW

𝜎𝑧 = 8.1𝑐𝑚 , 𝛾 = 479, 𝑁𝑏 = 2.2 ⋅ 1011𝑝𝑝𝑏, 2748 𝑏𝑢𝑛𝑐ℎ𝑒𝑠

-> Performed a first measurement of 3D C-C resistivity
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3D C-C resistivity measurement

• Measured the RF loop impedance change* between a reference Alu block and the 3D 
C-C block provided by Inigo (thanks!)

* For details on the method and references: N.Biancacci in Impedance meeting,  2nd March 2015

Alu reference block 3D C-C block

28



3D C-C resistivity measurement

Assumed 30uOhm.m

• Resistivity ~= 30uOhm.m within alignment uncertainties.
• Being cross-checked with alternative DC resistivity measurements.
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Main jaw 
material

Resistivity 
[Ohm.m]

Z/n 
[mOhm]

Zyeff
[MOhm/m]

Ploss [W]

3D C-C 30e-6 0.6 0.3 775

Graphite 15-6 0.4 0.2 676

Copper coating 17e-9 0.02 0.016 55

HL-LHC 95 3.8 -

• If cooling capacity is an issue Cu coating is highly recommended to reduce the 
longitudinal broad band impedance and relative heating.

• Heating from broadband RW impedance at injection (3.8 mm haf gap).

Evaluation of heating from RW

𝜎𝑧 = 8.1𝑐𝑚 , 𝛾 = 479, 𝑁𝑏 = 2.2 ⋅ 1011𝑝𝑝𝑏, 2748 𝑏𝑢𝑛𝑐ℎ𝑒𝑠
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• For all cases < 60 W expected from RW

• Heating from broadband RW impedance at flat top (55mm haf gap).

𝜎𝑧 = 8.1𝑐𝑚 , 𝛾 = 7460, 𝑁𝑏 = 2.2 ⋅ 1011𝑝𝑝𝑏, 2748 𝑏𝑢𝑛𝑐ℎ𝑒𝑠

Main jaw 
material

Resistivity 
[Ohm.m]

Z/n 
[mOhm]

Zyeff
[kOhm/m]

Ploss [W]

3D C-C 30e-6 0.04 <1 57

Graphite 15-6 0.03 <1 47

Copper 17e-9 0.001 <1 1.7

HL-LHC 82 15000 -

Evaluation of heating from RW
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Effect of taper and conical transition

G.Mazzacano

Simulation setup:
• Added jaw tapers: L=100mm with 10° angle.
• Added conical jaw transitions.
• Considered Cu and Graphite jaws. 33



Longitudinal impedance at injection

• Slightly downshifted the cluster the modes around 1.2 GHz.
• Globally, negligible impact on mode pattern.
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Vertical impedance at injection

• Broadband impedance reduced of 20kOhm/m (i.e ~10 % of the transverse device 
impedance from RW only in case of 3D C-C)

• Recommended to keep the taper for transverse impedance reduction.

-20 kOhm/m

w/o taper

w taper
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Vertical impedance at injection

• Many HOMs present w/ and w/o taper on the jaw peak impedance ~ 8 MOhm/m
• Strongest mode at 680 MHz

36



G.Mazzacano

Lambda/4 mode around the not cut edge of the envelope @ 680 MHz

Vertical impedance at injection

• Strongest mode at 680 MHz located around the not cut edge of the envelope.
• Can be cured tapering the envelope as well. 
• Evaluation of HOMs impact on transverse stability requires statistical approach as 

used for the longitudinal HOMs -> Work still on progress, for the moment we 
evaluated the impact on stability from the impedance as it is: might be 
underestimated!

37



Impedance at flat top

• Small effect of taper and transition when in parking position.
• The impedance contribution to the heat load budget is negligible.

38



Outline

• TDI performance summary of 2015/2016
• TDIS  design aspects relevant for impedance
• Effect on impedance of: 

– jaws segmentation
– Lateral RF fingers
– Heating from HOMs
– Longitudinal RF fingers
– Heating from resistive wall
– Transition flanges and jaw tapers
– Gaps between the blocks

• Impact on HL-LHC stability threshold at 450 GeV
• Conclusions and outlook

39



Effect of gaps between blocks

• The jaw is made by separated shorter blocks.
• A gap might be remaining of the order of 0.1mm
• 9 gaps maximum when using 3D C-C
• Simulated within a simplified model and extrapolated to 0.1mm gaps.

