

LDM search @ SHiP with nuclear emulsion

(on behalf of Giovanni, Mitesh and Walter)

Light Dark Matter (LDM)

The prediction for the mass scale of DM spans from 10⁻²² eV to 10²⁰ GeV

✓ WIMP DM is a popular theoretical paradigm ("WIMP miracle")

✓ Extensive exp. search for WIMPs with masses 10 GeV – 1 TeV

Sensitivity is very limited below few GeV

Large classes of theor. models can make the observed relic density with sub-GeV DM:

- Hidden-sector models
- Supersymmetry
- Strongly Interacting DM (SIMP)
- Extra dimensions

Essential to explore the sub-GeV mass range for DM

LDM search @ SHiP

✓ LDM (χ) can be generated in a beam-dump, for example in decays of HS mediators, e.g. dark photons A' $\rightarrow \chi \chi$

✓ >10²⁰ photons expected in SHiP for 2×10²⁰ p.o.t. can be used as **a LDM beam**

For $M_{A'} > 2M_{\chi}$ $\stackrel{P}{\longrightarrow} \bigoplus \stackrel{\pi', \eta}{\longrightarrow} \gamma + A'$ $\stackrel{}{\longrightarrow} \gamma + \chi \chi$

✓ Detect LDM via its scattering on atomic electrons of the neutrino target. Use emulsion as a sampling calorimeter to identify electron and measure its energy and its direction

LDM prospects @ SHiP

With 50 signal events SHiP would be able to probe even beyond relic density in minimal hidden-photon model provided that the **background from neutrino interactions**

is kept under control

50 signal events of the LDM scattering correspond to 2.5t of lead (cylinder with 0.52m radius and 2.1m length) and 2×10²⁰ pot. Selection efficiency is assumed to be 50%.

Backgrounds

Dominant background comes from neutrino interactions!

Neutrino interactions can generate electrons in a number of ways:

	ν_e	$ar{ u}_e$	$ u_{\mu}$	$ar{ u}_{\mu}$	all	
Quasi-elastic scattering	105	73			178	<u>Note:</u> Background ha
Elastic scattering on e^-	16	2	20	18	56	been estimated for th
Resonant scattering	13	27			40	10t of lead
Deep inelastic scattering	3	7			10	
Total	137	109	20	18	284	

The uncertainties in neutrino flux and cross-sections are ~15-25%

Dominated by inelastic neutrino scattering (~250 events) that is accompanied by additional particles (in contrast to LDM scattering)

Present design of the emulsion brick has 1 mm thick absorber plates Tracks with P<100 MeV can not be reconstructed

- → Reduce the thickness of the absorber plates (down to 0.5 mm?)
- → Veto on the activity in emulsion rather than on the reconstructed tracks to further reduce contribution from inelastic neutrino interactions

Backgrounds (cont.)

→ Use energy-angular correlation to discriminate LDM scattering against inelastic neutrino interactions (requires MVA selection)

- → Use different Pt of neutrinos produced in hadron decays and LDM from dark photons. Optimize the shape of emulsion detector for LDM search
- ✓ Preliminary estimation indicates that the background from quasi-elastic neutrino interactions can be reduced by an order of magnitude
- ✓ Background from elastic neutrino scattering can be reduced by a factor 2-3 depending on the LDM mass
- ✓ 50 signal events correspond to >5σ observation if the total background is at the level of ≤ 50 events 9th SHiP coll. meeting, CERN, Nov. 2016

Emulsion as a sampling calorimeter

The feasibility has been demonstrated by the OPERA experiment **Two photon showers are clearly seen:**

Optimize SHiP emulsion spectrometer to reconstruct electron showers

- Energy (angular) resolution of ~5% (1mrad) seems to be achievable with 0.5 mm thick absorber plates
- Usage of W as an absorber will narrow the em-showers

Comparison with future facilities

Direct Detection exp.

- SHiP has unique potential for M_{γ} <1GeV
- BDX in JLab may have a competitive sensitivity for M_{χ} <10 MeV with 10^{22} eot.

Missing mass / momentum experiments

- Belle II comparable to SHiP for $M_\chi > 0.5$ GeV with 50 ab⁻¹ provided that low energy mono-photon is implemented
- LDMX (under discussion at SLAC) has the best prospects for M_{χ} < 100 MeV with 3×10^{21} eot. Time scale is unclear.

Dark sectors 2016: 1608.08632

Conclusion

- ✓ LDM searches have strong potential at SHiP will further widen our physics programme
- ✓ Programme requires dedicated simulation and prototyping effort to establish extent to which background can be controlled, optimise detector design and develop reconstruction techniques
- ✓ Seeking new postdoctoral effort to collaborate on these topics