Power and LED Calibrations

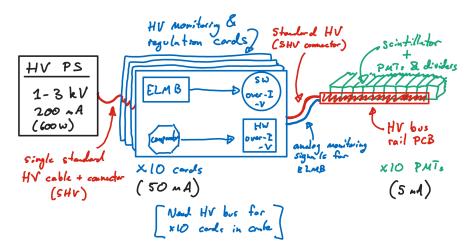
2nd milliQan Collaboration Meeting

David Miller, Maximilian Swiatlowski Enrico Fermi Institute, University of Chicago

16 December, 2016

- Goals for this presentation:
 - 1. Some (moderately advanced) plans for powering
 - Two main proposals, and some options for the prototype
 - Specific feedback here will be appreciated, we have some questions
 - 2. Some (very initial) plans for LED calibration
 - Bit rougher still, but some considerations to discuss

Power Supplies: Designs for Final System

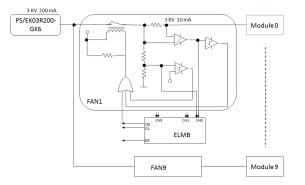

Basic Sketch

- ▶ 400 tubes to power per section!
 - Between 1 kV to 3 kV per tube
 - Between 0.2 to 0.5 mA per tube
- Expense is mostly in the HV supplies: goal is to minimize the number of supplies
 - ▶ Expect *O*(4) HV supplies per section
 - This depends on the PMTs of course: is the choice final?
- The fun part of design: how to power 400 tubes with 4 power supplies
 - Basic idea: each power supply powers 10 "distribution cards," which monitor and regulate the HV
 - Each dist. card powers a single HV bus which powers $\mathcal{O}(10)$ PMT's
 - ► Key assumption: we won't need to tune HV of individual PMTs (just groups of O(10))
 - Individual PMT regulation significantly increases cost and complexity
- Two options for implementation here (cheap and simple, vs. expensive and fancier)

Sketch of Basic (Simpler) Design

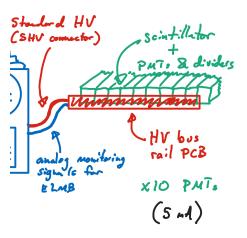
Example PS: Glassman PS-EK03R200-GK6

Would have plenty of margin: 200 mA supply, only need 50 mA


M. Swiatlowski (UChicago)

Power and LED Calibrations

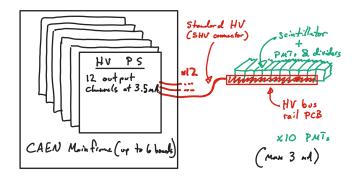
- Need safety and control mechanisms for delivering power to the tubes
- Would plan to use CERN-standard ELMB board for this
 - Simple output signal for overcurrent/voltage to monitor
 - Digital signal can be monitored by software as well
 - ELMB can take inputs from delivery boards to monitor actual voltage and current delivered
- Relay can control overcurrent/voltage using a comparator, outputs from ELMB
- Also need regulation system to program/set voltage for outputs
 - ► Want some amount of "local" control, not just at the power supply
- Distribution cards let us take care of both issues



- NB: all share one HV bus, so one cable into a rack of dist. cards
- Probably cleanest to put distribution racks inside the interlock
 - One HV power cable per power supply through interlock

- Big question: how many PMTs to power by each distribution card?
- Some considerations:
 - Probably need a 4U rack space per distribution card
 - If these live inside the interlock, space is limited: don't want so many distribution cards
 - Number of distribution cards sets the granularity of the powering
 - Can adjust the voltage of each set of 10 PMT's
 - Is this sufficient for our physics goals?
 - Depends a little bit on how good the local calibration is (which offline can correct for per-PMT differences)
 - Probably want power and readout to work together (for mechanical purposes, etc.)
 - ▶ PMT's are in 20x20 array: module size should factorize naturally

Module Base Card


- ► A single long PCB (one HV bus) that would connect to O(10) PMTs
- We imagine a single long board that could slide in and out of the array
- If the module powers 10 PMTs, could have one slide in on each side of the array
 - If we want smaller regions, access becomes more difficult: how to access "interior" modules, if we can't slide them in and out?
- What kind of variation in HV are expected in center vs. side?

