Track Pattern Recognition for the Straw Tracker

Mikhail Hushchyn, Alenkin Oleg, Andrey Ustyuzhanin, Eric Van Herwijnen

9th SHiP Collaboration Meeting, 23-25 November 2016, CERN
Straw Tracker

HNL

π

μ

Stations 1&2

Magnet

Stations 3&4

Y

U

V

Y

Y-view

U-view

V-view

YUVY-views

Y

U

V

Y

PLANE 1

PLANE 2

Layer 1

Layer 2

Layer 1

Layer 2

OD 9.83
ID 9.76

26

17.6

4.4

8.8
General Scheme

1. Look for tracks in the 16 layers with horizontal straw tubes (Y-views, y-z plane).

2. For each track found in the Y-view, intersect the plane defined by this track and the x-axis with the stereo (U,V) hits. This gives (z,x) coordinates.

3. Look for tracks in 16 layers of stereo-views in x-z plane using (z, x) coordinates of the intersections.

4. Combine tracks before and after the magnet. Reconstruct a particle momentum and charge.
RANSAC

Searching for one track:
1. The RANSAC selects a random subset of the hits.
2. The linear model is fitted using this subset.
3. The error of the data with respect to the fitted model is calculated.
4. The number of inlier candidates is calculated.
5. Steps 1-4 are repeated until the maximum number of iterations.
6. A model with maximum number of inliers is returned.
Hough Transform

\[(x_0, y_0)\]

\[b = y_0 - x_0k\]

\[y = k_0x + b_0\]

\[(k_0, b_0)\]
Artificial Retina

The artificial retina function is defined as:

$$R(\theta) = \sum_i e^{-\frac{\rho^2(\theta, x_i)}{\sigma^2}}$$

where $\rho(\theta, x_i)$ is distance between the i-th hit and a track with parameters θ.

For 2D tracks:

$$\rho(\theta, x_i) = y_i - (kx_i + b) \quad \theta = [k, b]$$
Results

Number of events passed through the track finding steps. If the two tracks (for muon and pion) of an event are not recognized, the event will not go to the next step. The last columns on the graphs below show total reconstruction efficiency.
Results

Track efficiency is a criterion which specifies whether a certain particle has been found by the algorithm or not. If the qualified majority of hits, for example at least 70% originates from the same true particle, the track is said to reconstruct this particle. Dependence of total reconstruction efficiency from the track efficiency threshold:

- **RANSAC**: max = 94.6%, min = 81.2%
- **Artificial Retina**: max = 96.8%, min = 83.7%
- **Hough Transform**: max = 97.2%, min = 80.2%
Results

The particles momenta reconstruction accuracy:

- RANSAC: mean = 0.028, std = 0.12
- Artificial Retina: mean = 0.022, std = 0.149
- Hough Transform: mean = 0.027, std = 0.103
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Max Total RecoEff., %</th>
<th>Min Total RecoEff., %</th>
<th>Momentum Mean Rel. Error, %</th>
<th>Momentum Std. Rel. Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline[1]</td>
<td>94.1</td>
<td>-</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>RANSAC</td>
<td>94.6</td>
<td>81.2</td>
<td>2.8</td>
<td>12</td>
</tr>
<tr>
<td>Artificial Retina</td>
<td>96.8</td>
<td>83.7</td>
<td>2.2</td>
<td>14.9</td>
</tr>
<tr>
<td>Hough Transform</td>
<td>97.2</td>
<td>80.2</td>
<td>2.7</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Limitations

1. Pattern Recognition has 7 steps (see 7th slide).

2. Errors from one step propagate to the others with amplification due to angle between y and stereo views.

3. 3D tracks are recognized in 2D projections.

4. Only part of an event information (hits in y and stereo views before and after the magnet) is used at every step.

All these reasons decrease total recognition efficiencies of all methods.
One More Method

Let's search whole track in 3D before and after the magnet simultaneously.

Again, Artificial Retina:

\[
R(\theta) = \sum_i e^{-\frac{\rho^2(\theta, x_i)}{\sigma^2}}
\]

but in this time, \(\rho(\theta, x_i) \) is distance between i-th straw tube and a track in z-plane.

A track parametrization \(\theta \):

\[
\theta = (l_0, l_1, y, m, x)
\]
One More Method

For the better optimization:

1. Estimate y parameter of a track as shown on the picture.

2. Using Artificial Retina function, find optimal parameters of the track in assumption $y = \text{Const}$:

 $$ \theta = (l_0, l_1, y = \text{Const}, m, x) $$

3. Optimize the all track’s parameters:

 $$ \theta = (l_0, l_1, y, m, x) $$
Track efficiency is a criterion which specifies whether a certain particle has been found by the algorithm or not. If the qualified majority of hits, for example at least 70% originates from the same true particle, the track is said to reconstruct this particle. Dependence of total reconstruction efficiency from the track efficiency threshold and the particles momenta reconstruction accuracy:
Summary and Conclusion

<table>
<thead>
<tr>
<th>Method</th>
<th>Max Total RecoEff., %</th>
<th>Min Total RecoEff., %</th>
<th>Momentum Mean Rel. Error, %</th>
<th>Momentum Std. Rel. Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline[1]</td>
<td>94.1</td>
<td>-</td>
<td>3.2</td>
<td>-</td>
</tr>
<tr>
<td>RANSAC</td>
<td>94.6</td>
<td>81.2</td>
<td>2.8</td>
<td>12</td>
</tr>
<tr>
<td>Artificial Retina</td>
<td>96.8</td>
<td>83.7</td>
<td>2.2</td>
<td>14.9</td>
</tr>
<tr>
<td>Hough Transform</td>
<td>97.2</td>
<td>80.2</td>
<td>2.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Artificial Retina in 3D</td>
<td>99.4</td>
<td>83.6</td>
<td>2.5</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Artificial Retina in 3D is the best model. But it should be speeded up.