Jaw 
material

# gaps (upper and lower jaw)

1st tank 2nd tank 3rd tank 

3D C-C 4 4 1

Graphite 1 1 1

Copper 1 1 1
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S. Arsenyev

• For 0.1mm gap between blocks:
• Z/n = 0.2uOhm -> For 9 gaps 1.8 uOhm: Negligible
• Zy_eff = 0.5 Ohm/m -> For 9 gaps 4.5 Ohm/m: Negligible

Half gap = 55mm

41



Half gap = 4mm

S. Arsenyev

• For 0.1mm gap between blocks:
• Z/n = 4 uOhm -> For 9 gaps 36 uOhm: Negligible 
• Zy_eff = 1 kOhm/m -> For 9 gaps 9 kOhm/m: ~50% tapering gain
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HL-LHC octupole stability threshold at 450 GeV

• Assumed Graphite jaw and transverse HOMs as-they-are: statistical simulations to be done to exploit 
the full impact of HOMs!

• 10% increase in coupled bunch instability threshold at injection due to the HOMs.
• Margins for impedance but  without ecloud!

• If Cu jaws, single bunch threshold 10% lower, CB may be unchanged as it is driven by HOMs.
• No issues expected at flat top (<0.1% w.r.t. total impedance)

Coupled bunch

Single bunch

Parameters:
• 50 turns damper
• 8.1 cm bunch length
• Gaussian transverse profile
• 𝑁𝑏 = 2.2 1011 within 𝜖𝑛 = 2.5 𝜇𝑚
• Injection optics
• HLLHC impedance model with coated 

IP7 collimators
• TDIS half gap of 3.8 mm 
• TDIS jaw in graphite
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Conclusions (1/3)
• Coating:

– Cu coating is recommended to keep the device impedance low unless strong requirements 
(10%-15% of the HLLHC budget: huge impact)

– For now (LHC) it looks we have margin as impedance is shadowed mainly by ecloud and 
coupling effects.

– For HL-LHC we need to keep margins to host expected (and unexpected) challenges with high 
brightness beams.

• Heating

– HOM heating can be drastically reduced with longitudinal and lateral RF fingers: recommended

– In case of no or bad contacts, the heat load can be as bad as ~800 W depending on the mode.

– To be checked if sensitive equipment can sustain it and with which probability it may happen.

– Needed input from mechanical design on the elements sensitive to power deposition.

– Power loss  between 600 -800 W for Graphite or 3D Carbon jaws

– Power loss  between < 100 W for Copper coating: recommended

• Longitudinal impedance budget:

– Contribution of 0.6mOhm at injection, 0.04mOhm at flat top from RW impedance. 

– Loss of contacts induces longitudinal HOMs -> Increase impedance up to 4 mOhm.

– Within margins but should be considered with other equipment (e.g. Velo when in operation).
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Conclusions (2/3)
• Transverse (vertical) impedance budget

– ~300 kOhm/m at injection from RW (~10% of the budget)

– With transverse HOMs -> Increase of ~300 kOhm/m (~10% of the budget)

– Negligible impact at flat top 

• Transitions and jaw tapers:

– Introduction of few transverse low frequency modes at closed gap

– Mode at 680 MHz due to not tapered envelope

– Can be cured by envelope tapering  but currently not an issue for stability

• Gaps between blocks:

– Negligible with open gap.

– Impact with close gap at the order of few %: recommend to keep the gaps minimized both in 
number and width.

• Octupole stability threshold at injection.

– ~1 A necessary for stability at Q’ ~ 10  with graphite jaws in single bunch.

– 10% less expected going to Copper thanks to RW impedance mitigation.

– HOMs impact coupled bunch stability threshold: 10% - 20%  increase.

– To be evaluated using statistical approach as done for heating: we might be in a lucky situation -
> In case of issues HOM damping / reducing may be needed. 46



Conclusions (3/3)
• Impedance measurements

– The TDIS should be measured by the impedance team as soon as it is available

– The PT100 probes should be shielded in order to avoid electromagnetic coupling corrupting the 
temperature readings (current issue in present TDI)
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Thanks for your attention!
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Backup
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Transverse impedance (Y)

Stronger impact on transverse impedance HOMs below 1GHz.
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Effect of taper and conical transition

• Simplified models to study the effect of tapering:
• Without taper: step from 55mm to 4mm half gap.
• With taper: 10deg taper 100mm long -> ~17mm reduction in step

• Expected a reduction of the transverse impedance to 30% w.r.t. no taper
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Effect of taper and conical transition

• Tapering reduces both longitudinal and transverse inductive impedance.
• ~30% gain in transverse impedance reduction (inductive).
• Almost a factor 2 in longitudinal impedance (inductive).
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