OSU Activities

OSU Facilities

- OSU has several prototype devices of interest to MilliQan
- Four 2"x2"x80cm bars of Saint-Gobain BC408 plastic scintillator
- A fifth scintillator bar incorporated with a Hamamatsu R7725 PMT
- Assembled by Saint-Gobain

OSU Facilities

- In addition to the R7725 PMT coupled to scintillator from Saint-Gobain:
- Stand-alone R7725 PMT from Hamamatsu
- Hamamatsu E5859-11 voltage divider base

OSU Facilities

- We read out each device with a CAEN V1743 digitizer
- Connected to a PC by fiber optic connection to a CAEN A2818 optical controller

R7725 Dark Rate Measurements

Light Shielding

- Over several months we have improved our HTV R7725 PMT
- Working to prevent ambient light from disturbing dark rate measurement

- Initially a metal tube with small amounts of electrical tape, within a larger metal box
- Most of the box internally is covered with "black-out" paper

Light Shielding

- Box designed to be large enough to accommodate PMT and scintillator

- Studio photography type "black-out" cloth

Dark Rate Measurement

- To observe the dark rate: possible
- Trigger digitizer on TTL output of function generator (1500 Hz)
- Configure digitizer for longest acquisition
- 1024 samples @ 0.4 GS/s - 2.56μ s/event
- Observe the amplitude of each event as the minimum sample in mV
- Then the dark rate, above some threshold, is:

1750 V

|sample| >2 mV for 120 events

Events (amplitude > threshold) over the total acquisition time where total acquisition time $=\mathrm{N}$ events times $2.56 \mu \mathrm{~s} /$ event

Dark Rate Measurement

- Initial rate measurements were very high (20-30 kHz) and very unstable

- Sharp increase at the beginning is when the tube bias voltage is turned on
- We spent considerable time examining how repeatable this measurement was, and investigating the cause of the large drops in rate

Dark Rate Measurement

- Many repeated measurements by several different users:

- After observing different rates for different users, and even rate changes within data-taking runs, we convinced ourselves that environmental factors were not being controlled
- In particular we suspected a very large light leak

Dark Rate Measurement

- Applied a very aggressive amount of black electrical tape
- Not visible here: cathode window itself is covered with black-out paper and directly taped

- A large decrease in rate resulted, confirming the existence of large light leaks

Dark Rate Measurement

- Here, several separate measurements recorded over several days, each for 30 minutes of real time (6.2 seconds total acquisition live time)

Dark rate of Standalone R7725 (above 10mV)

New PMT Enclosure

- Seeing that light leaks are easily missed, the next challenge was in coupling an LED and optical fiber without re-introducing large light leaks
- Constructed a new enclosure aiming to better control for environmental factors
- Discrete neutral density filters (rather than a continuously variable one)
- Tightly-fitting lens tube and LED mount from Thorlabs
- No need for fiber coupling, LED directly faces PMT window
- Temperature and humidity measurements
- Tightly-fitting aluminum enclosure that can accept future cooling elements

New PMT Enclosure

- Thorlabs LED and filters:
- LED430L - 430nm, 8 mW

- NE500A series neutral density filters:
- NE510A ($\mathrm{T}=10^{-1}$), NE530A ($\mathrm{T}=10^{-3}$), NE550A ($\mathrm{T}=10^{-5}$)
- Note: "OD5" $->$ optical density $5 \rightarrow>\mathrm{T}=10^{-5}$
- I will make heavy use of this notation!

- "OD4" is a combination of OD3 and OD1

New PMT Enclosure

- A simple DHT11 sensor provides temperature ($\pm 1^{\circ} \mathrm{C}$) and relative humidity ($\pm 1 \%$) measurements from inside the larger box
- Read out with an Arduino Uno that is integrated into the DAQ software and data stream

temperature

~60 seconds

New PMT Enclosure

- With this new enclosure intended to be better light-proofed, we first measured the dark rate
- The new enclosure was intentionally left outside of the larger dark box to test for light-tightness

- A very low rate (100 Hz)!
- We very quickly observed that simply moving the enclosure to a different location increased this

New PMT Enclosure

- Happened to have placed photocathode above the edge of a steel component of the dark box
- Placing a magnet near the photocathode similarly reduces this
- In both cases, applying LED light does not give observable signals
- Not surprising that a magnetic field would reduce the gain and dark rate
- Is however surprising that this material would cause a similar effect
- Need to acquire a gauss meter and measure the field in this particular areas
- For the time being we avoid placing the enclosure on large metal objects

