

Summary of test-beams for the CES and emulsion-micromegas coupling

Annarita Buonaura, Valeri Tioukov

- University of Naples and INFN -

Outline

- Target trackers
 - Requests
 - Options
 - Test beam summary
- Compact Emulsion Spectrometer
 - Description
 - Test Beam summary

Target trackers

Target Tracker Requirements

• Features:

- Provide Time stamp
- Link track information in emulsions to signal in TT
- Link muon track information in v target to muon magnetic spectrometer

• Requirements in 1T field:

- 100 µm position resolution on both coordinates
- high efficiency (>99%) for angles up to 1 rad

• Options

- Scintillating Fibers: solid technology, expensive
- Gas chambers: cheaper, test beams to demonstrate technological challenges in magnetic field
 - Micromegas
 - GEM

Target Tracker Requirements

• Features:

- Provide Time stamp
- Link track information in emulsions to signal in TT
- Link muon track information in v target to muon magnetic spectrometer

• Requirements in 1T field:

- 100 µm position resolution on both coordinates
- high efficiency (>99%) for angles up to 1 rad

• Options

- Scintillating Fibers: solid technology, expensive
- Gas chambers: cheaper, test beams to demonstrate technological challenges in magnetic field
 - Micromegas Test beam performed in October 2016
 - GEM

Target Tracker Requirements

• Features:

- Provide Time stamp
- Link track information in emulsions to signal in TT
- Link muon track information in v target to muon magnetic spectrometer

• Requirements in 1T field:

- 100 μ m position resolution on both coordinates
- high efficiency (>99%) for angles up to 1 rad

• Options

- Scintillating Fibers: solid technology, expensive
- Gas chambers: cheaper, test beams to demonstrate technological challenges in magnetic field
 - Micromegas Test beam performed in October 2016
 - GEM Test beam performed in October 2015

GEM-Emulsion Test Beam Summary (2015)

In collaboration with Frascati GEM group

- Emulsion doublets (2 emulsion films vacuum packed) exposed attached to GEM detector
- Exposures performed at SPS H4 beam line with:
 - different magnetic field polarizations (B=0T,±1T)
 - different track incident angles (0°, 7.5°,15°)

Emulsion doublet (CS)

Matching procedure:

- 1. Track reconstruction in emulsions
- 2. For each peak: hit reconstruction in GEM performed by Frascati group
- 3. Alignment between CS doublets and GEM
- 4. Track reconstruction in the system CS+GEM

GEM-Emulsion Test Beam Summary (2015)

In collaboration with Frascati GEM group

Matching results

- For each angular peak evaluated the variance between the position of the track in the CS doublet and the position of the corresponding hit on the GEM detector
- *B field* is along the x direction so we expect to see its *effects on the y direction*

GEM resolution for different θ+ different B

Conclusions

- Resolution at θ=0° and B=0T complies with the needs of the SHiP experiment
- Degradation of the resolution for inclined tracks spoils GEM detector performances.
- Frascati group is implementing micro-TPC mode algorithm for the reconstruction of tracks in the GEM detector: re-evaluation of the performances to be done

Micromegas–Emulsion Test Beam Summary (October 2016)

In collaboration with RD51 group

- Emulsion doublets (2 emulsion films with 1mm spacer vacuum packed) exposed attached to 3 micromegas chambers
- Exposures performed at SPS H4 beam line with:
 - no magnetic field B=0T
 - different track incident angles (0°, 15°, 30°)

Micromegas–Emulsion Test Beam Summary (October 2016)

In collaboration with RD51 group

AT CERN

- Assembling of emulsion target
- Development
- Glicerine treatment & drying

Reconstructed track position distribution	1
3 0000	
70000	
30000	
50000 E	
40000 E	
30000	
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 t.eX	

Non uniformity due to local distortions (to be corrected)

Bricks with small amount of chemicals for test development

IN NAPLES

- Scanning of all exposed emulsion films
- Track reconstruction in the emulsions

Waiting for data from micromegas to perform matching procedure

Micromegas–Emulsion Test Beam Summary (October 2016)