- Name of power supply
 - ► Fairly basic supply, no remote programming, etc.
- HV power supplies fan out to distribution cards
 - Distribution cards ensure safety and regulate voltages
- Distribution cards fan out to PMTs (module card)
- ► Example per section: 4 PS's, 10 cards per PS, 10 PMTs per card
- Estimate total cost: $\mathcal{O}(\$50k)$
 - Depends on final specs for PMT: may need to lower cards per PS, depending on power needs
- Module card design highly dependent on decisions for readout: should synchronize as much as possible!
 - Space constraints will also strongly influence this

Using CAEN SY55S7LC Mainframe and A7435 HV Boards

- CAEN system doesn't need distribution cards
 - Each CAEN "mainframe" can use 6 HV boards; each HV board has 12 or 24 HV output channels: these *channels* replace our distribution cards
 - Would still probably limit to 10 PMTs per channel because of power limitations
 - Would aim for 100-200 PMTs per HV board, 2-5 HV boards per mainframe for complete design
 - Would still need module cards: same as in basic design
- Advantages:
 - Less custom design from us: more robust?
 - Each distribution channel is remote programable!
- Disadvantages:
 - CAEN distribution boards live on the PS/mainframe: would need more cables through interlock (one cable per module)
 - Would cost more: $\mathcal{O}(\$100k)$

Power Supplies: Goals for Prototypes

Prototype Design

- ▶ Prototype should be 1 PS, and we should validate a few assumptions:
 - 1. Deliver whatever range of HV and current needed for various PMTs
 - 2. Deliver all stages of the system: $\mathsf{PS} \to \mathsf{distribution} \ \mathsf{board} \to \mathsf{module}$ card
 - 3. Demonstrate that we don't need per-PMT HV settings
 - Make several distribution boards/ module cards (varying in number of PMTs, 1-10)
 - ► Demonstrate that performance with "large" module is ≈equivalent to small modules (or even per-PMT regulation?)
 - 4. Demonstrate slow-control for reading out ELMB (work with readout team)
- This mostly assumes the basic design, but similar requirements for a Caen prototype
- Any other thoughts/requirements?

Some Thoughts on LED Calibration

- Absolute energy calibration can be supplied by Am241 source
- But PMTs can drift over time: need relative calibration in-situ
 - Correct for drifts between Am241 calibrations
- The trick is to deliver a system where *consistent* light is delivered to each PMT
 - ▶ If the amount of light drifts as well, then the calibration is useless
- Especially if HV is delivered via modules, local PMT calibration is very important
 - ► Can correct offline for differences induced by "unoptimal" HV settings

How to Deliver Consistent Light?

- ► If each PMT has its own LED, each LED can drift separately
 - $\rightarrow\,$ Easiest answer: use one LED pulser per section
- How to split one pulser to 400 PMTs?
 - $\rightarrow\,$ Split by optical splitter, delivered via fiber optic cable
 - Unlikely to get a uniform amount of light per PMT, but that's ok in principle (normalized by Am241)
 - ► However, need to ensure *splitting system* won't drift either!
- How to minimize drift in splitting system?
 - $\rightarrow\,$ Making the splitting system $\mathit{smaller}:$ use more LED pulsers, split to fewer places
 - Use photodiodes on each LED to monitor relative calibration between different LEDs
 - Monitor output per LED carefully
 - More sophisticated LED system is probably cheaper and simpler than programming each PMT's HV system
- How small to go? LED per PMT, per module?
 - Need physics benchmarks to decide on this design: how precise does the calibration need to be?

- Will definitely want an LED system for the prototype to study some of these issues
- ► LED split between 10 PMTs is a simple goal
 - But this wouldn't let us validate that the splitting isn't drifting...
 - Again, depends on precision needed for the design
 - Can probably test and study range of splitter's drift

Conclusions

- ► Have two main designs for power delivery for milliQan
 - Key assumption: per module powering, intead of per PMT
 - Both designs will ultimately depend on the final PMT choice
 - And prototype design depends on the range of PMTs to be studied
 - Budget more or less understood for both designs
- LED calibration is less advanced
 - Key challenge is to control relative drift at each PMT from the light sources
 - More pulsers and monitoring can control this to some extent
 - Good room for others to join as well :)

Thank you for your attention!

Backup