Dark Rate Measurement

- With this new enclosure (avoiding known areas that drastically reduce the gain of the PMT), the observed dark rates are slightly lower than with the previous enclosure (very taped-up)
- An example at the recommended bias voltage, -1750 V:

1750 V

Dark Rate Measurement

- Performing this measurement over a range of PMT bias voltages:

- Ultimately, a rate of 1 kHz should be possible given appropriate choice in trigger threshold
- The LOI quotes an expected rate of 500 Hz per channel, which should be achievable with some cooling

Dark Rate Measurement

- Of course, this threshold is an arbitrary choice
- A more meaningful threshold, and thus dark rate measurement, is found relative to the single photoelectron (SPE) response

R7725 Single Photoelectron Response

Calculating charge with V1743

- While waveform amplitude is a directly triggerable quantity and of interest for the dark rate, the total charge is of more interest when calculating PMT gain
- To calculate the charge for a given waveform, define a charge integration window:

- And integrate as:

$$
\text { Charge }[\mathrm{pC}]=10^{9} \frac{\mathrm{pC}}{\mathrm{mC}} \cdot \sum_{i} \frac{V_{i}[\mathrm{mV}]-\text { baseline }}{50 \Omega} \frac{1 \mathrm{~s}}{3.2 \times 10^{9}}
$$

- where the "baseline" is the average voltage in the first 16 samples of the waveform

Observing the SPE

- To observe the single photoelectron (SPE) response:
- Drive the LED with 3V "square" pulses at 1800 Hz for short periods of time
- Function generator has rise/fall time of $2.5 n \mathrm{n}$, less square at short widths
- Configure the digitizer for its maximal sampling rate (3.2 GS/s) and shortened record length (256 samples) to handle 1800 Hz incoming trigger rate
- Trigger on the LED driving signal (TTL output to V1743 TRG IN)

Observing the SPE

- Several "knobs" to adjust the light intensity:
- LED driver pulse width
- Optical density of neutral density filters
- Have 3 different filters to combine (OD1, OD3, OD5 - Transmission ~ 10\%, 0.1\%, 0.001\%)
- Additionally a "knob" to adjust the PMT gain, the supply voltage
- Range from 1200 V to 1900 V (max rating is 2000 V , recommended 1750 V)

Adjusting ND filters

Adjusting LED width

Calculating SPE Response

- We attempt several separate methods to determine the single photoelectron (SPE) response:
- Method 1 - in the many-PE (gaussian) regime, scale the mean charge of distributions with the light intensity
- Altering intensity with the LED pulse width or by changing ND filters
- Method 2 - functional fits of the charge distribution
- Method 3 - "Model Independent Approach" paper method
- Some definitions first:
- $\mu,<$ NPE $>-$ average number of photoelectrons
- $Q_{1}, \sigma_{1}-$ single photoelectron charge and width
- $\mathrm{Q}_{\infty}, \sigma_{\infty}$ - large NPE, overall distribution mean
- c.f. Bellamy et al - Nucl. Inst. and Meth. for Phys. Res. A 339 (1994) 468-476

SPE: Gaussian Regime

- Method 1:
- In the limit of large <NPE>, the poisson distribution of NPE approaches gaussian
- Charge distribution approaches a gaussian with*

$$
\begin{aligned}
Q_{\infty} & =\mu Q_{1} \\
\sigma_{\infty} & =\sqrt{\mu\left(\sigma_{1}^{2}+Q_{1}^{2}\right)} \quad \longrightarrow \quad\left(\frac{Q_{\infty}}{\sigma_{\infty}}\right)^{2}=\frac{Q_{1}^{2}}{\sigma_{1}^{2}+Q_{1}^{2}} \cdot \mu
\end{aligned}
$$

- So we take several datasets at high gain (1900 V) and higher LED intensities
- Using ND filter densities of OD4 and OD3

*c.f. Bellamy et al

SPE: Gaussian Regime

- In this range of LED intensities, only OD3 7-9ns and OD4 10ns appear fairly gaussian
- For the OD3 at 10ns dataset, very long and large pulses disturb the charge calculation by falling outside the defined integration window

SPE: Gaussian Regime

For gaussians:

$$
\left(\frac{Q_{\infty}}{\sigma_{\infty}}\right)^{2}=\frac{Q_{1}^{2}}{\sigma_{1}^{2}+Q_{1}^{2}} \cdot \mu
$$