In collaboration with RD51 group

AT CERN

- Assembling of emulsion target
- Development
- Glicerine treatment & drying

Non uniformity due to local distortions (to be corrected)

Bricks with small amount of chemicals for test development

IN NAPLES

- Scanning of all exposed emulsion films
- Track reconstruction in the emulsions

Waiting for data from micromegas to perform matching procedure

New option for target trackers

- Matching between detector providing time stamp (TT) & emulsion would improve if TT had micrometric resolution
- Necessary to provide time sensitivity to emulsions

New option for target trackers

- Matching between detector providing time stamp (TT) & emulsion would improve if TT had micrometric resolution
- Necessary to provide time sensitivity to emulsions

→ New option under study: Emulsion clock

New option for target trackers

- Matching between detector providing time stamp (TT) & emulsion would improve if TT had micrometric resolution
- Necessary to provide time sensitivity to emulsions

➡ New option under study: Emulsion clock

- 3 stages, each moving cyclically at a different speed
- Track displacement linked to the recorded time

Prototype to be prepared for test beam in 2017 Compact Emulsion Spectrometer

The Emulsion Target

Compact Emulsion Spectrometer (CES)

Basic layout

- Three emulsion films interleaved with two, 15-mm thick, light material layers
- Measure hadron track curvature
- Required 90% efficiency for hadronic τ daughters reaching the end of ECC brick in a 1 T field
- sagitta method to be used to discriminate between positive and negative charge

Compact Emulsion Spectrometer

Performances from Physics Research A 592 (2008) 56-62 57

- From simulation, extrapolating experimental results:
 - electric charge can be determined with better than 3 σ level up to 10 GeV/c
 - Momentum estimated from the sagitta $\Delta p/p$ < 20% up to 12 GeV/c

SHiP CES in TP

Challenges:

- Extend the range from 2 to 10÷12 GeV
- Use Rohacell instead of air gaps
 - Avoid fiducial volume losses (spacer without any additional frame)
 - Difficult to keep perfectly planar
 - Thickness accuracy ± 0.2 mm granted by the maker (15 mm)

=> Test Beam performed in September 2015 at CERN PS

Results – CES test beam 2015

≩0.15 נ

0.1

0.05

Low density: 700 - 1500 tracks/cm2/angle •

h2

Entries

4000

- Magnetic field: 1T, -1T
- 15 angles, 5 momenta ٠

Peak 2 (4 GeV)

Results – CES test beam 2015

- 2 GeV peak:
 - <μ> =16.9 μm
 - σ = 15.5 μm
- 4 GeV peak:
 - $<\mu>$ = 6.7 μ m
 - $\sigma = 21.6 \ \mu m$

Nominal sagitta values

p (GeV/c)	Sagitta(µm)
1	34
2	17
4	8.5
8	4.3
10	3.4

- Fair agreement between average measured sagitta values and nominal ones
- Width of sagitta distribution much wider than expected: *charge measurement spoiled*

Conclusions

- Rohacell solution shows:
 - fine local resolution
 - planarity problems on bigger scales.
 - Difficult to maintain gap stability with the accuracy better then 0.2 mm.

Test for new CES solution

- Frame solution was tested: precise rigid frames with a thin film (mylar) stretched over as a mechanical support for the emulsion.
- This guarantees flatness and it's more lightweight solution in respect to the Rohacell

• Target units assembled in the CERN emulsion lab

CES assembling

- 3 different exposures performed at CERN PS with different angles/momenta of the beam
 - $P_{min} = 1 \text{ GeV/c}, P_{max} = 10 \text{ GeV/c}$

• Development + glycerin treatment performed in the CERN emulsion lab

- Scanning of *one of the exposed CES* performed in Naples
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p = 4 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 6 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = -15^\circ$ on the target unit with B=±1T
 - Pions with p = 10 GeV/c sent with:
 - $\theta_x = 0^\circ, \theta_y = 0^\circ$ on the target unit with B=0T
 - $\theta_x = \pm 20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T
 - $\theta_x = -20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T

