Energy deposition studies for HL beams

M. Frankl, A. Lechner, C. Bracco, I. Lamas Garcia, D. Carbajo Perez, A. Perillo Marcone, M.J. Barnes, J. Uythoven

On behalf of HL-LHC WP14

TDIS Internal Review December 01^{st} , 2016

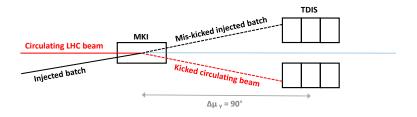
Introduction

- Recap of failure scenarios
 - Different MKI failure scenarios for injected and stored beams and number of bunches affected
 - Impact positions on TDIS jaws (differences IR2/IR8)
- Recap of HL beam and optics parameters at the TDIS
- Energy deposition studies for TDIS
 - FLUKA model of the TDIS
 - Peak energy density and temperatures in absorber blocks, cooling pipes, stiffener, frame (clamps)

HL Beam and Optics Parameters

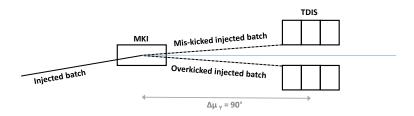
Energy Deposition Studies for the TDIS

Conclusions

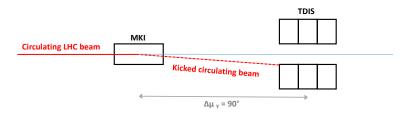

Backup

• □ ▶ • • □ ▶ • • □ ▶

- Malfunction of the MKIs can affect the injected or the stored beam
- For specific kicker timing errors also both beams can be affected in the same event
- Different kick strengths lead to different impact positions on the TDIS jaws
- Summary of possible MKI failure scenarios (expected kick strength as fraction of the nominal kick strength):


Failure Case	Bunches	Kick Strength
Charging failure	288 (inj.)	99 - 101 %
Main switch erratic	159 (inj. or circ.)	\leq 100 %
Main switch missing	288 (inj.)	75%
Magnet breakdown	\leq 288 (inj.)	75 - 125 %
Timing error	\leq 288 (inj.)	0%
	\leq 288 (circ.)	100%

- Large impact, e.g. in case on a timing error:
 - o No MKI kick on injected beam or
 - o 100% kick on circulating bunches
 - → possible impact of bunches on the TDIS 31 mm (IR2) 36 mm (IR8) from the absorber block edge due to different optics in IR2 and IR8



• □ ▶ • □ ▶ • □ ▶ •

- Small impact, e.g. in case on a Main switch erratic or kicker magnet breakdown:
 - Deflection of injected beam by approximately 90 % or 110 % (impact on the upper or lower jaw) or
 - Kick of circulating beam with ~ 10% of the nominal MKI strength (impact on the lower jaw)
 - \rightarrow bunches impact close to the edge or graze along the jaws
 - $\rightarrow\,$ higher energy deposition in downstream magnets due to secondary particle showers escaping through the TDIS gap

- Small impact, e.g. in case on a Main switch erratic or kicker magnet breakdown:
 - Deflection of injected beam by approximately 90 % or 110 % (impact on the upper or lower jaw) or
 - Kick of circulating beam with ~ 10% of the nominal MKI strength (impact on the lower jaw)
 - \rightarrow bunches impact close to the edge or graze along the jaws
 - $\rightarrow\,$ higher energy deposition in downstream magnets due to secondary particle showers escaping through the TDIS gap

HL Beam and Optics Parameters

Energy Deposition Studies for the TDIS

Conclusions

Backup

• □ ▶ • □ ▶ • □ ▶ •

Assumed beam and optics parameters

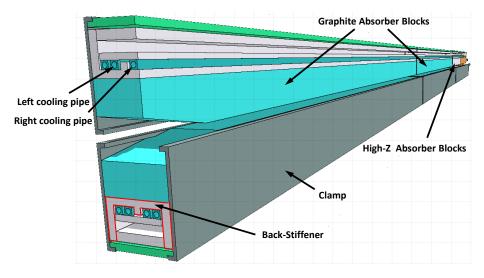
- The same normalized emittance and bunch intensity were assumed as for LIU protection/dump upgrades in SPS/TLs
- Beam parameters:

Beam	$\epsilon_{x,y}^n$	I _b	Brightness/Brightness _{LHCultimate}
HL Std 25 nsec	2.08 μ m \cdot rad	2.3×10^{11}	2.3
LIU BCMS	1.37 μ m \cdot rad	2.0×10^{11}	3.0
LHC ultimate	3.5 μ m·rad	1.7×10 ¹¹	1
LHC design	3.5 μ m·rad	1.15×10 ¹¹	0.7

- · Beta-Functions do not significantly change with the HL upgrade
- Optic Parameters:

	eta_x (m)	eta_{y} (m)	$\sigma_{x}~(\mu { m m})$	$\sigma_{y}~(\mu{ m m})$
HL Std 25 nsec	104	43	670	430
LIU BCMS	104	43	540	350

