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● OSU has several prototype devices of interest to 
MilliQan
● Four 2”x2”x80cm bars of Saint-Gobain BC408 

plastic scintillator
● A fifth scintillator bar incorporated with a 

Hamamatsu R7725 PMT
● Assembled by Saint-Gobain

OSU Facilities
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● In addition to the R7725 PMT coupled to scintillator from Saint-Gobain:
● Stand-alone R7725 PMT from Hamamatsu
● Hamamatsu E5859-11 voltage divider base

OSU Facilities

brian.patrick.francis@cern.ch12/15/16
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● We read out each device with a CAEN V1743 digitizer
● Connected to a PC by fiber optic connection to a CAEN A2818 optical 

controller

OSU Facilities

brian.patrick.francis@cern.ch12/15/16
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R7725 Dark Rate Measurements
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● Over several months we have improved our HTV R7725 PMT
● Working to prevent ambient light from disturbing dark rate measurement

Light Shielding

brian.patrick.francis@cern.ch12/15/16

● Initially a metal tube with small amounts of electrical tape, within a larger metal 
box
● Most of the box internally is covered with “black-out” paper
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● Box designed to be large enough to accommodate PMT and 
scintillator

brian.patrick.francis@cern.ch12/15/16

● Studio photography type “black-out” cloth

Light Shielding
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● To observe the dark rate:
● Trigger digitizer on TTL output of function 

generator (1500 Hz)
● Configure digitizer for longest acquisition 

possible
● 1024 samples @ 0.4 GS/s — 2.56 µs/event

● Observe the amplitude of each event as the 
minimum sample in mV

● Then the dark rate, above some threshold, is:

Dark Rate Measurement

brian.patrick.francis@cern.ch12/15/16

Events (amplitude > threshold) over the total acquisition time

where total acquisition time = N events times 2.56µs / event

|sample| > 2 mV for 120 events
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● Initial rate measurements were very high (20-30 kHz) and very unstable

Dark Rate Measurement
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● Sharp increase at the beginning is when the tube bias voltage is turned on
● We spent considerable time examining how repeatable this measurement was, and 

investigating the cause of the large drops in rate



10

● Many repeated measurements by several different users:

Dark Rate Measurement

brian.patrick.francis@cern.ch12/15/16
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● After observing different rates for different users, and even rate changes within 
data-taking runs, we convinced ourselves that environmental factors were not 
being controlled
● In particular we suspected a very large light leak
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● Applied a very aggressive amount of black electrical tape
● Not visible here: cathode window itself is covered with black-out paper and 

directly taped

● A large decrease in rate resulted, confirming the existence of large light leaks

Dark Rate Measurement

brian.patrick.francis@cern.ch12/15/16
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● Here, several separate measurements recorded over several days, each for 30 minutes of 
real time (6.2 seconds total acquisition live time)

Dark Rate Measurement
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● Seeing that light leaks are easily missed, the next challenge was in coupling an LED and optical 
fiber without re-introducing large light leaks

● Constructed a new enclosure aiming to better control for environmental factors
● Discrete neutral density filters (rather than a continuously variable one)

● Tightly-fitting lens tube and LED mount from Thorlabs

● No need for fiber coupling, LED directly faces PMT window

● Temperature and humidity measurements

● Tightly-fitting aluminum enclosure that can accept future cooling elements

New PMT Enclosure

brian.patrick.francis@cern.ch12/15/16
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● Thorlabs LED and filters:
● LED430L — 430nm, 8 mW

brian.patrick.francis@cern.ch12/15/16

● NE500A series neutral density filters:
● NE510A (T=10-1), NE530A (T=10-3), NE550A (T=10-5)
● Note: “OD5” —> optical density 5 —> T=10-5

● I will make heavy use of this notation!
● “OD4” is a combination of OD3 and OD1

New PMT Enclosure



15

● A simple DHT11 sensor provides temperature (± 1º C) and relative humidity (± 1%) 
measurements from inside the larger box

● Read out with an Arduino Uno that is integrated into the DAQ software and data 
stream