- Scanning of *one of the exposed CES* performed in Naples
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p=2 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p = 4 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 15^\circ$ on the target unit with B=±1T
 - Pions with p = 6 GeV/c sent with $\theta_x = 0^\circ$, $\theta_v = -15^\circ$ on the target unit with B=±1T
 - Pions with p = 10 GeV/c sent with:
 - $\theta_x = 0^\circ, \theta_y = 0^\circ$ on the target unit with B=0T
 - $\theta_x = \pm 20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T
 - $\theta_x = -20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T

- Scanning of *one of the exposed CES* performed in Naples
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p=2 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p = 4 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 6 GeV/c sent with $\theta_x = 0^\circ$, $\theta_v = -15^\circ$ on the target unit with B=±1T
 - Pions with p = 10 GeV/c sent with:
 - $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=0T
 - $\theta_x = \pm 20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T
 - $\theta_x = -20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T

- Scanning of *one of the exposed CES* performed in Naples
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p=2 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p = 4 GeV/c sent with $\theta_x = 0^\circ$, $\theta_v = 15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 6 GeV/c sent with $\theta_x = 0^\circ$, $\theta_v = -15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 10 GeV/c sent with:
 - $\theta_x = 0^\circ$, $\theta_v = 0^\circ$ on the target unit with B=0T
 - $\theta_x = \pm 20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T
 - $\theta_x = -20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T

- Scanning of *one of the exposed CES* performed in Naples
 - Pions with p=1 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p=2 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 0^\circ$ on the target unit with B=±1T
 - Pions with p = 4 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = 15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 6 GeV/c sent with $\theta_x = 0^\circ$, $\theta_y = -15^\circ$ on the target unit with $B = \pm 1T$
 - Pions with p = 10 GeV/c sent with:
 - $\theta_x = 0^\circ, \theta_y = 0^\circ$ on the target unit with B=0T
 - $\theta_x = \pm 20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T
 - $\theta_x = -20^\circ$, $\theta_y = -15^\circ$ on the target unit with B=0T

- Track reconstruction in the whole target still ongoing.
 - Necessary to modify the standard OPERA reconstruction software to implement:
 - Local correction to emulsion distortion

- Track reconstruction in the whole target still ongoing.
 - Necessary to modify the standard OPERA reconstruction software to implement:

- Track reconstruction in the whole target still ongoing.
 - Necessary to modify the standard OPERA reconstruction software to implement:
 - Local correction to emulsion distortion

• Improve tracking algorithm for 1.5 cm gaps between emulsions (standard algorithm tuned for 1mm gaps)

- Track reconstruction in the whole target still ongoing.
 - Necessary to modify the standard OPERA reconstruction software to implement:
 - Local correction to emulsion distortion

• Improve tracking algorithm for 1.5 cm gaps between emulsions (standard algorithm tuned for 1mm gaps)

Updates foreseen for next collaboration meeting.

Back -up

Neutrino events in Target Trackers (TT)

(A. Di Crescenzo Dec 2014)

An event with electromagnetic shower

Resolution of Target Trackers

Simple geometrical assumptions on muon flux

- For 1000 $\mu/\text{mm}^2 =>$ average track distance: 30 μm
- For 100 $\mu/\text{mm}^2 =>$ average track distance: 100 μm
- For $10 \ \mu/\text{mm}^2 =>$ average track distance: $300 \ \mu\text{m}$

Defines Max acceptable TT resolution

From pattern matching analysis (A. Di Crescenzo Dec 2014)

- Requiring:
 - TT-Emulsion alignment with high (>98%) purity and (>90%) efficiency
 - 100 GeV muons at zero angle uniformly distributed on the surface
 - 2 mm gap between CES and TT
- Needed resolution:
 - For $100 \ \mu/mm^2 => 20 \ \mu m$
 - For $10 \ \mu/mm^2 => 60 \ \mu m$

Defines Minimum needed TT resolution