Upstream muon spectrometer SHiP Collaboration Meeting @ CERN

Daniel Bick

November 23, 2016

- Status of the OPERA drift-tubes
- Possible redesign of the modules
- Improving the operation
- Getting rid of an external trigger?

Status of the OPERA Drift-Tube Modules

- OPERA has been completey disassembled
- All drift-tube modules are stored in altogether six containers
- Last container filled last week
- Containers stored in Hamburg

Drift-Tubes have arrived in Hamburg

D. Bick (UHH)

Status of the Drift-Tube Tracker

November 23, 2016 4 / 15

- Modules are currently 8 m long
- $\rightarrow\,$ too long for design with shorter muon shield
 - Currently thinking about the possibility of shortening the modules
 - $\ensuremath{\mathbbm 1}$ unglue lower endcaps on one side using heat
 - 2 open wire holders on other side and blow air in the tubes...
 - 3 ... while cutting the module using a band-saw
 - 4 reassemble endcap and string new wire
 - Has to be tested on a prototype
- $\rightarrow\,$ beginning of next year

Module Layout

- 48 aluminum tubes staggered in four layers
- Tube diameter: 38 mm, Wall: 0.85 mm thick
- Size: 50.4 cm wide, 19 cm deep, \approx 4 m long
- 45 µm gold-plated tungsten sense wire

Stereo planes tiltet by 3.6° in front of magnet

Performance same as in OPERA

•
$$\Delta p/p = 20\%$$

• Spatial resolution: 255 µm

Updated Design

- Region of low muon flux is much more narrow close to the beam axis
- Possibility to leave a gap in the muon spectrometer to avoid
 - backscattering of muons
 - high occupancy in the modules
- Need to check loss of acceptance though
- This should and can be done once the design of the muon shield and neutrino detector is finalized!

- $\bullet~{\rm OPERA}$ used a ${\rm Ar/CO_2}$ 80:20 gas mixture
- $\bullet~$ Very long drift times $\rightarrow~$ not so well suited for SHiP with much higher event rates

$\bullet~Changing~ratios~of~Ar$ and $CO_2\text{,}$ adding N_2

D. Bick (UHH)

Status of the Drift-Tube Tracker

A faster Driftgas

Significant improvements when using less CO_2 and adding N_2

- Best choice (so far): $Ar : CO_2 : N_2$ at a ratio of 96 : 3 : 1
- Better linearity
- Much faster ($\approx 600 \, \mathrm{ns}$ maximum drift-times)

D. Bick (UHH)

- To get the drift-time t_d you need the time t_0 when the muon passes the detector
- So far an external trigger is needed
- Time $t_{s,end}$ constant with respect to t_0
- ightarrow measure the signal width to get t_0 and thus t_d

UН

Ĥ

A look at Events

- Use of FADC to analyze pre-amplified signals
- Test-setup with one tube only
- Events triggered by two scintillator planes, $t_0 \approx @180\,\mathrm{ns}$

UH

йì

- Analysis of FADC data
- \rightarrow Single hits only
 - Triggered by two scintillator planes, so we know true t_0
 - Results consistent with drift-time spectrum
 - Large time spread

Possible improvements:

- Test different methods to identify signal end
- Use of different threshholds
- Influence of different pre-amp?
- Using multiple hits of a true track will improve results

Summary

- Drift-tube modules are now stored in Hamburg
- Evaluating the options of shortening the modules
- Adapted design could allow for gaps to avoid high muon flux areas
- Search for a better drift-gas is ongoing. Peliminary results look really good
 - However still more checks needed (afterpulses...)
- Studies on self-triggering mode in progress

Next Steps

- Use of new drift-gas in test setup for actual tracking to see its performance
- Building a short prototype from existing modules