New PMT Enclosure

brian.patrick.francis@cern.ch12/15/16

temperature [C]
21 21.2 21.4 21.6 21.8 220

10000

20000

30000

40000

50000

60000

temperature

Relative humidity [%]
25 25.5 26 26.5 270

20

40

60

80

100

310×

humidity

~60 seconds



16

brian.patrick.francis@cern.ch12/15/16

New PMT Enclosure
● With this new enclosure intended to be better light-proofed, we first 

measured the dark rate
● The new enclosure was intentionally left outside of the larger dark box to 

test for light-tightness
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● A very low rate (100 Hz)!
● We very quickly observed that simply moving the enclosure to a 

different location increased this
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New PMT Enclosure

● Happened to have placed photocathode 
above the edge of a steel component of 
the dark box

● Placing a magnet near the photocathode 
similarly reduces this

● In both cases, applying LED light does not 
give observable signals

● Not surprising that a magnetic field would 
reduce the gain and dark rate

● Is however surprising that this material 
would cause a similar effect

● Need to acquire a gauss meter and 
measure the field in this particular areas

● For the time being we avoid placing the 
enclosure on large metal objects
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● With this new enclosure (avoiding known areas that drastically reduce the gain of the 
PMT), the observed dark rates are slightly lower than with the previous enclosure (very 
taped-up)

● An example at the recommended bias voltage, -1750 V:

brian.patrick.francis@cern.ch12/15/16
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Dark Rate Measurement
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● Performing this measurement over a range of PMT bias voltages:
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Dark Rate Measurement

● Ultimately, a rate of 1 kHz should be possible given appropriate choice in trigger 
threshold

● The LOI quotes an expected rate of 500 Hz per channel, which should be 
achievable with some cooling
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Dark Rate Measurement

● Of course, this threshold is an arbitrary choice
● A more meaningful threshold, and thus dark rate measurement, is found relative 

to the single photoelectron (SPE) response
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R7725 Single Photoelectron Response
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● And integrate as:

● where the “baseline” is the average voltage in the first 16 samples of the waveform
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● While waveform amplitude is a directly triggerable quantity and of interest for the dark rate, 
the total charge is of more interest when calculating PMT gain

● To calculate the charge for a given waveform, define a charge integration window:

Calculating charge with V1743

brian.patrick.francis@cern.ch12/15/16

Charge [pC] = 109 pC
mC ·

P
i

Vi[mV]�baseline
50 ⌦

1 s
3.2⇥109
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● To observe the single photoelectron (SPE) response:
● Drive the LED with 3V “square” pulses at 1800 Hz for short periods of time

● Function generator has rise/fall time of 2.5ns, less square at short widths
● Configure the digitizer for its maximal sampling rate (3.2 GS/s) and shortened record 

length (256 samples) to handle 1800 Hz incoming trigger rate
● Trigger on the LED driving signal (TTL output to V1743 TRG IN)

Observing the SPE

brian.patrick.francis@cern.ch12/15/16
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● Several “knobs” to adjust the light intensity:
● LED driver pulse width
● Optical density of neutral density filters

●  Have 3 different filters to combine (OD1, OD3, OD5 — Transmission ~ 10%, 0.1%, 0.001%)
● Additionally a “knob” to adjust the PMT gain, the supply voltage

● Range from 1200 V to 1900 V (max rating is 2000 V, recommended 1750 V)

Observing the SPE

brian.patrick.francis@cern.ch12/15/16
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● We attempt several separate methods to determine the single photoelectron (SPE) 
response:
● Method 1 — in the many-PE (gaussian) regime, scale the mean charge of 

distributions with the light intensity
● Altering intensity with the LED pulse width or by changing ND filters

● Method 2 — functional fits of the charge distribution
● Method 3 — “Model Independent Approach” paper method

● Some definitions first:
● µ, <NPE> — average number of photoelectrons
● Q1, σ1 — single photoelectron charge and width
● Q∞, σ∞ — large NPE, overall distribution mean
● c.f. Bellamy et al — Nucl. Inst. and Meth. for Phys. Res. A 339 (1994) 468-476

Calculating SPE Response

brian.patrick.francis@cern.ch12/15/16



● Method 1:
● In the limit of large <NPE>, the poisson distribution of NPE approaches gaussian
● Charge distribution approaches a gaussian with*

● So we take several datasets at high gain (1900 V) and higher LED intensities
● Using ND filter densities of OD4 and OD3