$\left.$| | Mean
 (pC) | Width
 (pC) |
| :---: | :---: | :---: | | (Mean/ |
| :---: |
| Width) | \right\rvert\,

SPE: Gaussian Regime

- Varying LED pulse width:
- Assuming it takes time $\mathbf{t 0}$ for the LED to reliably begin emitting light
- and assuming each nanosecond of LED light gives a pC of charge, then expect

$$
\left(\frac{Q_{\infty}}{\sigma_{\infty}}\right)^{2}=\frac{Q_{1}^{2}}{\sigma_{1}^{2}+Q_{1}^{2}} \cdot \alpha \cdot\left[\text { Pulse width }-t_{0}\right]
$$

- Varying LED pulse width for OD3 at 1900V:
- Quite linear
- However the slope of this line is still a product of the light intensity and the SPE parameters
- Cannot extract SPE here without calibrating the light source

SPE: Gaussian Regime

- Lower PMT supply voltages however do not show this linear behavior:

- Not clear why this is the case
- Something else that should scale with light intensity is the means of these distributions:

$$
Q_{\infty}=\mu Q_{1}
$$

SPE: Gaussian Regime

- Plot the evolution of the mean charge with light intensity
- Appears to be fairly linear with LED pulse width

$$
Q_{\infty}=\mu Q_{1}
$$

SPE: Gaussian Regime

- Fitting each of these to a line:
- Scales well at all supply voltages

$$
\begin{aligned}
Q_{\infty} & =Q_{1} \cdot \mu \\
& =Q_{1} \cdot \alpha \cdot\left[\text { Pulse width }-t_{0}\right]
\end{aligned}
$$

- For 1900 V :
- Slope $=2.2 \pm 0.7 \mathrm{pC} / \mathrm{ns}$
- Intercept $=6.2 \pm 0.7 \mathrm{~ns}$
- Compare to intercept of previous fit: 6.6 ± 0.1

- Again cannot separate SPE from light source

SPE: Gaussian Regime

- Using the previous fit as a relationship between LED pulse width and expected mean charge, perhaps this can isolate the SPE
- With the same ND filters, scale the mean charge of a large-NPE distribution down to a smallNPE distribution

$$
<Q_{12 \mathrm{~ns}}>\approx \frac{2.2(12-6.2)}{2.2(7-6.2)}<Q_{7 \mathrm{~ns}}>
$$

SPE: Gaussian Regime

$$
<Q_{12 \mathrm{~ns}}>\approx \frac{1}{7.3}<Q_{7 \mathrm{~ns}}>
$$

- This appears to scale down to the peak charge, but this does not guarantee you the SPE
- If the larger-NPE distribution had 30 PEs on average, for example, this method gives you a mean of $\sim 4.1 \mathrm{PE}$
- In fact if the larger-NPE distribution somehow has less than 7.3 NPE on average, this method gives you something less than the SPE
- Projected mean: 37.8 pC
- Actual mean: 45 pC

SPE: Gaussian Regime

- One other scaling to consider, changing ND filters
- "OD4" is the combination of OD3 and OD1, so to change from OD3 to OD4 the OD1 filter is added
- Expect a 10-fold decrease in light intensity

Mean (pC)

SPE: Gaussian Regime

- Keeping the same LED pulse widths, adding an OD1 neutral density filter should decrease the mean charge by a factor of 10
- This decrease should be the same at all PMT supply voltages

- Not clear why this is not a constant, or why it deviates from -1.0
- For OD3 and OD4, 9ns should be well into larger NPE values so as to be fairly gaussian

SPE: Gaussian Regime

- Difficulties aside, working in the gaussian regime does not seem to isolate the SPE response
- Shown below, two different SPE responses with different <NPE>:
- Simulated by RNG shooting NPE from poisson, and charge per PE from gaussian distributions

- Easily distinguished at low NPE, but possible for distributions to be very similar at large (yet different) NPE

SPE: Functional Fit

- Method 2: assume a functional form of the expected distribution and extract the SPE parameters
- Gaussian pedestal
- Exponential background
- Sum of several signal gaussians: Gaus($\mathrm{x}, \mathrm{i} \mathrm{i}^{*} \mathrm{Q} 1$, sqrt(i) * sigma1)
- Without the constraint on peak spacings and width, fits fail to converge as yet
- Even with these assumptions and constraints, fit is very dependent on initial conditions
- For OD4 7ns at 1900 V:

$$
\begin{gathered}
\text { Initial Q1 value }=16 \mathrm{pC} \\
\vec{\longrightarrow} \\
\text { Q1 }=19 \mathrm{pC}
\end{gathered}
$$