Image: A mathematical states and the states and


HL Beam and Optics Parameters

Energy Deposition Studies for the TDIS

Conclusions

Backup

FLUKA Model of the TDIS

イロト イヨト イヨト イヨ

Beam Impact Positions on TDIS

• Impact positions for MKI failure scenarios with 1 σ and large impact parameter

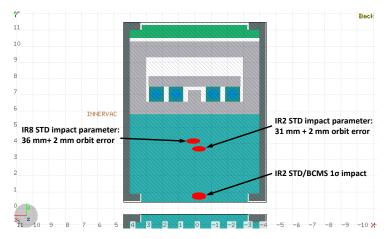
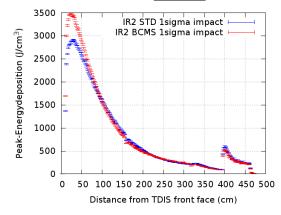
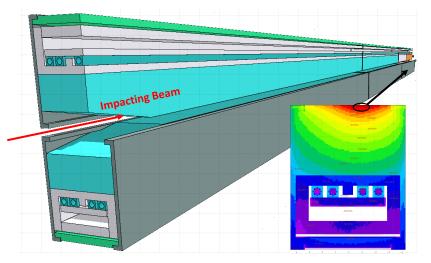



Image: A math a math


Small Impact Parameter: Absorber Blocks

Peak energy deposition in absorber blocks of upper jaws, Std. and BCMS beams:

- Highest energy density in 1st jaw: ∼3.5 kJ/cm³ for BCMS, ∼2.9 kJ/cm³ for Std.
- Smaller beam size leads to higher peak energy deposition for BCMS beams

Small Impact Parameter: Absorber Blocks

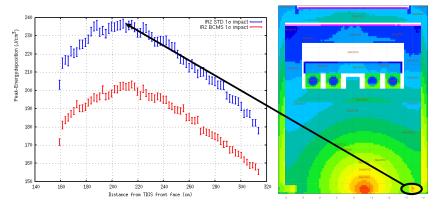
 Peak-Energy deposition higher in high-Z absorber blocks of the lower jaws due to higher exposure to secondary showers from first two jaws

イロト イヨト イヨト イヨト

Small Impact Parameter: Absorber Blocks

- Impact parameter of 1 σ worst case in the thermo-mechanical point of view since the impact occurs close to absorber block surface reflecting the shockwaves
- Peak-Energy deposition in higher-Z absorber blocks, lower and upper jaw:

- Maximal temperature increase in Aluminium: < 100 K
- Maximal temperature increase in Copper: ~ 360 K
- Due to possible misalignment of the jaws additional energy deposition of ~ 15% has to be taken into account

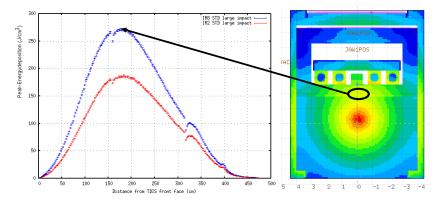

December 01st 2016

15/22

M. Frankl (TDIS Internal Review)

Small Impact Parameter: Clamp

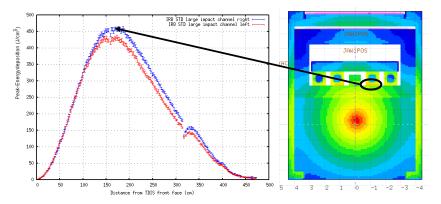
• Peak-Energy deposition in clamp of 2nd jaw:



• Highest energy density: ~ 235 J/cm³ for IR2 Std. beams

Image: Image:

Large Impact Parameter: Back-Stiffener


• Peak-Energy deposition higher in IR8 than in IR2 due to closer beam impact to the back-stiffener:

Maximal temperature increase in back-stiffener (Aluminium): ~ 112 K

Large Impact Parameter: Cooling Pipes

- Also for the cooling pipes higher energy deposition in IR8 than in IR2 due to a closer beam impact
- Peak-Energy deposition in the left and right cooling pipe of IR8:

Maximal temperature increase in cooling pipes (CuNiFeMn): ~130 K

HL Beam and Optics Parameters

Energy Deposition Studies for the TDIS

Conclusions

Backup

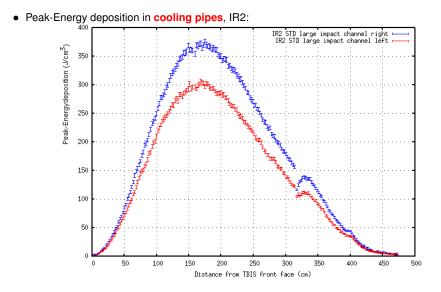
• □ ▶ • • • • • • • • • •

Conclusions

- The TDIS has to resist beam impacts with large as well as with small impact parameters.
- Both cases already happened in RUN 1+2 \rightarrow highly relevant
- Worst-case scenarios (in the sense of impact position on the TDIS) are different for different components.
- In case of a small impact parameter the effect of a possible misalignment has to be taken into account, especially in the higher-Z absorber blocks.
 Additional ~ 15% in energy deposition were calculated.
- Energy deposition studies serve as base for the thermo-mechanical analysis presented in the following talk.
- Higher-Z absorber blocks are still under study. Studies on more suitable materials and modified lengths of the blocks within the downstream jaws are ongoing.

イロト イポト イヨト イヨト

HL Beam and Optics Parameters


Energy Deposition Studies for the TDIS

Conclusions

Backup

• □ ▶ • • • • • • • • • •

Energy Deposition for Large Impact Parameter