26
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SPE: Gaussian Regime
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● In this range of LED intensities, only OD3 7-9ns and OD4 10ns appear fairly gaussian
● For the OD3 at 10ns dataset, very long and large pulses disturb the charge calculation 

by falling outside the defined integration window

SPE: Gaussian Regime

brian.patrick.francis@cern.ch12/15/16
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SPE: Gaussian Regime

brian.patrick.francis@cern.ch12/15/16
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SPE: Gaussian Regime
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● Varying LED pulse width:
● Assuming it takes time t0 for the LED to reliably begin emitting light
● and assuming each nanosecond of LED light gives α pC of charge, then expect
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● Varying LED pulse width for OD3 at 1900V:
● Quite linear
● However the slope of this line is still a 

product of the light intensity and the SPE 
parameters

● Cannot extract SPE here without 
calibrating the light source
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SPE: Gaussian Regime
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● Lower PMT supply voltages however do not show this linear behavior:

LED pulse width [ns]
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● Not clear why this is the case
● Something else that should scale with light intensity is the means of these distributions:

Q∞ = µQ1
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OD4

● Plot the evolution of the mean charge with light intensity
● Appears to be fairly linear with LED pulse width

SPE: Gaussian Regime

Q∞ = µQ1
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● Fitting each of these to a line:

● Scales well at all supply voltages

● For 1900V:

● Slope = 2.2 ± 0.7 pC/ns

● Intercept = 6.2 ± 0.7 ns

● Compare to intercept of previous fit: 6.6 ± 0.1

● Again cannot separate SPE from light source

OD4OD4

SPE: Gaussian Regime
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Pulse width� t0
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● Using the previous fit as a relationship between LED pulse width and expected mean charge, 
perhaps this can isolate the SPE

● With the same ND filters, scale the mean charge of a large-NPE distribution down to a small-
NPE distribution

brian.patrick.francis@cern.ch12/15/16

SPE: Gaussian Regime
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● This appears to scale down to the peak charge, but this does not guarantee you the SPE
● If the larger-NPE distribution had 30 PEs on average, for example, this method gives you a 

mean of ~ 4.1 PE
● In fact if the larger-NPE distribution somehow has less than 7.3 NPE on average, this 

method gives you something less than the SPE

● Projected mean: 37.8 pC
● Actual mean:      45 pC

brian.patrick.francis@cern.ch12/15/16

SPE: Gaussian Regime
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SPE: Gaussian Regime
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● One other scaling to consider, changing ND filters
● “OD4” is the combination of OD3 and OD1, so to change from OD3 to OD4 the OD1 filter is added

● Expect a 10-fold decrease in light intensity

Log10(0.15) = -0.82 
OD1 ~ OD 0.82 ?
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SPE: Gaussian Regime
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● Keeping the same LED pulse widths, adding an OD1 neutral density filter should decrease the 
mean charge by a factor of 10
● This decrease should be the same at all PMT supply voltages
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● Not clear why this is not a constant, or why it deviates from -1.0
● For OD3 and OD4, 9ns should be well into larger NPE values so as to be fairly gaussian
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SPE: Gaussian Regime
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● Difficulties aside, working in the gaussian regime does not seem to isolate the SPE 
response 

● Shown below, two different SPE responses with different <NPE>:
● Simulated by RNG shooting NPE from poisson, and charge per PE from gaussian 

distributions
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● Easily distinguished at low NPE, but possible for distributions to be very similar at large 
(yet different) NPE
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erf_width  0.260± 1.588 
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● Method 2: assume a functional form of the expected distribution and extract the SPE parameters

● Gaussian pedestal

● Exponential background

● Sum of several signal gaussians: Gaus(x, i * Q1, sqrt(i) * sigma1)

● Without the constraint on peak spacings and width, fits fail to converge as yet

● Even with these assumptions and constraints, fit is very dependent on initial conditions

● For OD4 7ns at 1900 V:
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SPE: Functional Fit

Initial Q1 value = 16 pC 
—> 

Q1 = 19 pC
● Safe to say that this method is not yet working

● Consistently if you initialize the SPE peak below the peak at ~45, the fit returns lower-N peaks as having nearly 
zero events

Initial Q1 value = 12 pC 
—> 

Q1 = 14 pC
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● A much more complicated functional form is described in Bellamy et al
● Fully convolutes exponential background with each signal peak
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SPE: Functional Fit