- Safe to say that this method is not yet working
- Consistently if you initialize the SPE peak below the peak at ~ 45, the fit returns lower- N peaks as having nearly zero events

SPE: Functional Fit

- A much more complicated functional form is described in Bellamy et al
- Fully convolutes exponential background with each signal peak

OD4 7ns 1900V

OD5 8ns 1900V

Initial peak 40 pC

Initial peak 20 pC

- In some instances this seems reasonable, but still is highly dependent on initial conditions
- Still involves some bias of suggesting the visible peak is the SPE peak

SPE: MIA

- Method 3: "Model Independent Approach" (MIA)
- https://arxiv.org/abs/1602.03150
- Method essentially has two ingredients:
- 1) From a "blank", no-LED dataset, use a low-charge cut to define 'zero PE triggers'
- 2) Compare the mean and variance of the "blank" dataset to that of an LED-on dataset

MIA SPE Response

- To calculate (https://arxiv.org/abs/1602.03150):
- Define a charge cut such that $\varepsilon \sim 1 / 3$ in blank data (LED is turned off)
- This $1 / 3$ is arbitrary and its choice a source of systematic uncertainty
- Take the same number of blank and LED events
- Assuming the average $N(P E) \lambda$ is low and Poisson-distributed, the occupancy λ is directly related to the likelihood of observing zero PEs:

$$
\begin{aligned}
\lambda & =-\ln [L(0)] \\
& =-\ln \left[N_{\text {LED }}(Q<\text { cut }) \times \frac{1}{\epsilon_{\text {blank }} N_{\text {blank }}}\right] \\
& =-\ln \left[2010 \times \frac{1}{0.32975 \cdot 100,000}\right] \\
& =2.80
\end{aligned}
$$

MIA SPE Response

- Now with λ, and the assumptions that:
- The signal and background distributions are uncorrelated and
- Signal is a repeated convolution of the SPE:
- Then:

$$
\begin{aligned}
E[\psi] & =\frac{E[\mathrm{LED}]-E[\mathrm{blank}]}{\lambda} \\
V[\psi] & =\frac{V[\mathrm{LED}]-V[\mathrm{blank}]-E^{2}[\psi] \cdot V[\lambda]}{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& E[\psi]=\frac{45.0-0.013}{2.80}=16.09 \mathrm{pC} \\
& V[\psi]=\frac{1338.6-0.43-16.09^{2} \cdot 2.80}{2.80}=219.6 \mathrm{pC}^{2}
\end{aligned}
$$

MIA SPE Response

$$
\begin{aligned}
E[\psi] & =\frac{45.0-0.013}{2.80}=16.09 \mathrm{pC} \\
V[\psi] & =\frac{1338.6-0.43-16.09^{2} \cdot 2.80}{2.80}=219.6 \mathrm{pC}^{2}
\end{aligned}
$$

- This method consistently derives an SPE expectation well below the observable peak, with a very large width

MIA SPE Charge

OD5

OD4

MIA SPE NPE

OD5

OD4

OD5

OD4

MIA SPE Approaching Distribution Mean

- As the gain and light intensity are increased, this method does approach <NPE>*Q1 -> mean charge of the distribution

OD5

OD4

MIA SPE

- Scaling the charge distributions by the calculated single photoelectron charge does not seem to produce noticable photoelectron peaks
- Charge / (SPE charge) should be ~NPE

OD5

OD4

Dark Rate from MIA SPE

- To tie these results into the dark rate, which results from a trigger threshold in amplitude, can apply this method also to amplitude:

Dark Rate from MIA SPE

- The results of this method in amplitude less clean in their evolution with voltage, LED width

Dark Rate from MIA SPE

- Despite this, still attempt to use these expectations to form a trigger threshold
- Using one set of results (OD5 9ns) versus voltage, express the dark rate relative to a threshold $2 / 3$ of these values

- Considering the MIA likely underestimates the distribution peaks, this is likely an overestimate of the rate at $2 / 3$ PE

Backup

Calculating charge with V1743

- At higher gains and larger light intensities, you begin to observe very large-amplitude, long width signals
- For example at 1750 V , a 12 s LED pulse with OD4 gives roughly 5% of events looking as:

- And for even larger signals the dynamic range of the V1743 can become saturated
- For these types of signals the amplitude underestimates the total amount of "signal" present
- It is best to examine both amplitude and charge

Dark Rate from Peak Amplitude

- Simply just look at the amplitude of the peak

