Introduction to FNAL

Jim Hirschauer (Fermilab)

16 Dec 2016

Current interests

- Wilson Fellow at Fermilab since 2013.
- I work with two postdocs (Andrew Whitbeck and Nadja Strobbe) on:
- CMS run 2 SUSY searches
 - inclusive/gluino jets+MET
 - stop jets+MET
 - inclusive + rare objects (disappearing tracks, Higgs, etc)
- CMS hadron calorimeter barrel/endcap (HB/HE) phase I upgrade:
 - brass+scintillator sampling calorimeter
 - replacing hybrid photodiodes + QIE8 with silicon photomultipliers (SiPMs) + QIE11
 - I lead upgrade with contributions to
 - **overall system design** (readout chain, SiPM control/monitoring, calibration system, power/cooling, etc)
 - design, production, characterization of QIE10/11 charge integrating ASICs
- MilliQan
 - trying to determine how best to fit in ...

Gain monitoring in CMS forward calorimeter PMTs in 2011

- In CMS HF, we observed decrease in response to calibration LED over 2011.
- Used low intensity LED data taken in 2011 to determine R7225HA PMT gain via position of single photoelectron (SPE) peak.

Single PE sample fit

Compare to expectation

R7525HA datasheet

SUPPLY VOLTAGE (V)

gain ~ 150k at 1350V no aging

CMS SPE measurements

SPE~16 fC gain~100k aging since ~2005

Cross checks

Thoughts on applicability of CMS phase I HCAL readout for MilliQan

- Not attempting to convince anyone that SiPM or QIE readout is preferred — I'm not convinced, myself!
- At least potentially useful for answering review questions on alternatives

HCAL barrel/endcap: SiPM+QIE

- SiPMs allow mitigation of radiation damage to HCAL scintillator
 - High photo-detection efficiency (PDE) and gain of SiPM for low light levels.
 - Small size allows more channels → longitudinal segmentation for calibration of depth-dependent effects.
- Readout with QIE11 on QIE card.

	PDE	gain	V _{op}	B-field performance	size
HPD	12%	2k	8 kV	good	(18 channels)/5°
SiPM	35%	350k	70 V	excellent	(64 channels)/5°

QIE10/11 overview

- **Deadtimeless** gated charge integration at 40 MHz (25ns integration period)
- 8-bit pseudo-logarithmic ADC with **3fC LSB and 17-bit dynamic range**.
 - 4-range, logarithmically weighted current splitter
 - piecewise-linear, exponential 6-bit ADC
- 6-bit TDC with 500 ps binning
- QIE10 appropriate for PMT use, QIE11 for SiPM use.

Compare 3fC LSB and ~1.5fC noise to ~1pC expected SPE charge.

QIE10/11 precision

- Better than 2% digitization precision at high charge.
- QIE10/11 have same response.

Resolution of QIE10 from Quantization Error

QIE11 readout concept

- 16-chagnelspoard is ~\$1000.
- In HCAL design, SiPMs sit close to QIE electronics, which complicates for MilliQan
 - 12 QIE11 ASICs (6 on each side)
 - Igloo2 FPGA serializes and formats the data and sends it to the Versatile Twin-Transmitter module (VTTx)
 - VTTx transmits optical data to backend electronics
 - ProASIC3 FPGA provides access for fast and slow controls from readout box (RBX) backplane

- ~5k pixels / mm² for 15 um APDs
- Fast response and recharge time (~5ns) increases effective pixel count by factor ~3.
- gain = $C_{GAPD} \times (V_{op} V_{bd})$ = ~100 fF (~1V) = 10⁶

Anode

Photon counting with SiPM+QIE

Dark noise : random trigger

- ~275k gain gives 44 fC/PE
- QIE noise is ~3 fC per 25ns as seen in width of pedestal

Low intensity LED

• Triggering on LED sharpens peaks because full charge is captured in time window.

SiPM+QIE11 in HCAL beam test

HPDs (sum of 12 layers)

SiPM (sum of 4 layers)

SiPMs a factor 10³ better signal/pedestal separation vs. HPDs!!!

Potential SiPM use in milliQan

- Small size : critical for milliQan
- Excellent photon counting performance : critical for milliQan
- Reasonable cost : need to consider for ~6m² milliQan area (assuming double sided readout)
- high gain : 1e6, high photon detection efficiency (PDE) : 35%
- No magnetic field sensitivity : NOT important for milliQan
- high dark count rate : >100 kHz (kill with coincidence)
- What about high dark rate?

SiPM dark rate and coincidence

- Require 6tple coincidence : naively requires 2x readout electronics.
- Electrically sum SiPMs on both sides of scinitillator? Cross talk complicates this.

16

Background rate

- 2.8e-8 Hz is rate from LOI for 500 Hz rate, triple coincidence, and 15ns time window
- 6ple coincidence 100 kHz dark with 25ns window < 2.8e-8 Hz

• Whole detector eff = P^{N-coincidence}

$$P = (1 - \exp\left[-N_{PE}\right])^3,$$
$$N_{PE} = \left(\frac{Q}{\xi}\right)^2 \qquad \xi \approx 0.0024.$$

- Assumes 10% PDE
- Efficiency drops off fast below 2ξ for any number of coincidences.

Additional material