● In some instances this seems reasonable, but still is highly dependent on initial conditions
● Still involves some bias of suggesting the visible peak is the SPE peak
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● Method 3: “Model Independent Approach” (MIA)
● https://arxiv.org/abs/1602.03150
● Method essentially has two ingredients:

● 1) From a “blank”, no-LED dataset, use a low-charge cut to define ‘zero PE triggers’
● 2) Compare the mean and variance of the “blank” dataset to that of an LED-on dataset
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SPE: MIA

https://arxiv.org/abs/1602.03150
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● To calculate (https://arxiv.org/abs/1602.03150):
● Define a charge cut such that ε ~ 1/3 in blank data (LED is turned off)

● This 1/3 is arbitrary and its choice a source of systematic uncertainty
● Take the same number of blank and LED events
● Assuming the average N(PE) λ is low and Poisson-distributed, the occupancy λ is 

directly related to the likelihood of observing zero PEs:
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MIA SPE Response
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https://arxiv.org/abs/1602.03150


● Now with λ, and the assumptions that:
● The signal and background distributions are uncorrelated and
● Signal is a repeated convolution of the SPE:

● Then:
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MIA SPE Response

E[ ] =
E[LED]� E[blank]

�

V [ ] =
V [LED]� V [blank]� E2[ ] · V [�]

�

E[ ] =
45.0� 0.013

2.80
= 16.09 pC

V [ ] =
1338.6� 0.43� 16.092 · 2.80

2.80
= 219.6 pC2
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● This method consistently derives an SPE expectation well below the observable 
peak, with a very large width
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MIA SPE Response

E[ ] =
45.0� 0.013

2.80
= 16.09 pC

V [ ] =
1338.6� 0.43� 16.092 · 2.80

2.80
= 219.6 pC2
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MIA SPE Charge

Supply Voltage [V]
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

 [p
C

]
1

Q

0

2

4

6

8

10

12

14

16

18

20

LED Pulse Width
(OD 5) 7.0 ns
(OD 5) 8.0 ns
(OD 5) 9.0 ns
(OD 5) 10.0 ns
(OD 5) 12.0 ns

Supply Voltage [V]
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

 [p
C

]
1

Q

0

5

10

15

20

25

30

35

40

45

50

LED Pulse Width
(OD 4) 7.0 ns
(OD 4) 8.0 ns
(OD 4) 9.0 ns
(OD 4) 10.0 ns

OD5 OD4



45

brian.patrick.francis@cern.ch12/15/16

MIA SPE NPE

OD5 OD4
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MIA SPE Resolution (Width / Peak)
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MIA SPE Approaching Distribution Mean

OD5 OD4
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● As the gain and light intensity are increased, this method does approach 
<NPE>*Q1 —> mean charge of the distribution
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MIA SPE

OD5 OD4

● Scaling the charge distributions by the calculated single photoelectron charge 
does not seem to produce noticable photoelectron peaks

● Charge / (SPE charge) should be ~ NPE
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Dark Rate from MIA SPE

● To tie these results into the dark rate, which results from a trigger threshold in 
amplitude, can apply this method also to amplitude:
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Dark Rate from MIA SPE

OD5

● The results of this method in amplitude less clean in their evolution with voltage, 
LED width
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Dark Rate from MIA SPE
● Despite this, still attempt to use these expectations to form a trigger threshold
● Using one set of results (OD5 9ns) versus voltage, express the dark rate relative 

to a threshold 2/3 of these values

Supply Voltage [V]
1200 1300 1400 1500 1600 1700 1800 1900

R
at

e 
ab

ov
e 

2/
3 

p.
e.

 (@
 O

D
5 

9n
s)

 [H
z]

210

310

410

510

610

● Considering the MIA likely underestimates the distribution peaks, this is likely an 
overestimate of the rate at 2/3 PE



12/15/16

Backup

brian.patrick.francis@cern.ch

52



● At higher gains and larger light intensities, you begin to observe very large-amplitude, long 
width signals

● For example at 1750 V, a 12s LED pulse with OD4 gives roughly 5% of events looking as:

● And for even larger signals the dynamic range of the V1743 can become saturated
● For these types of signals the amplitude underestimates the total amount of “signal” present
● It is best to examine both amplitude and charge
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Calculating charge with V1743
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Dark Rate from Peak Amplitude

● Simply just look at the amplitude of the peak
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